Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Gels ; 10(4)2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38667701

RESUMEN

Gelatin is commonly used as a gelling agent in gummy candy. Honey and bee products are valuable and rich sources of biologically active substances. In this study, the influence of gelatin and propolis extract on honey gummy jelly (HGJ) properties was investigated. Honey (28-32%), xylitol (13-17%), and gelatin (6-10%) were utilized to develop HGJ products by mixture design methodology. Subsequently, the optimized formulation of HGJ was fortified with 1% and 2% propolis extract to enhance its phytochemicals and antimicrobial activities. The variation in the ingredients significantly affected the physicochemical, textural, and sensory properties of the HGJ. The optimized HGJ formulation consisted of honey (32%), xylitol (14%), and gelatin (7%) and exhibited 13.35 × 103 g.force of hardness, -0.56 × 103 g.sec of adhesiveness, 11.96 × 103 N.mm of gumminess, 0.58 of resilience, and a moderate acceptance score (6.7-7.5). The fortification of HGJ with propolis extract significantly increased its phytochemical properties. Furthermore, the incorporation of propolis extract (2%) into the HGJ was able to significantly inhibit the growth of Gram-positive (Streptococcus mutans and Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria. The mixture of gelatin, xylitol, honey, and propolis extract can be utilized to develop a healthy gummy product with acceptable physicochemical, textural, and sensory qualities.

2.
Front Cell Infect Microbiol ; 14: 1367010, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38469352

RESUMEN

Stingless bees, a social corbiculate bee member, play a crucial role in providing pollination services. Despite their importance, the structure of their microbiome, particularly the fungal communities, remains poorly understood. This study presents an initial characterization of the fungal community associated with two Thai commercial stingless bee species, Lepidotrigona terminata (Smith) and Tetragonula pagdeni (Schwarz) from Chiang Mai, Thailand. Utilizing ITS amplicon sequencing, we identified distinct fungal microbiomes in these two species. Notably, fungi from the phyla Ascomycota, Basidiomycota, Mucoromycota, Mortierellomycota, and Rozellomycota were present. The most dominant genera, which varied significantly between species, included Candida and Starmerella. Additionally, several key enzymes associated with energy metabolism, structural strength, and host defense reactions, such as adenosine triphosphatase, alcohol dehydrogenase, ß-glucosidase, chitinase, and peptidylprolyl isomerase, were predicted. Our findings not only augment the limited knowledge of the fungal microbiome in Thai commercial stingless bees but also provide insights for their sustainable management through understanding their microbiome.


Asunto(s)
Microbiota , Micobioma , Abejas , Animales , Tailandia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA