Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(20): e2118510119, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35561216

RESUMEN

Age-related macular degeneration (AMD) is a leading cause of visual loss. It has a strong genetic basis, and common haplotypes on chromosome (Chr) 1 (CFH Y402H variant) and on Chr10 (near HTRA1/ARMS2) contribute the most risk. Little is known about the early molecular and cellular processes in AMD, and we hypothesized that analyzing submacular tissue from older donors with genetic risk but without clinical features of AMD would provide biological insights. Therefore, we used mass spectrometry­based quantitative proteomics to compare the proteins in human submacular stromal tissue punches from donors who were homozygous for high-risk alleles at either Chr1 or Chr10 with those from donors who had protective haplotypes at these loci, all without clinical features of AMD. Additional comparisons were made with tissue from donors who were homozygous for high-risk Chr1 alleles and had early AMD. The Chr1 and Chr10 risk groups shared common changes compared with the low-risk group, particularly increased levels of mast cell­specific proteases, including tryptase, chymase, and carboxypeptidase A3. Histological analyses of submacular tissue from donors with genetic risk of AMD but without clinical features of AMD and from donors with Chr1 risk and AMD demonstrated increased mast cells, particularly the tryptase-positive/chymase-negative cells variety, along with increased levels of denatured collagen compared with tissue from low­genetic risk donors. We conclude that increased mast cell infiltration of the inner choroid, degranulation, and subsequent extracellular matrix remodeling are early events in AMD pathogenesis and represent a unifying mechanistic link between Chr1- and Chr10-mediated AMD.


Asunto(s)
Cromosomas Humanos Par 10 , Cromosomas Humanos Par 1 , Degeneración Macular , Mastocitos , Péptido Hidrolasas , Alelos , Coroides/enzimología , Coroides/patología , Cromosomas Humanos Par 1/genética , Cromosomas Humanos Par 10/genética , Humanos , Degeneración Macular/genética , Degeneración Macular/patología , Mastocitos/patología , Péptido Hidrolasas/genética , Proteómica , Riesgo , Triptasas/metabolismo
2.
Methods Mol Biol ; 2426: 141-162, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36308689

RESUMEN

seaMass is an R package for protein-level quantification, normalization, and differential expression analysis of proteomics mass spectrometry data after peptide identification, protein grouping, and feature-level quantification. Using the concept of a blocked experimental design, seaMass can analyze all common discovery proteomics paradigms, including label-free (e.g., Waters Progenesis input), SILAC (e.g., MaxQuant input), isotope labelling (e.g., SCIEX ProteinPilot iTraq and Thermo ProteomeDiscoverer TMT input), and data-independent acquisition (e.g., OpenSWATH-PyProphet input), and is able to scale to study with hundreds of assays or more. By utilizing hierarchical Bayesian modelling, seaMass assesses the quantification reliability of each feature and peptide across assays so that only those in consensus influence the resulting protein group quantification strongly. Similarly, unexplained variation in each individual assay is captured, providing both a metric for quality control and automatic down-weighting of suspect assays. To achieve this, each protein group-level quantification outputted by seaMass is accompanied by the standard deviation of its posterior uncertainty. Moreover, seaMass integrates a flexible differential expression analysis subsystem with false discovery rate control based on the popular MCMCglmm package for Bayesian mixed-effects modelling, and also provides uncertainty-aware principal components analysis. We provide a description for using seaMass to perform an end-to-end analysis using a real dataset associated with a published clinical proteomics study.


Asunto(s)
Proteínas , Proteómica , Proteómica/métodos , Incertidumbre , Reproducibilidad de los Resultados , Teorema de Bayes , Péptidos , Proteoma/metabolismo
3.
bioRxiv ; 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37503045

RESUMEN

T cells can express multiple inhibitory receptors. Upon induction of T cell exhaustion in response to persistent antigen, prominently in the anti-tumor immune response, many are expressed simultaneously. Key inhibitory receptors are CTLA-4, PD-1, LAG3, TIM3 and TIGIT, as investigated here. These receptors are important as central therapeutic targets in cancer immunotherapy. Inhibitory receptors are not constitutively expressed on the cell surface, but substantial fractions reside in intracellular vesicular structures. It remains unresolved to which extent the subcellular localization of different inhibitory receptors is distinct. Using quantitative imaging of subcellular distributions and plasma membrane insertion as complemented by proximity proteomics and a biochemical analysis of the association of the inhibitory receptors with trafficking adaptors, the subcellular distributions of the five inhibitory receptors were discrete. The distribution of CTLA-4 was most distinct with preferential association with lysosomal-derived vesicles and the sorting nexin 1/2/5/6 transport machinery. With a lack of evidence for the existence of specific vesicle subtypes to explain divergent inhibitory receptor distributions, we suggest that such distributions are driven by divergent trafficking through an overlapping joint set of vesicular structures. This extensive characterization of the subcellular localization of five inhibitory receptors in relation to each other lays the foundation for the molecular investigation of their trafficking and its therapeutic exploitation.

4.
Cells ; 12(21)2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37947636

RESUMEN

T cells can express multiple inhibitory receptors. Upon induction of T cell exhaustion in response to a persistent antigen, prominently in the anti-tumor immune response, many are expressed simultaneously. Key inhibitory receptors are CTLA-4, PD-1, LAG3, TIM3, and TIGIT, as investigated here. These receptors are important as central therapeutic targets in cancer immunotherapy. Inhibitory receptors are not constitutively expressed on the cell surface, but substantial fractions reside in intracellular vesicular structures. It remains unresolved to which extent the subcellular localization of different inhibitory receptors is distinct. Using quantitative imaging of subcellular distributions and plasma membrane insertion as complemented by proximity proteomics and biochemical analysis of the association of the inhibitory receptors with trafficking adaptors, the subcellular distributions of the five inhibitory receptors were discrete. The distribution of CTLA-4 was most distinct, with preferential association with lysosomal-derived vesicles and the sorting nexin 1/2/5/6 transport machinery. With a lack of evidence for the existence of specific vesicle subtypes to explain divergent inhibitory receptor distributions, we suggest that such distributions are driven by divergent trafficking through an overlapping joint set of vesicular structures. This extensive characterization of the subcellular localization of five inhibitory receptors in relation to each other lays the foundation for the molecular investigation of their trafficking and its therapeutic exploitation.


Asunto(s)
Neoplasias , Linfocitos T , Ratones , Animales , Antígeno CTLA-4/metabolismo , Proteínas Portadoras/metabolismo , Neoplasias/metabolismo , Inmunoterapia
5.
Matrix Biol ; 113: 61-82, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36152781

RESUMEN

Muscle stem cells (MuSCs) are indispensable for muscle regeneration. A multitude of extracellular stimuli direct MuSC fate decisions from quiescent progenitors to differentiated myocytes. The activity of these signals is modulated by coreceptors such as syndecan-3 (SDC3). We investigated the global landscape of SDC3-mediated regulation of myogenesis using a phosphoproteomics approach which revealed, with the precision level of individual phosphosites, the large-scale extent of SDC3-mediated regulation of signal transduction in MuSCs. We then focused on INSR/AKT/mTOR as a key pathway regulated by SDC3 during myogenesis and mechanistically dissected SDC3-mediated inhibition of insulin receptor signaling in MuSCs. SDC3 interacts with INSR ultimately limiting signal transduction via AKT/mTOR. Both knockdown of INSR and inhibition of AKT restore Sdc3-/- MuSC differentiation to wild type levels. Since SDC3 is rapidly downregulated at the onset of differentiation, our study suggests that SDC3 acts a timekeeper to restrain proliferating MuSC response and prevent premature differentiation.


Asunto(s)
Músculo Esquelético , Proteínas Proto-Oncogénicas c-akt , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Sindecano-3/genética , Sindecano-3/metabolismo , Células Cultivadas , Músculo Esquelético/metabolismo , Desarrollo de Músculos/genética , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Diferenciación Celular
6.
Mol Metab ; 28: 107-119, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31451429

RESUMEN

OBJECTIVE: The impact of diabetes mellitus on the central nervous system is less widely studied than in the peripheral nervous system, but there is increasing evidence that it elevates the risk of developing cognitive deficits. The aim of this study was to characterize the impact of experimental diabetes on the proteome and metabolome of the hippocampus. We tested the hypothesis that the vitamin B6 isoform pyridoxamine is protective against functional and molecular changes in diabetes. METHODS: We tested recognition memory using the novel object recognition (NOR) test in streptozotocin (STZ)-induced diabetic, age-matched control, and pyridoxamine- or insulin-treated diabetic male Wistar rats. Comprehensive untargeted metabolomic and proteomic analyses, using gas chromatography-mass spectrometry and iTRAQ-enabled protein quantitation respectively, were utilized to characterize the molecular changes in the hippocampus in diabetes. RESULTS: We demonstrated diabetes-specific, long-term (but not short-term) recognition memory impairment and that this deficit was prevented by insulin or pyridoxamine treatment. Metabolomic analysis showed diabetes-associated changes in 13/82 identified metabolites including polyol pathway intermediates glucose (9.2-fold), fructose (4.9-fold) and sorbitol (5.2-fold). We identified and quantified 4807 hippocampal proteins; 806 were significantly altered in diabetes. Pathway analysis revealed significant alterations in cytoskeletal components associated with synaptic plasticity, glutamatergic signaling, oxidative stress, DNA damage and FXR/RXR activation pathways in the diabetic rat hippocampus. CONCLUSIONS: Our data indicate a protective effect of pyridoxamine against diabetes-induced cognitive deficits, and our comprehensive 'omics datasets provide insight into the pathogenesis of cognitive dysfunction enabling development of further mechanistic and therapeutic studies.


Asunto(s)
Disfunción Cognitiva/tratamiento farmacológico , Diabetes Mellitus Experimental/tratamiento farmacológico , Hipoglucemiantes/farmacología , Piridoxamina/análogos & derivados , Animales , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/metabolismo , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/metabolismo , Hipoglucemiantes/administración & dosificación , Masculino , Piridoxamina/administración & dosificación , Piridoxamina/farmacología , Ratas , Ratas Wistar , Reconocimiento en Psicología/efectos de los fármacos , Estreptozocina
7.
Commun Biol ; 2: 43, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30729181

RESUMEN

Alzheimer's disease (AD) is a progressive neurodegenerative disorder that currently affects 36 million people worldwide with no effective treatment available. Development of AD follows a distinctive pattern in the brain and is poorly modelled in animals. Therefore, it is vital to widen the spatial scope of the study of AD and prioritise the study of human brains. Here we show that functionally distinct human brain regions display varying and region-specific changes in protein expression. These changes provide insights into the progression of disease, novel AD-related pathways, the presence of a gradient of protein expression change from less to more affected regions and a possibly protective protein expression profile in the cerebellum. This spatial proteomics analysis provides a framework which can underpin current research and open new avenues to enhance molecular understanding of AD pathophysiology, provide new targets for intervention and broaden the conceptual frameworks for future AD research.


Asunto(s)
Enfermedad de Alzheimer/genética , Cerebelo/metabolismo , Redes Reguladoras de Genes , Proteínas del Tejido Nervioso/genética , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Autopsia , Estudios de Casos y Controles , Cerebelo/patología , Progresión de la Enfermedad , Corteza Entorrinal/metabolismo , Corteza Entorrinal/patología , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Giro del Cíngulo/metabolismo , Giro del Cíngulo/patología , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Masculino , Persona de Mediana Edad , Corteza Motora/metabolismo , Corteza Motora/patología , Proteínas del Tejido Nervioso/clasificación , Proteínas del Tejido Nervioso/metabolismo , Especificidad de Órganos , Transducción de Señal , Corteza Somatosensorial/metabolismo , Corteza Somatosensorial/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA