Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Development ; 151(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38063853

RESUMEN

High-sugar diets (HSDs) often lead to obesity and type 2 diabetes, both metabolic syndromes associated with stem cell dysfunction. However, it is unclear whether excess dietary sugar affects stem cells. Here, we report that HSD impairs stem cell function in the intestine and ovaries of female Drosophila prior to the onset of insulin resistance, a hallmark of type 2 diabetes. Although 1 week of HSD leads to obesity, impaired oogenesis and altered lipid metabolism, insulin resistance does not occur. HSD increases glucose uptake by germline stem cells (GSCs) and triggers reactive oxygen species-induced JNK signaling, which reduces GSC proliferation. Removal of excess sugar from the diet reverses these HSD-induced phenomena. A similar phenomenon is found in intestinal stem cells (ISCs), except that HSD disrupts ISC maintenance and differentiation. Interestingly, tumor-like GSCs and ISCs are less responsive to HSD, which may be because of their dependence on glycolytic metabolism and high energy demand, respectively. This study suggests that excess dietary sugar induces oxidative stress and damages stem cells before insulin resistance develops, a mechanism that may also occur in higher organisms.


Asunto(s)
Células Madre Adultas , Diabetes Mellitus Tipo 2 , Proteínas de Drosophila , Resistencia a la Insulina , Animales , Femenino , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Azúcares de la Dieta/metabolismo , Células Madre Adultas/metabolismo , Células Madre Neoplásicas/metabolismo , Obesidad
2.
Development ; 149(16)2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35899600

RESUMEN

Phosphatidylinositol (PI) 4,5-bisphosphate (PIP2) is involved in many biological functions. However, the mechanisms of PIP2 in collective cell migration remain elusive. This study highlights the regulatory role of cytidine triphosphate synthase (CTPsyn) in collective border cell migration through regulating the asymmetrical distribution of PIP2. We demonstrated that border cell clusters containing mutant CTPsyn cells suppressed migration. CTPsyn was co-enriched with Actin at the leading edge of the Drosophila border cell cluster where PIP2 was enriched, and this enrichment depended on the CTPsyn activity. Genetic interactions of border cell migration were found between CTPsyn mutant and genes in PI biosynthesis. The CTPsyn reduction resulted in loss of the asymmetric activity of endocytosis recycling. Also, genetic interactions were revealed between components of the exocyst complex and CTPsyn mutant, indicating that CTPsyn activity regulates the PIP2-related asymmetrical exocytosis activity. Furthermore, CTPsyn activity is essential for RTK-polarized distribution in the border cell cluster. We propose a model in which CTPsyn activity is required for the asymmetrical generation of PIP2 to enrich RTK signaling through endocytic recycling in collective cell migration.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Ligasas de Carbono-Nitrógeno , Movimiento Celular/genética , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA