Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Carcinogenesis ; 39(9): 1141-1150, 2018 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-29860383

RESUMEN

Curcumin has been reported to inhibit inflammation, tumor growth, angiogenesis and metastasis by decreasing cell growth and by inducing apoptosis mainly through the inhibition of nuclear factor kappa-B (NFκB), a master regulator of inflammation. Recent reports also indicate potential metabolic effects of the polyphenol, therefore we analyzed whether and how it affects the energy metabolism of tumor cells. We show that curcumin (10 µM) inhibits the activity of ATP synthase in isolated mitochondrial membranes leading to a dramatic drop of ATP and a reduction of oxygen consumption in in vitro and in vivo tumor models. The effects of curcumin on ATP synthase are independent of the inhibition of NFκB since the IκB Kinase inhibitor, SC-514, does not affect ATP synthase. The activities of the glycolytic enzymes hexokinase, phosphofructokinase, pyruvate kinase and lactate dehydrogenase are only slightly affected in a cell type-specific manner. The energy impairment translates into decreased tumor cell viability. Moreover, curcumin induces apoptosis by promoting the generation of reactive oxygen species (ROS) and malondialdehyde (MDA), a marker of lipid oxidation, and autophagy, at least in part due to the activation of the AMP-activated protein kinase (AMPK). According to the in vitro anti-tumor effect, curcumin (30 mg/kg body weight) significantly delayed in vivo cancer growth likely due to an energy impairment but also through the reduction of tumor angiogenesis. These results establish the ATP synthase, a central enzyme of the cellular energy metabolism, as a target of the antitumoral polyphenol leading to inhibition of cancer cell growth and a general reprogramming of tumor metabolism.


Asunto(s)
Antineoplásicos/uso terapéutico , Curcumina/uso terapéutico , Metabolismo Energético/efectos de los fármacos , ATPasas de Translocación de Protón Mitocondriales/antagonistas & inhibidores , Neoplasias/tratamiento farmacológico , Consumo de Oxígeno/efectos de los fármacos , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Femenino , Hexoquinasa/metabolismo , Quinasa I-kappa B/antagonistas & inhibidores , L-Lactato Deshidrogenasa/metabolismo , Malondialdehído/metabolismo , Ratones , Ratones Desnudos , Neovascularización Patológica/tratamiento farmacológico , Fosfofructoquinasas/metabolismo , Piruvato Quinasa/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Tiofenos/farmacología
2.
Cancer Metastasis Rev ; 36(1): 109-140, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28229253

RESUMEN

Uveal melanoma (UM), a rare cancer of the eye, is distinct from cutaneous melanoma by its etiology, the mutation frequency and profile, and its clinical behavior including resistance to targeted therapy and immune checkpoint blockers. Primary disease is efficiently controlled by surgery or radiation therapy, but about half of UMs develop distant metastasis mostly to the liver. Survival of patients with metastasis is below 1 year and has not improved in decades. Recent years have brought a deep understanding of UM biology characterized by initiating mutations in the G proteins GNAQ and GNA11. Cytogenetic alterations, in particular monosomy of chromosome 3 and amplification of the long arm of chromosome 8, and mutation of the BRCA1-associated protein 1, BAP1, a tumor suppressor gene, or the splicing factor SF3B1 determine UM metastasis. Cytogenetic and molecular profiling allow for a very precise prognostication that is still not matched by efficacious adjuvant therapies. G protein signaling has been shown to activate the YAP/TAZ pathway independent of HIPPO, and conventional signaling via the mitogen-activated kinase pathway probably also contributes to UM development and progression. Several lines of evidence indicate that inflammation and macrophages play a pro-tumor role in UM and in its hepatic metastases. UM cells benefit from the immune privilege in the eye and may adopt several mechanisms involved in this privilege for tumor escape that act even after leaving the niche. Here, we review the current knowledge of the biology of UM and discuss recent approaches to UM treatment.


Asunto(s)
Melanoma/patología , Melanoma/terapia , Neoplasias de la Úvea/patología , Neoplasias de la Úvea/terapia , Animales , Humanos , Melanoma/metabolismo , Neoplasias de la Úvea/metabolismo
3.
Cancer Cell ; 41(8): 1466-1479.e9, 2023 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-37541243

RESUMEN

Glioblastoma progression in its early stages remains poorly understood. Here, we transfer PDGFB and genetic barcodes in mouse brain to initiate gliomagenesis and enable direct tracing of glioblastoma evolution from its earliest possible stage. Unexpectedly, we observe a high incidence of clonal extinction events and progressive divergence in clonal sizes, even after the acquisition of malignant phenotype. Computational modeling suggests these dynamics result from clonal-based cell-cell competition. Through bulk and single-cell transcriptome analyses, coupled with lineage tracing, we reveal that Myc transcriptional targets have the strongest correlation with clonal size imbalances. Moreover, we show that the downregulation of Myc expression is sufficient to drive competitive dynamics in intracranially transplanted gliomas. Our findings provide insights into glioblastoma evolution that are inaccessible using conventional retrospective approaches, highlighting the potential of combining clonal tracing and transcriptomic analyses in this field.


Asunto(s)
Glioblastoma , Glioma , Ratones , Animales , Glioblastoma/genética , Glioblastoma/patología , Estudios Retrospectivos , Glioma/genética , Perfilación de la Expresión Génica , Fenotipo
4.
Eur J Cancer ; 170: 27-41, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35580369

RESUMEN

BACKGROUND AND AIM OF THE STUDY: Mutations in the Gα-genes GNAQ and GNA11 are found in 85-90% of uveal melanomas (UM). Aim of the study is to understand whether the mutations in both genes differentially affect tumor characteristics and outcome and if so, to identify potential mechanisms. METHODS: We analyzed the association between GNAQ and GNA11 mutations with disease-specific survival, gene expression profiles, and cytogenetic alterations in 219 UMs. We used tandem-affinity-purification, mass spectrometry and immunoprecipitation to identify protein interaction partners of the two G-proteins and analyzed their impact on DNA-methylation. RESULTS: GNA11 mutation was associated with: i) an increased frequency of loss of BRCA1-associated protein 1 (BAP1) expression (p = 0.0005), ii) monosomy of chromosome 3 (p < 0.001), iii) amplification of chr8q (p = 0.038), iv) the combination of the latter two (p = 0.0002), and inversely with v) chr6p gain (p = 0.003). Our analysis also showed a shorter disease-specific survival of GNA11-mutated cases as compared to those carrying a GNAQ mutation (HR = 1.97 [95%CI 1.12-3.46], p = 0.02). GNAQ and GNA11 encoded G-proteins have different protein interaction partners. Specifically, the Tet Methylcytosine Dioxygenase 2 (TET2), a protein that is involved in DNA demethylation, physically interacts with the GNAQ protein but not with GNA11, as confirmed by immunoprecipitation analyses. High-risk UM cases show a clearly different DNA-methylation pattern, suggesting that a different regulation of DNA methylation by the two G-proteins might convey a different risk of progression. CONCLUSIONS: GNA11 mutated uveal melanoma has worse prognosis and is associated with high risk cytogenetic, mutational and molecular tumor characteristics that might be determined at least in part by differential DNA-methylation.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gq-G11 , Subunidades alfa de la Proteína de Unión al GTP , Melanoma , Neoplasias de la Úvea , Aberraciones Cromosómicas , Análisis Mutacional de ADN , Subunidades alfa de la Proteína de Unión al GTP/genética , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Humanos , Melanoma/patología , Mutación , Proteínas Supresoras de Tumor/genética , Ubiquitina Tiolesterasa/genética , Neoplasias de la Úvea/genética , Neoplasias de la Úvea/patología
5.
Viruses ; 13(9)2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34578259

RESUMEN

Glioblastoma is a lethal primary brain tumor lacking effective therapy. The secluded onset site, combined with the infiltrative properties of this tumor, require novel targeted therapies. In this scenario, the use of oncolytic viruses retargeted to glioblastoma cells and able to spread across the tumor cells represent an intriguing treatment strategy. Here, we tested the specificity, safety and efficacy of R-613, the first oncolytic HSV fully retargeted to EGFRvIII, a variant of the epidermal growth factor receptor carrying a mutation typically found in glioblastoma. An early treatment with R-613 on orthotopically transplanted EGFRvIII-expressing human glioblastoma significantly increased the median survival time of mice. In this setting, the growth of human glioblastoma xenotransplants was monitored by a secreted luciferase reporter and showed that R-613 is able to substantially delay the development of the tumor masses. When administered as late treatment to a well-established glioblastomas, R-613 appeared to be less effective. Notably the uninfected tumor cells derived from the explanted tumor masses were still susceptible to R-613 infection ex vivo, thus suggesting that multiple treatments could enhance R-613 therapeutic efficacy, making R-613 a promising oncolytic HSV candidate for glioblastoma treatment.


Asunto(s)
Receptores ErbB/genética , Glioblastoma/terapia , Herpesvirus Humano 1/fisiología , Viroterapia Oncolítica/métodos , Viroterapia Oncolítica/normas , Virus Oncolíticos/fisiología , Trasplante Heterólogo , Animales , Línea Celular Tumoral , Chlorocebus aethiops , Vectores Genéticos , Humanos , Ratones , Ratones SCID , Mutación , Células Vero , Replicación Viral
6.
Cancers (Basel) ; 11(11)2019 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-31671564

RESUMEN

BACKGROUND: Uveal melanoma (UM), a rare cancer of the eye, is characterized by initiating mutations in the genes G-protein subunit alpha Q (GNAQ), G-protein subunit alpha 11 (GNA11), cysteinyl leukotriene receptor 2 (CYSLTR2), and phospholipase C beta 4 (PLCB4) and by metastasis-promoting mutations in the genes splicing factor 3B1 (SF3B1), serine and arginine rich splicing factor 2 (SRSF2), and BRCA1-associated protein 1 (BAP1). Here, we tested the hypothesis that additional mutations, though occurring in only a few cases ("secondary drivers"), might influence tumor development. METHODS: We analyzed all the 4125 mutations detected in exome sequencing datasets, comprising a total of 139 Ums, and tested the enrichment of secondary drivers in Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways that also contained the initiating mutations. We searched for additional mutations in the putative secondary driver gene protein tyrosine kinase 2 beta (PTK2B) and we developed new mutational signatures that explain the mutational pattern observed in UM. RESULTS: Secondary drivers were significantly enriched in KEGG pathways that also contained GNAQ and GNA11, such as the calcium-signaling pathway. Many of the secondary drivers were known cancer driver genes and were strongly associated with metastasis and survival. We identified additional mutations in PTK2B. Sparse dictionary learning allowed for the identification of mutational signatures specific for UM. CONCLUSIONS: A considerable part of rare mutations that occur in addition to known driver mutations are likely to affect tumor development and progression.

7.
Oncotarget ; 6(30): 28774-89, 2015 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-26299615

RESUMEN

Many different aberrations in the Anaplastic Lymphoma Kinase (ALK) were found to be oncogenic drivers in several cancers including neuroblastoma (NB), therefore ALK is now considered a critical player in NB oncogenesis and a promising therapeutic target. The ALK-inhibitor crizotinib has a limited activity against the various ALK mutations identified in NB patients. We tested: the activity of the novel ALK-inhibitor X-396 administered alone or in combination with Targeted Liposomes carrying ALK-siRNAs (TL[ALK-siRNA]) that are active irrespective of ALK gene mutational status; the pharmacokinetic profiles and the biodistribution of X-396; the efficacy of X-396 versus crizotinib treatment in NB xenografts; whether the combination of X-396 with the TL[ALK-siRNA] could promote long-term survival in NB mouse models. X-396 revealed good bioavailability, moderate half-life, high mean plasma and tumor concentrations. X-396 was more effective than crizotinib in inhibiting in vitro cell proliferation of NB cells and in reducing tumor volume in subcutaneous NB models in a dose-dependent manner. In orthotopic NB xenografts, X-396 significantly increased life span independently of the ALK mutation status. In combination studies, all effects were significantly improved in the mice treated with TL[ALK-siRNA] and X-396 compared to mice receiving the single agents. Our findings provide a rational basis to design innovative molecular-based treatment combinations for clinical application in ALK-driven NB tumors.


Asunto(s)
Antineoplásicos/farmacología , Neuroblastoma/terapia , Inhibidores de Proteínas Quinasas/farmacología , ARN Interferente Pequeño/metabolismo , Tratamiento con ARN de Interferencia , Proteínas Tirosina Quinasas Receptoras , Quinasa de Linfoma Anaplásico , Animales , Antineoplásicos/farmacocinética , Disponibilidad Biológica , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Terapia Combinada , Relación Dosis-Respuesta a Droga , Femenino , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Semivida , Humanos , Liposomas , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , Terapia Molecular Dirigida , Mutación , Nanopartículas , Neuroblastoma/enzimología , Neuroblastoma/genética , Neuroblastoma/patología , Inhibidores de Proteínas Quinasas/farmacocinética , Interferencia de ARN , ARN Interferente Pequeño/genética , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo , Transducción de Señal/efectos de los fármacos , Transfección , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
8.
J Control Release ; 211: 44-52, 2015 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-26031842

RESUMEN

Neuroblastoma is a childhood cancer with poor long-term prognosis in advanced stages. A major aim in neuroblastoma therapy is to develop targeted drug delivery systems to ameliorate drug therapeutic index and efficacy. In this study, a novel bortezomib (BTZ) liposomal formulation was set-up and characterized. Since BTZ is freely permeable across the lipidic bilayer, an amino-lactose (LM) was synthesized as complexing agent to entrap BTZ inside the internal aqueous compartment of stealth liposomes. High encapsulation efficiency was achieved by a loading method based on the formation of boronic esters between the boronic acid moiety of BTZ and the hydroxyl groups of LM. Next, NGR peptides were linked to the liposome surface as a targeting-ligand for the tumor endothelial cell marker, aminopeptidase N. Liposomes were characterized for size, Z-potential, polydispersity index, drug content, and release. Lyophilization in the presence of cryoprotectants (trehalose, sucrose) was also examined in terms of particle size changes and drug leakage. BTZ was successfully loaded into non-targeted (SL[LM-BTZ]) and targeted (NGR-SL[LM-BTZ]) liposomes with an entrapment efficiency of about 68% and 57%, respectively. These nanoparticles were suitable for intravenous administration, presenting an average diameter of 170nm and narrow polydispersity. Therefore, orthotopic NB-bearing mice were treated with 1.0 or 1.5mg/kg of BTZ, either in free form or encapsulated into liposomes. BTZ loaded liposomes showed a significant reduction of drug systemic adverse effects with respect to free drug, even at the highest dose tested. Moreover, mice treated with 1.5mg/kg of NGR-SL[LM-BTZ] lived statistically longer than untreated mice (P=0.0018) and SL[LM-BTZ]-treated mice (P=0.0256). Our results demonstrate that the novel vascular targeted BTZ formulation is endowed with high therapeutic index and low toxicity, providing a new tool for future applications in neuroblastoma clinical studies.


Asunto(s)
Antineoplásicos/administración & dosificación , Bortezomib/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Neovascularización Patológica/tratamiento farmacológico , Neuroblastoma/tratamiento farmacológico , Animales , Línea Celular Tumoral , Química Farmacéutica , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Liposomas , Ratones , Ratones Desnudos , Neovascularización Patológica/patología , Neuroblastoma/patología , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
9.
Biomaterials ; 68: 89-99, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26276694

RESUMEN

Selective tumor targeting is expected to enhance drug delivery and to decrease toxicity, resulting in an improved therapeutic index. We have recently identified the HSYWLRS peptide sequence as a specific ligand for aggressive neuroblastoma, a childhood tumor mostly refractory to current therapies. Here we validated the specific binding of HSYWLRS to neuroblastoma cell suspensions obtained either from cell lines, animal models, or Schwannian-stroma poor, stage IV neuroblastoma patients. Binding of the biotinylated peptide and of HSYWLRS-functionalized fluorescent quantum dots or liposomal nanoparticles was dose-dependent and inhibited by an excess of free peptide. In animal models obtained by the orthotopic implant of either MYCN-amplified or MYCN single copy human neuroblastoma cell lines, treatment with HSYWLRS-targeted, doxorubicin-loaded Stealth Liposomes increased tumor vascular permeability and perfusion, enhancing tumor penetration of the drug. This formulation proved to exert a potent antitumor efficacy, as evaluated by bioluminescence imaging and micro-PET, leading to (i) delay of tumor growth paralleled by decreased tumor glucose consumption, and (ii) abrogation of metastatic spreading, accompanied by absence of systemic toxicity and significant increase in the animal life span. Our findings are functional to the design of targeted nanocarriers with potentiated therapeutic efficacy towards the clinical translation.


Asunto(s)
Doxorrubicina/administración & dosificación , Nanocápsulas/administración & dosificación , Metástasis de la Neoplasia/prevención & control , Neuroblastoma/química , Neuroblastoma/tratamiento farmacológico , Animales , Antibióticos Antineoplásicos/administración & dosificación , Antibióticos Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Difusión , Doxorrubicina/química , Sinergismo Farmacológico , Femenino , Ratones , Ratones Desnudos , Nanocápsulas/química , Invasividad Neoplásica , Metástasis de la Neoplasia/patología , Neuroblastoma/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA