Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
J Dairy Sci ; 107(7): 4205-4215, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38428489

RESUMEN

The composition of milk lipids varies across different ethnic sources. The lipidome profiles of Chinese Han human milk (HHM) and Chinese Korean human milk (KHM) were investigated in this study. A total of 741 lipids were identified in HHM and KHM. Twenty-eight differentially expressed lipids (DEL) were screened between the 2 milk groups; among these, 6 triacylglycerols (TG), 13 diacylglycerols (DG), 7 free fatty acids (FFA), and 1 monoglyceride (MG) were upregulated in KHM. Carnitine (CAR) was upregulated in HHM. Most DEL showed a single peak distribution in both groups. The correlations, related pathways and diseases of these DEL were further analyzed. The results demonstrated that DG, MG, and FFA showed highly positive correlations with each other (r > 0.8). The most enriched Kyoto Encyclopedia of Genes and Genomes (https://www.kegg.jp/kegg/) and Human Metabolome Database (http://www.hmdb.ca) pathways were inositol phosphate metabolism, and α-linolenic acid and linolenic acid metabolism, respectively. Major depressive disorder-related FFA (20:5) and FFA (22:6) were more abundant in KHM, whereas HHM showed more obesity-related CAR. These data potentially provide lipidome information regarding human milk from different ethnicities in China.


Asunto(s)
Lipidómica , Leche Humana , Humanos , Leche Humana/química , Femenino , Lípidos , Etnicidad/genética , Triglicéridos/metabolismo , China , República de Corea , Pueblos del Este de Asia
2.
Compr Rev Food Sci Food Saf ; 23(1): e13295, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38284598

RESUMEN

Food contaminants present a significant threat to public health. In response to escalating global concerns regarding food safety, there is a growing demand for straightforward, rapid, and sensitive detection technologies. Noble metal nanoclusters (NMNCs) have garnered considerable attention due to their superior attributes compared to other optical materials. These attributes include high catalytic activity, excellent biocompatibility, and outstanding photoluminescence properties. These features render NMNCs promising candidates for crafting nanosensors for food contaminant detection, offering the potential for the development of uncomplicated, swift, sensitive, user-friendly, and cost-effective detection approaches. This review investigates optical nanosensors based on NMNCs, including the synthesis methodologies of NMNCs, sensing strategies, and their applications in detecting food contaminants. Furthermore, it involves a comparative assessment of the applications of NMNCs in optical sensing and their performance. Ultimately, this paper imparts fresh perspectives on the forthcoming challenges. Hitherto, optical (particularly fluorescent) nanosensors founded on NMNCs have demonstrated exceptional sensing capabilities in the realm of food contaminant detection. To enhance sensing performance, future research should prioritize atomically precise NMNCs synthesis, augmentation of catalytic activity and optical properties, development of high-throughput and multimode sensing, integration of NMNCs with microfluidic devices, and the optimization of NMNCs storage, shelf life, and transportation conditions.


Asunto(s)
Inocuidad de los Alimentos , Nanotecnología
3.
Crit Rev Food Sci Nutr ; 63(29): 10014-10031, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35603705

RESUMEN

This review summarized recent studies about the effects of polyphenols on the allergenicity of allergenic proteins, involving epigallocatechin gallate (EGCG), caffeic acid, chlorogenic acid, proanthocyanidins, quercetin, ferulic acid and rosmarinic acid, etc. Besides, the mechanism of polyphenols for reducing allergenicity was discussed and concluded. It was found that polyphenols could noncovalently (mainly hydrophobic interactions and hydrogen bonding) and covalently (mainly alkaline, free-radical grafting, and enzymatic method) react with allergens to induce the structural changes, resulting in the masking or/and destruction of epitopes and the reduction of allergenicity. Oral administration in murine models showed that the allergic reaction might be suppressed by regulating immune cell function, changing the levels of cytokines, suppressing of MAPK, NF-κb and allergens-presentation pathway and improving intestine function, etc. The outcome of reduced allergenicity and suppressed allergic reaction was affected by many factors such as polyphenol types, polyphenol concentration, allergen types, pH, oral timing and dosage. Moreover, the physicochemical and functional properties of allergenic proteins were improved after treatment with polyphenols. Therefore, polyphenols have the potential to produce hypoallergenic food. Further studies should focus on active concentrations and bioavailability of polyphenols, confirming optimal intake and hypoallergenic of polyphenols based on clinical trials.


Asunto(s)
Hipersensibilidad a los Alimentos , Polifenoles , Humanos , Animales , Ratones , Polifenoles/farmacología , Polifenoles/química , Hipersensibilidad a los Alimentos/prevención & control , Alérgenos , Proteínas , Ácido Clorogénico/química
4.
Crit Rev Food Sci Nutr ; 62(26): 7255-7268, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33951963

RESUMEN

The increasing prevalence of food allergies is a significant challenge to global food health and safety. Various strategies have been deployed to decrease the allergenicity of food for preventing and reducing related disorders. Compared to other methods, fermentation has unique advantages in reducing the allergenicity of food and may represent a new trend in preventing food-induced allergies. This review introduces the characteristics of allergens in various foods, including shellfish, soy, peanut, milk, tree nut, egg, wheat, and fish. The mechanism and pathological symptoms of allergic reactions are then summarized. Furthermore, the advantages of fermentation for reducing the allergenicity of these foods and preventing allergies are evaluated. Fermentation is an efficient approach for reducing or eliminating food allergenicity. Simultaneously, it improved the nutritional value and physicochemical properties of food materials. It is conceivable that a combination of mixed strain fermentation with additional processing, such as heat treatment, pulsed light, and ultrasonication, will efficiently reduce the allergenicity of various foods and preserve their unique taste and nutritional components, providing significance for patients with allergies.


Asunto(s)
Hipersensibilidad a los Alimentos , Alérgenos/química , Animales , Arachis , Fermentación , Hipersensibilidad a los Alimentos/diagnóstico , Hipersensibilidad a los Alimentos/prevención & control , Alimentos Marinos
5.
Crit Rev Food Sci Nutr ; 62(24): 6698-6713, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33775183

RESUMEN

The increasing incidence of food allergy cases is a public health problem of global concern. Producing hypoallergenic foods with high quality, low cost, and eco-friendly is a new trend for the food industry in the coming decades. Food irradiation, a non-thermal food processing technology, is a powerful tool to reduce the allergenicity with the above advantages. This review presents a summary of recent studies about food irradiation to reduce the allergenicity of food, including shellfish, soy, peanut, milk, tree nut, egg, wheat and fish. Principles of food irradiation, including mechanisms of allergenicity-reduction, irradiation types and characteristics, are discussed. Specific effects of food irradiation are also evaluated, involving microbial decontamination, improvement or preservation of nutritional value, harmful substances reduction of food products. Furthermore, the advantages, disadvantages and limitations of food irradiation are analyzed. It is concluded that food irradiation is a safety tool to reduce the allergenicity of food effectively, with high nutritional value and long shelf-life, making it a competitive alternative technology to traditional techniques such as heating treatments. Of note, a combination of irradiation with additional processing may be a trend for food irradiation.


Asunto(s)
Hipersensibilidad a los Alimentos , Irradiación de Alimentos , Alérgenos , Animales , Hipersensibilidad a los Alimentos/prevención & control , Alimentos Marinos , Tecnología
6.
Crit Rev Food Sci Nutr ; : 1-19, 2022 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-35980144

RESUMEN

The gut microbiota (GM) is a complex ecosystem that is closely linked to host health. Ganoderma spp. polysaccharides (GPs), a major bioactive component of the fungal genus Ganoderma, can modulate the GM, exhibiting various health effects and prebiotic potential. This review comprehensively concluded the structural features and extraction method of GPs. The mechanism of GPs for anti-obesity, anti-diabetes, anti-inflammatory, and anti-cancer were further evaluated. The simulated gastrointestinal digestion of GPs and the utilization mechanism of host microorganisms were discussed. It was found that the physicochemical properties and biological activities of GPs depend on their structural characteristics (molecular weight, monosaccharide composition, glycosidic bonds, etc.). Their extraction method also affects the structure and bioactivities of polysaccharides. GPs supplementation could increase the relative abundance of beneficial bacteria (e.g. Bacteroides, Parabacteroides, Akkermansia, and Bifidobacterium), while reducing that of pathogenic bacteria (e.g. Aerococcus, Ruminococcus), thus promoting health. Moreover, GPs are resistant to digestion in the stomach and small intestine but are digested in the large intestine. Therefore, GPs can be considered as potential prebiotics. However, further studies should investigate how GPs as prebiotics regulate GM and improve host health.

7.
Crit Rev Food Sci Nutr ; : 1-16, 2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36165272

RESUMEN

Sesame allergy is a serious public health problem and is mainly induced by IgE-mediated reactions, whose prevalence is distributed all over the world. Sesame has been included on the priority allergic food list in many countries. This review summarizes the mechanism and prevalence of sesame allergy. The characteristics, structures and epitopes of sesame allergens (Ses i 1 to Ses i 7) are included. Moreover, the detection methods for sesame allergens are evaluated, including nucleic-acid, immunoassays, mass spectrometry, and biosensors. Various processing techniques for reducing sesame allergenicity are discussed. Additionally, the potential cross-reactivity of sesame with other plant foods is assessed. It is found that the allergenicity of sesame is related to the structures and epitopes of sesame allergens. Immunoassays and mass spectrometry are the major analytical tools for detecting and quantifying sesame allergens in food. Limited technologies have been successfully used to reduce the antigenicity of sesame, involving microwave heating, high hydrostatic pressure, salt and pH treatment. More technologies for reducing the allergenicity of sesame should be widely investigated in future studies. The reduction of allergenicity in processed sesames should be ultimately confirmed by clinical studies. What's more, sesame may exhibit cross-reactivity with peanut and tree nuts.

8.
Crit Rev Food Sci Nutr ; : 1-16, 2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36476145

RESUMEN

Milk contaminated with trace amounts of foodborne pathogens can considerably threaten food safety and public health. Therefore, rapid and accurate detection techniques for foodborne pathogens in milk are essential. Nucleic acid amplification (NAA)-based strategies are widely used to detect foodborne pathogens in milk. This review article covers the mechanisms of the NAA-based detection of foodborne pathogens in milk, including polymerase chain reaction (PCR), loop-mediated isothermal amplification (LAMP), recombinase polymerase amplification (RPA), rolling circle amplification (RCA), and enzyme-free amplification, among others. Key factors affecting detection efficiency and the advantages and disadvantages of the above techniques are analyzed. Potential on-site detection tools based on NAA are outlined. We found that NAA-based strategies were effective in detecting foodborne pathogens in milk. Among them, PCR was the most reliable. LAMP showed high specificity, whereas RPA and RCA were most suitable for on-site and in-situ detection, respectively, and enzyme-free amplification was more economical. However, factors such as sample separation, nucleic acid target conversion, and signal transduction affected efficiency of NAA-based strategies. The lack of simple and effective sample separation methods to reduce the effect of milk matrices on detection efficiency was noteworthy. Further research should focus on simplifying, integrating, and miniaturizing microfluidic on-site detection platforms.

9.
Food Chem ; 458: 140267, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38968717

RESUMEN

Recently, with changes in dietary patterns, there has been increased interest in the concept of food and medicine homology, which can help prevent disease development. This has led to a growing focus on the development of functional health foods derived from edible herbal sources. Polysaccharides, found in many edible herbal sources, are gaining popularity as natural ingredients in the production of functional food products. The gut microbiota can effectively utilize most edible herbal polysaccharides (EHPs) and produce beneficial metabolites; therefore, the prebiotic potential of EHPs is gradually being recognized. In this review, we comprehensively discuss the structural features and characterization of EHPs to promote gut microbiota regulation as well as the structure-activity relationship between EHPs and gut microbiota. As prebiotics, intestinal microbiota can use EHPs to indirectly produce metabolites such as short-chain fatty acids to promote overall health; on the other hand, different EHP structures possess some degree of selectivity on gut microbiota regulation. Moreover, we evaluate the functionality and mechanism underlying EHPs in terms of anticancer activity, antimetabolic diseases, anti-inflammatory activity, and anti-neuropsychiatric diseases.

10.
Int J Biol Macromol ; 254(Pt 2): 127838, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37923034

RESUMEN

Milk proteins are well known to produce aerated food due to the amphiphilicity. However, milk proteins are commonly added in blends for the desirable properties in food industry. In this study, the foaming properties of milk protein mixtures (MPM), a mixtures of whey protein isolated (WPI) and milk protein concentrate (MPC), was studied through foaming capacity (FC), foam stability (FS), and foam morphology at pH 3.0-9.0. Physiochemical, structural, surface properties, and Pearson correlation analysis were measured to gain insight into foaming behavior. Results indicated that MPM showed excellent FC (113.0-114.3 %) and FS (90.7-93.0 %) at pH 6.0-9.0, and foam displayed a smaller size and uniform distribution. MPM solutions showed smaller particles, higher solubility, and lower apparent viscosity at pH 6.0-9.0, which resulted in an increase in surface pressure and adsorption rate (Kdiff), facilitating more protein absorbed to interface. To further investigate structural changes, various spectral methods were used, in which the structure of MPM was changed with pH. Correlation analysis further suggests that Kdiff and solubility positively affect the formation of foam, while free sulfhydryl and ß-sheet contributed to stabilizing foams. These findings provide valuable information on MPM as ingredients for aerated foods under acidic, neutral, and alkaline conditions.


Asunto(s)
Proteínas de la Leche , Proteínas de la Leche/química , Propiedades de Superficie , Viscosidad , Solubilidad , Concentración de Iones de Hidrógeno , Proteína de Suero de Leche/química
11.
Int J Biol Macromol ; 249: 126026, 2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37506791

RESUMEN

This study comparatively analyzed the changes in IgE-reactivity and epitopes in proanthocyanidins A2- (PA-Gly m 6) and B2-Gly m 6 (PB-Gly m 6) conjugates prepared by alkali treatment at 80 °C for 20 min. Similar to the western blot, ELISA also showed a higher reduced IgE-reactivity in PA-Gly m 6 (70.12 %) than PB-Gly m 6 (63.17 %). SDS-PAGE demonstrated that proanthocyanidins A2 caused more formation of >180 kDa polymers than proanthocyanidins B2. Multispectral analyses revealed that PA-Gly m 6 exhibited more structural alteration (e.g., a decrease of α-helical content and ANS fluorescence intensity) to unfold protein structure than proanthocyanidins B2, improving the accessibility to modify Gly m 6 for shielding or destroying conformational epitopes. LC/MS-MS revealed that PA-Gly m 6 conjugates had a lower abundance of allergens, peptides and linear epitopes than PB-Gly m 6 conjugates. Molecular docking showed that proanthocyanidins A2 and B2 reacted with Gln-317 and Asn-94 of epitopes, respectively. Overall, proanthocyanidins A2 is more effective than proanthocyanidins B2 to decrease the IgE-reactivity of Gly m 6 due to more shielding or destruction of conformational epitopes and lower content allergens and linear epitopes, which was attributed to more protein-crosslinks formation and structural changes in PA-Gly m 6 conjugates.


Asunto(s)
Proantocianidinas , Epítopos/química , Simulación del Acoplamiento Molecular , Mapeo Epitopo , Alérgenos , Inmunoglobulina E/metabolismo
12.
Food Chem ; 405(Pt A): 134830, 2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-36370556

RESUMEN

The effects of heating temperature on epitopes, IgE-binding capacity, and conformation of soybean protein isolate (SPI) were investigated in this study. Indirect ELISA demonstrated that the IgE binding capacity of SPI was increased by 13.1 %-31.6 % after being heated at 60-100 °C for 20 min. SDS-PAGE demonstrated no changes in protein profiles, and native PAGE revealed the formation of aggregates. Structural analyses demonstrated the protein unfolding, appearing temperature-dependent, thus exposing conformational epitopes. Peptide mapping analysis revealed the changes in peptide profiles of major allergens (Gly m 4, Gly m 5, Gly m 6, P28, and Kunitz trypsin inhibitor). LC/MS-MS demonstrated that heating caused the masking or exposure of linear epitopes in Gly m 4 - Gly m 6 and P28. Therefore, heating caused structural changes to expose epitopes to increase IgE binding capacity in SPI. Patients with soybean allergy should avoid the heated SPI until the results of clinical trials are confirmed.


Asunto(s)
Inmunoglobulina E , Proteínas de Soja , Humanos , Epítopos , Inmunoglobulina E/metabolismo , Calor , Alérgenos/química , Glycine max/metabolismo , Antígenos de Plantas
13.
Food Chem ; 405(Pt A): 134820, 2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-36370566

RESUMEN

The modification, structure, functionality and IgE binding capacity of soybean protein (SPI) upon covalent conjugation with gallic acid (GA), caffeic acid (CA), and tannic acid (TA) under alkali treatment were assessed. SDS-PAGE showed the formation of SPI-polyphenol conjugates and the cross-linking of SPI. Protein unfolding in the conjugates was observed, characterized by a reduction in α-helix and an increase in UV ultraviolet absorption, surface hydrophobicity and free sulfhydryl groups. LC/MS-MS demonstrated that the modification of protein and major allergens varied with the types of polyphenols. Western-blot and ELISA demonstrated that SPI-polyphenol conjugates exhibited a significant reduced IgE binding capacity due to the masking or destruction of epitopes among Gly m 4, Gly m 5, Gly m 6 and P28, resulting from structural changes. Additionally, antioxidant capacity and emulsifying properties were increased in SPI-polyphenol conjugates. Therefore, polyphenol treatment may be a promising method to prepare hypoallergenic soybean products with desired functionality.


Asunto(s)
Polifenoles , Proteínas de Soja , Proteínas de Soja/química , Alérgenos/química , Fenómenos Químicos , Inmunoglobulina E/metabolismo
14.
Int J Biol Macromol ; 226: 597-607, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36509204

RESUMEN

This study evaluated the impact of proanthocyanidins on immunoglobulin E (IgE) binding capacity, antioxidant, foaming and emulsifying properties in soy 11S protein following alkali treatment at 80 °C for 20 min. The formation of >180 kDa polymer was observed in the combined heating and proanthocyanidins-conjugation treatment sample (11S-80PC) rather than in the heating treated sample (11S-80) using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The structural analyzes demonstrated that 11S-80PC exhibited more protein unfolding than 11S-80. Heatmap analysis revealed that 11S-80PC had more alteration of peptide and epitope profiles in 11S than in 11S-80. Molecular docking showed that PC could well react with soy protein 11S. Liquid chromatography tandem MS analysis (LC/MS-MS) demonstrated that there was a 35.6 % increase in 11S-80, but a 14.5 % decrease in 11S-80PC for the abundance of total linear epitopes. As a result, 11S-80PC exhibited more reduction in IgE binding capacities than 11S-80 owing to more obscuring and disruption of linear and conformational epitopes induced by structural changes. Moreover, 11S-80PC exhibited higher antioxidant capacities, foaming properties and emulsifying activity than 11S-80. Therefore, the addition of proanthocyanidins could decrease allergenic activity and enhance the functional properties of the heated soy 11S protein.


Asunto(s)
Proantocianidinas , Proteínas de Soja , Proteínas de Soja/química , Inmunoglobulina E , Proteómica , Simulación del Acoplamiento Molecular , Calefacción , Antioxidantes , Epítopos/química
15.
Food Chem X ; 17: 100566, 2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-36845520

RESUMEN

In this study, the differences in effects of (-)-epigallocatechin gallate (EGCG) and proanthocyanidins (PC) on the functionality and allergenicity of soybean protein isolate (SPI) were studied. SDS-PAGE demonstrated that SPI-PC conjugates exhibited more high-molecular-weight polymers (>180 kDa) than SPI-EGCG conjugates. Structural analysis showed that SPI-PC conjugates exhibited more disordered structures and protein-unfolding, improving the accessibility of PC to modify SPI, compared to SPI-EGCG conjugates. LC/MS-MS demonstrated that PC caused more modification of SPI and major soybean allergens than EGCG, resulting in a lower abundance of epitopes. The successful attachment of EGCG and PC to SPI significantly increased antioxidant capacity in conjugates. Furthermore, SPI-PC conjugates exhibited greater emulsifying activity and lower immunoglobulin E (IgE) binding capacity than SPI-EGCG conjugates, which was attributed to more disordered structure and protein-unfolding in SPI-PC conjugates. It is implied that proanthocyanidins may be promising compounds to interact with soybean proteins to produce functional and hypoallergenic foods.

16.
Int J Biol Macromol ; 234: 123672, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36801228

RESUMEN

This study assessed the alteration of IgE-reactivity and functional attribute in soy protein 7S-proanthocyanidins conjugates (7S-80PC) formed by alkali-heating treatment (pH 9.0, 80 °C, 20 min). SDS-PAGE demonstrated that 7S-80PC exhibited the formation of >180 kDa polymers, although the heated 7S (7S-80) had no changes. Multispectral experiments revealed more protein unfolding in 7S-80PC than in 7S-80. Heatmap analysis showed that 7S-80PC showed more alteration of protein, peptide and epitope profiles than 7S-80. LC/MS-MS demonstrated that the content of total dominant linear epitopes was increased by 11.4 % in 7S-80, but decreased by 47.4 % in 7S-80PC. As a result, Western-blot and ELISA showed that 7S-80PC exhibited lower IgE-reactivity than 7S-80, probably because 7S-80PC exhibited more protein-unfolding to increase the accessibility of proanthocyanidins to mask and destroy the exposed conformational epitopes and dominant linear epitopes induced by heating treatment. Furthermore, the successful attachment of PC to soy 7S protein significantly increased antioxidant activity in 7S-80PC. 7S-80PC also showed higher emulsion activity than 7S-80 owing to its high protein flexibility and protein unfolding. However, 7S-80PC exhibited lower foaming properties than 7S-80. Therefore, the addition of proanthocyanidins could decrease IgE-reactivity and alter the functional attribute of the heated soy 7S protein.


Asunto(s)
Proantocianidinas , Proteínas de Soja , Proteínas de Soja/química , Calefacción , Proteómica , Epítopos/química , Inmunoglobulina E
17.
Int J Biol Macromol ; 224: 881-892, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36306915

RESUMEN

This study was performed to determine the crosslinking formed by proanthocyanidins (PC) with respect to IgE binding capacities, functionality, structure and composition of soybean protein (SPI) following the alkali treatment at 60-100 °C. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) showed the formation of >180 kDa polymers, resulting from the formation of SPI-PC conjugates and protein cross-links. Structural analyses demonstrated that SPI-PC conjugates exhibited structural changes to unfold proteins and increase molecular flexibility. Liquid chromatography coupled to tandem mass spectrometry (LC/MS-MS) showed a decrease in unique protein and peptide numbers as well as major allergen and dominant epitopes abundance. When SPI was treated with PC under the alkali treatment at 80 °C, it exhibited a maximum reduction (68.8 %) in the immunoglobulin E (IgE) binding capacity and a maximum increase in DPPH radical scavenging activities (6.11-fold), ABTS + radical scavenging activities (4.80-fold), foaming stability (6.1 %) and emulsifying activity (27.3 %), compared to the control SPI. Overall, this study demonstrates that alkali treatment at 60-100 °C to form SPI-PC conjugates has potential applications for producing hypoallergenic soybean products with the desired functionality, most especially from alkali treatment at 80 °C. Moreover, the addition of PC pronouncedly alleviates the undesirable functional properties in heated SPI.


Asunto(s)
Proantocianidinas , Proteínas de Soja , Proteínas de Soja/química , Inmunoglobulina E , Glycine max/química , Calor
18.
Food Chem ; 392: 133208, 2022 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-35659698

RESUMEN

This study investigated the immunoglobulin E (IgE) binding capacity, structure, and physicochemical properties of raw crushed peanut (RCP) after fermentation with Lactobacillus plantarum and Bacillus natto along with autoclaved pretreatment. SDS-PAGE showed the disappearance of partial protein (>45 kDa) in autoclaved peanuts (ACP) and fermented autoclaved peanuts with L. plantarum (LP), and of majority protein (>14.4 kDa) in fermented autoclaved peanuts with B. natto (BN) or a mixture of L. plantarum and B. natto (LPBN). Structural analysis revealed protein-aggregation and protein-unfolding in autoclaved and fermented peanuts, respectively. Indirect ELISA demonstrated that the IgE binding capacities in ACP, LP, BN and LPBN were reduced by 11.3%, 20.6%, 78.7% and 90.2%, respectively, compared to RCP. LPBN showed the lowest IgE binding capacity due to the highest masking and destruction of epitopes and exhibited the desirable physicochemical properties simultaneously. Mixed strain fermentation has the potential to produce hypoallergenic peanut products.


Asunto(s)
Lactobacillus plantarum , Alimentos de Soja , Arachis , Bacillus subtilis , Fermentación , Inmunoglobulina E
19.
Foods ; 11(3)2022 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-35159629

RESUMEN

The study investigated the changes in IgE binding capacity, protein profiles and peptide compositions after soybeans were boiled and autoclaved. The results of ELISA showed that the IgE binding capacity of soybean was reduced by 69.3% and 88.9% after boiling and autoclaving, respectively. Above 43 and 10 kDa proteins disappeared in boiled and autoclaved soybeans from SDS-PAGE, respectively. A Venn diagram and heat map showed that there was no change in allergen types and a reduction in allergen contents in the boiled and autoclaved soybeans. The changes in peptide compositions were also observed in the boiled and autoclaved soybeans through Venn diagram, PCA and heat map. LC/MS-MS and peptide mapping analysis demonstrated that boiling and autoclaving masked many epitopes in Gly m 4 and Gly m 5, such as ALVTDADNVIPK, SVENVEGNGGPGTIKK and KITFLEDGETK of Gly m 4 and VEKEECEEGEIPRPRPRPQHPER of Gly m 5, resulting in a reduction of IgE binding capacity in the extracted proteins. By contrast, the exposure of many epitopes in Gly m 6 was observed in boiled and autoclaved soybeans, which might be mainly responsible for the existing IgE binding capacity in the treated soybean proteins. Interestingly, the IgE binding capacity of soybeans showed a positive correlation with the total contents and number of peptides in Gly m 4-Gly m 6.

20.
Int J Biol Macromol ; 220: 1221-1230, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36041578

RESUMEN

Soybean allergy is a health-threatening issue and identifying raw soybeans with low allergenicity is important for producing hypoallergenic soybean products. Soybean allergy is mainly triggered by soybean proteins. In this study, the protein profiles, allergen compositions, and epitopes in protein from different soybean cultivars (R1, R2 and R3) were evaluated by SDS-PAGE and LC/MS-MS, and their allergenicity was assessed by indirect ELISA and Western blot analysis using the serum IgE of patients allergic to soybeans. The lowest allergenicity was observed in R3, probably resulting from the low concentration of Gly m 4-Gly m 6. The allergenicity of soybeans is affected by multiple allergens rather than a single allergen. Venn diagram, PCA, heatmap, and peptide map analyses have shown the differences in protein and peptide profiles among soybean proteins from different soybean cultivars. Epitope analysis further demonstrated that low contents of dominant epitopes in Gly m 4 and Gly m 5 contributed to low allergenicity in R3, although R3 contained high contents of no-dominant epitopes.


Asunto(s)
Alérgenos , Hipersensibilidad , Alérgenos/química , Antígenos de Plantas , Epítopos , Humanos , Inmunoglobulina E , Proteínas de Soja , Glycine max/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA