Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
J Cell Sci ; 134(19)2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34518877

RESUMEN

At mitotic exit the cell cycle engine is reset to allow crucial processes, such as cytokinesis and replication origin licensing, to take place before a new cell cycle begins. In budding yeast, the cell cycle clock is reset by a Hippo-like kinase cascade called the mitotic exit network (MEN), whose activation is triggered at spindle pole bodies (SPBs) by the Tem1 GTPase. Yet, MEN activity must be extinguished once MEN-dependent processes have been accomplished. One factor contributing to switching off the MEN is the Amn1 protein, which binds Tem1 and inhibits it through an unknown mechanism. Here, we show that Amn1 downregulates Tem1 through a dual mode of action. On one side, it evicts Tem1 from SPBs and escorts it into the nucleus. On the other, it promotes Tem1 degradation as part of a Skp, Cullin and F-box-containing (SCF) ubiquitin ligase. Tem1 inhibition by Amn1 takes place after cytokinesis in the bud-derived daughter cell, consistent with its asymmetric appearance in the daughter cell versus the mother cell. This dual mechanism of Tem1 inhibition by Amn1 may contribute to the rapid extinguishing of MEN activity once it has fulfilled its functions.


Asunto(s)
Proteínas de Unión al GTP Monoméricas , Proteínas de Saccharomyces cerevisiae , Transporte Activo de Núcleo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Citocinesis , Regulación hacia Abajo/genética , Humanos , Mitosis , Proteínas de Unión al GTP Monoméricas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Huso Acromático/metabolismo
2.
EMBO Rep ; 21(6): e50257, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32307893

RESUMEN

The Mps1 kinase corrects improper kinetochore-microtubule attachments, thereby ensuring chromosome biorientation. Yet, its critical phosphorylation targets in this process remain largely elusive. Mps1 also controls the spindle assembly checkpoint (SAC), which halts chromosome segregation until biorientation is attained. Its role in SAC activation is antagonised by the PP1 phosphatase and involves phosphorylation of the kinetochore scaffold Knl1/Spc105, which in turn recruits the Bub1 kinase to promote assembly of SAC effector complexes. A crucial question is whether error correction and SAC activation are part of a single or separable pathways. Here, we isolate and characterise a new yeast mutant, mps1-3, that is severely defective in chromosome biorientation and SAC signalling. Through an unbiased screen for extragenic suppressors, we found that mutations lowering PP1 levels at Spc105 or forced association of Bub1 with Spc105 reinstate both chromosome biorientation and SAC signalling in mps1-3 cells. Our data argue that a common mechanism based on Knl1/Spc105 phosphorylation is critical for Mps1 function in error correction and SAC signalling, thus supporting the idea that a single sensory apparatus simultaneously elicits both pathways.


Asunto(s)
Segregación Cromosómica , Proteínas de Saccharomyces cerevisiae , Proteínas de Ciclo Celular/genética , Cinetocoros , Puntos de Control de la Fase M del Ciclo Celular/genética , Proteínas de Saccharomyces cerevisiae/genética , Huso Acromático/genética
3.
Curr Genet ; 66(6): 1037-1044, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32632756

RESUMEN

During mitosis, the identical sister chromatids of each chromosome must attach through their kinetochores to microtubules emanating from opposite spindle poles. This process, referred to as chromosome biorientation, is essential for equal partitioning of the genetic information to the two daughter cells. Defects in chromosome biorientation can give rise to aneuploidy, a hallmark of cancer and genetic diseases. A conserved surveillance mechanism called spindle assembly checkpoint (SAC) prevents the onset of anaphase until biorientation is attained. Key to chromosome biorientation is an error correction mechanism that allows kinetochores to establish proper bipolar attachments by disengaging faulty kinetochore-microtubule connections. Error correction relies on the Aurora B and Mps1 kinases that also promote SAC signaling, raising the possibility that they are part of a single sensory device responding to improper attachments and concomitantly controlling both their disengagement and a temporary mitotic arrest. In budding yeast, Aurora B and Mps1 promote error correction independently from one another, but while the substrates of Aurora B in this process are at least partially known, the mechanism underlying the involvement of Mps1 in the error correction pathway is unknown. Through the characterization of a novel mps1 mutant and an unbiased genetic screen for extragenic suppressors, we recently gained evidence that a common mechanism based on Mps1-dependent phosphorylation of the Knl1/Spc105 kinetochore scaffold and subsequent recruitment of the Bub1 kinase is critical for the function of Mps1 in chromosome biorientation as well as for SAC activation (Benzi et al. EMBO Rep, 2020).


Asunto(s)
Aurora Quinasa B/genética , Segregación Cromosómica/genética , Puntos de Control de la Fase M del Ciclo Celular/genética , Proteínas Asociadas a Microtúbulos/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas de Saccharomyces cerevisiae/genética , Humanos , Cinetocoros/metabolismo , Fosforilación/genética , Saccharomycetales/genética
4.
PLoS Genet ; 11(2): e1004938, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25658911

RESUMEN

The asymmetrically dividing yeast S. cerevisiae assembles a bipolar spindle well after establishing the future site of cell division (i.e., the bud neck) and the division axis (i.e., the mother-bud axis). A surveillance mechanism called spindle position checkpoint (SPOC) delays mitotic exit and cytokinesis until the spindle is properly positioned relative to the mother-bud axis, thereby ensuring the correct ploidy of the progeny. SPOC relies on the heterodimeric GTPase-activating protein Bub2/Bfa1 that inhibits the small GTPase Tem1, in turn essential for activating the mitotic exit network (MEN) kinase cascade and cytokinesis. The Bub2/Bfa1 GAP and the Tem1 GTPase form a complex at spindle poles that undergoes a remarkable asymmetry during mitosis when the spindle is properly positioned, with the complex accumulating on the bud-directed old spindle pole. In contrast, the complex remains symmetrically localized on both poles of misaligned spindles. The mechanism driving asymmetry of Bub2/Bfa1/Tem1 in mitosis is unclear. Furthermore, whether asymmetry is involved in timely mitotic exit is controversial. We investigated the mechanism by which the GAP Bub2/Bfa1 controls GTP hydrolysis on Tem1 and generated a series of mutants leading to constitutive Tem1 activation. These mutants are SPOC-defective and invariably lead to symmetrical localization of Bub2/Bfa1/Tem1 at spindle poles, indicating that GTP hydrolysis is essential for asymmetry. Constitutive tethering of Bub2 or Bfa1 to both spindle poles impairs SPOC response but does not impair mitotic exit. Rather, it facilitates mitotic exit of MEN mutants, likely by increasing the residence time of Tem1 at spindle poles where it gets active. Surprisingly, all mutant or chimeric proteins leading to symmetrical localization of Bub2/Bfa1/Tem1 lead to increased symmetry at spindle poles of the Kar9 protein that mediates spindle positioning and cause spindle misalignment. Thus, asymmetry of the Bub2/Bfa1/Tem1 complex is crucial to control Kar9 distribution and spindle positioning during mitosis.


Asunto(s)
Citocinesis/genética , Mitosis/genética , Proteínas de Unión al GTP Monoméricas/genética , Proteínas de Saccharomyces cerevisiae/genética , Polos del Huso/genética , Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Polaridad Celular/genética , Proteínas del Citoesqueleto/genética , GTP Fosfohidrolasas/genética , Regulación Fúngica de la Expresión Génica , Glutamina/genética , Glutamina/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Cell Mol Life Sci ; 73(16): 3115-36, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27085703

RESUMEN

Cell division is a fundamental but complex process that gives rise to two daughter cells. It includes an ordered set of events, altogether called "the cell cycle", that culminate with cytokinesis, the final stage of mitosis leading to the physical separation of the two daughter cells. Symmetric cell division equally partitions cellular components between the two daughter cells, which are therefore identical to one another and often share the same fate. In many cases, however, cell division is asymmetrical and generates two daughter cells that differ in specific protein inheritance, cell size, or developmental potential. The budding yeast Saccharomyces cerevisiae has proven to be an excellent system to investigate the molecular mechanisms governing asymmetric cell division and cytokinesis. Budding yeast is highly polarized during the cell cycle and divides asymmetrically, producing two cells with distinct sizes and fates. Many components of the machinery establishing cell polarization during budding are relocalized to the division site (i.e., the bud neck) for cytokinesis. In this review we recapitulate how budding yeast cells undergo polarized processes at the bud neck for cell division.


Asunto(s)
Citocinesis , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/crecimiento & desarrollo , Actinas/metabolismo , Actomiosina/metabolismo , Polaridad Celular , Proteínas de Microfilamentos/metabolismo , Saccharomyces cerevisiae/metabolismo , Septinas/metabolismo , Proteínas de Unión al GTP rho/metabolismo
6.
PLoS Genet ; 9(7): e1003575, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23861665

RESUMEN

Entry into mitosis is triggered by cyclinB/Cdk1, whose activity is abruptly raised by a positive feedback loop. The Greatwall kinase phosphorylates proteins of the endosulfine family and allows them to bind and inhibit the main Cdk1-counteracting PP2A-B55 phosphatase, thereby promoting mitotic entry. In contrast to most eukaryotic systems, Cdc14 is the main Cdk1-antagonizing phosphatase in budding yeast, while the PP2A(Cdc55) phosphatase promotes, instead of preventing, mitotic entry by participating to the positive feedback loop of Cdk1 activation. Here we show that budding yeast endosulfines (Igo1 and Igo2) bind to PP2A(Cdc55) in a cell cycle-regulated manner upon Greatwall (Rim15)-dependent phosphorylation. Phosphorylated Igo1 inhibits PP2A(Cdc55) activity in vitro and induces mitotic entry in Xenopus egg extracts, indicating that it bears a conserved PP2A-binding and -inhibitory activity. Surprisingly, deletion of IGO1 and IGO2 in yeast cells leads to a decrease in PP2A phosphatase activity, suggesting that endosulfines act also as positive regulators of PP2A in yeast. Consistently, RIM15 and IGO1/2 promote, like PP2A(Cdc55), timely entry into mitosis under temperature-stress, owing to the accumulation of Tyr-phosphorylated Cdk1. In addition, they contribute to the nuclear export of PP2A(Cdc55), which has recently been proposed to promote mitotic entry. Altogether, our data indicate that Igo proteins participate in the positive feedback loop for Cdk1 activation. We conclude that Greatwall, endosulfines, and PP2A are part of a regulatory module that has been conserved during evolution irrespective of PP2A function in the control of mitosis. However, this conserved module is adapted to account for differences in the regulation of mitotic entry in different organisms.


Asunto(s)
Proteínas de Ciclo Celular/genética , Mitosis/genética , Proteínas Quinasas/genética , Proteína Fosfatasa 2/genética , Proteínas de Saccharomyces cerevisiae/genética , Animales , Proteína Quinasa CDC2/genética , Proteína Quinasa CDC2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ciclina B/metabolismo , Óvulo/metabolismo , Fosforilación , Proteínas Quinasas/metabolismo , Proteína Fosfatasa 2/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Extractos de Tejidos/genética , Xenopus/genética
7.
PLoS Genet ; 8(4): e1002670, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22570619

RESUMEN

The first step towards cytokinesis in budding yeast is the assembly of a septin ring at the future site of bud emergence. Integrity of this ring is crucial for cytokinesis, proper spindle positioning, and the spindle position checkpoint (SPOC). This checkpoint delays mitotic exit and cytokinesis as long as the anaphase spindle does not properly align with the division axis. SPOC signalling requires the Kin4 protein kinase and the Kin4-regulating Elm1 kinase, which also controls septin dynamics. Here, we show that the two redundant ubiquitin-ligases Dma1 and Dma2 control septin dynamics and the SPOC by promoting the efficient recruitment of Elm1 to the bud neck. Indeed, dma1 dma2 mutant cells show reduced levels of Elm1 at the bud neck and Elm1-dependent activation of Kin4. Artificial recruitment of Elm1 to the bud neck of the same cells is sufficient to re-establish a normal septin ring, proper spindle positioning, and a proficient SPOC response in dma1 dma2 cells. Altogether, our data indicate that septin dynamics and SPOC function are intimately linked and support the idea that integrity of the bud neck is crucial for SPOC signalling.


Asunto(s)
Citocinesis , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Septinas , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Citocinesis/genética , Regulación Fúngica de la Expresión Génica , Puntos de Control de la Fase M del Ciclo Celular/genética , Mitosis , Mutación , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Septinas/genética , Septinas/metabolismo , Transducción de Señal
8.
Nat Commun ; 15(1): 3383, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649354

RESUMEN

A double septin ring accompanies cytokinesis in yeasts and mammalian cells. In budding yeast, reorganisation of the septin collar at the bud neck into a dynamic double ring is essential for actomyosin ring constriction and cytokinesis. Septin reorganisation requires the Mitotic Exit Network (MEN), a kinase cascade essential for cytokinesis. However, the effectors of MEN in this process are unknown. Here we identify the F-BAR protein Hof1 as a critical target of MEN in septin remodelling. Phospho-mimicking HOF1 mutant alleles overcome the inability of MEN mutants to undergo septin reorganisation by decreasing Hof1 binding to septins and facilitating its translocation to the actomyosin ring. Hof1-mediated septin rearrangement requires its F-BAR domain, suggesting that it may involve a local membrane remodelling that leads to septin reorganisation. In vitro Hof1 can induce the formation of intertwined septin bundles, while a phosphomimetic Hof1 protein has impaired septin-bundling activity. Altogether, our data indicate that Hof1 modulates septin architecture in distinct ways depending on its phosphorylation status.


Asunto(s)
Citocinesis , Proteínas Asociadas a Microtúbulos , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Septinas , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Fosforilación , Septinas/metabolismo , Septinas/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Actomiosina/metabolismo , Saccharomycetales/metabolismo , Saccharomycetales/genética , Mutación , Unión Proteica
9.
J Cell Biol ; 177(4): 599-611, 2007 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-17502422

RESUMEN

Faithful chromosome transmission requires establishment of sister chromatid cohesion during S phase, followed by its removal at anaphase onset. Sister chromatids are tethered together by cohesin, which is displaced from chromosomes through cleavage of its Mcd1 subunit by the separase protease. Separase is in turn inhibited, up to this moment, by securin. Budding yeast cells respond to morphogenetic defects by a transient arrest in G2 with high securin levels and unseparated chromatids. We show that neither securin elimination nor forced cohesin cleavage is sufficient for anaphase in these conditions, suggesting that other factors contribute to cohesion maintainance in G2. We find that the protein phosphatase PP2A bound to its regulatory subunit Cdc55 plays a key role in this process, uncovering a new function for PP2A(Cdc55) in controlling a noncanonical pathway of chromatid cohesion removal.


Asunto(s)
Anafase/fisiología , Proteínas de Ciclo Celular/fisiología , Fosfoproteínas Fosfatasas/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/enzimología , Cromátides/enzimología , Cromátides/fisiología , Proteínas Nucleares/fisiología , Proteína Fosfatasa 2 , Securina
10.
Cell Rep ; 41(10): 111765, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36476870

RESUMEN

The septin collar of budding yeast is an ordered array of septin filaments that serves a scaffolding function for the cytokinetic machinery at the bud neck and compartmentalizes the membrane between mother and daughter cell. How septin architecture is aided by septin-binding proteins is largely unknown. Syp1 is an endocytic protein that was implicated in the timely recruitment of septins to the newly forming collar through an unknown mechanism. Using advanced microscopy and in vitro reconstitution assays, we show that Syp1 is able to align laterally and tightly pack septin filaments, thereby forming flat bundles or sheets. This property is shared by the Syp1 mammalian counterpart FCHo2, thus emphasizing conserved protein functions. Interestingly, the septin-bundling activity of Syp1 resides mainly in its intrinsically disordered region. Our data uncover the mechanism through which Syp1 promotes septin collar assembly and offer another example of functional diversity of unstructured protein domains.


Asunto(s)
Microscopía , Septinas
11.
Biol Chem ; 392(8-9): 805-12, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21824008

RESUMEN

During asymmetric cell division, spindle positioning is critical for ensuring the unequal inheritance of polarity factors. In budding yeast, the mother-bud neck determines the cleavage plane and a correct nuclear division between mother and daughter cell requires orientation of the mitotic spindle along the mother-bud axis. A surveillance device called the spindle position/orientation checkpoint (SPOC) oversees this process and delays mitotic exit and cytokinesis until the spindle is properly oriented along the division axis, thus ensuring genome stability. Cytoskeletal proteins called septins form a ring at the bud neck that is essential for cytokinesis. Furthermore, septins and septin-associated proteins are implicated in spindle positioning and SPOC. In this review, we discuss the emerging connections between septins and the SPOC and the role of the mother-bud neck as a signaling platform to couple proper chromosome segregation to cytokinesis.


Asunto(s)
Citocinesis/fisiología , Saccharomycetales/citología , Saccharomycetales/metabolismo , Huso Acromático/metabolismo , Ciclo Celular/genética , Ciclo Celular/fisiología , Citocinesis/genética , Mitosis/genética , Mitosis/fisiología , Modelos Biológicos , Saccharomycetales/genética , Huso Acromático/genética
12.
J Cell Biol ; 172(3): 335-46, 2006 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-16449187

RESUMEN

Budding yeast spindle position checkpoint is engaged by misoriented spindles and prevents mitotic exit by inhibiting the G protein Tem1 through the GTPase-activating protein (GAP) Bub2/Bfa1. Bub2 and Bfa1 are found on both duplicated spindle pole bodies until anaphase onset, when they disappear from the mother-bound spindle pole under unperturbed conditions. In contrast, when spindles are misoriented they remain symmetrically localized at both SPBs. Thus, symmetric localization of Bub2/Bfa1 might lead to inhibition of Tem1, which is also present at SPBs. Consistent with this hypothesis, we show that a Bub2 version symmetrically localized on both SPBs throughout the cell cycle prevents mitotic exit in mutant backgrounds that partially impair it. This effect is Bfa1 dependent and can be suppressed by high Tem1 levels. Bub2 removal from the mother-bound SPB requires its GAP activity, which in contrast appears to be dispensable for Tem1 inhibition. Moreover, it correlates with the passage of one spindle pole through the bud neck because it needs septin ring formation and bud neck kinases.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Proteínas del Citoesqueleto/fisiología , Mitosis/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/fisiología , Huso Acromático/fisiología , Alelos , Anafase/genética , Proteína Quinasa CDC2/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Ciclina B/metabolismo , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina , Quinasas Ciclina-Dependientes/genética , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Regulación Fúngica de la Expresión Génica/genética , Genes Dominantes/genética , Factores de Intercambio de Guanina Nucleótido/genética , Metionina/farmacología , Proteínas de Microtúbulos/genética , Mitosis/efectos de los fármacos , Modelos Genéticos , Proteínas de Unión al GTP Monoméricas/genética , Proteínas de Unión al GTP Monoméricas/metabolismo , Mutación/genética , Feromonas/farmacología , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas , Proteínas Tirosina Fosfatasas/genética , Proteínas Tirosina Quinasas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Huso Acromático/metabolismo
13.
J Cell Biol ; 174(1): 39-51, 2006 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-16818718

RESUMEN

The spindle assembly checkpoint (SAC) coordinates mitotic progression with sister chromatid alignment. In mitosis, the checkpoint machinery accumulates at kinetochores, which are scaffolds devoted to microtubule capture. The checkpoint protein Mad2 (mitotic arrest deficient 2) adopts two conformations: open (O-Mad2) and closed (C-Mad2). C-Mad2 forms when Mad2 binds its checkpoint target Cdc20 or its kinetochore receptor Mad1. When unbound to these ligands, Mad2 folds as O-Mad2. In HeLa cells, an essential interaction between C- and O-Mad2 conformers allows Mad1-bound C-Mad2 to recruit cytosolic O-Mad2 to kinetochores. In this study, we show that the interaction of the O and C conformers of Mad2 is conserved in Saccharomyces cerevisiae. MAD2 mutant alleles impaired in this interaction fail to restore the SAC in a mad2 deletion strain. The corresponding mutant proteins bind Mad1 normally, but their ability to bind Cdc20 is dramatically impaired in vivo. Our biochemical and genetic evidence shows that the interaction of O- and C-Mad2 is essential for the SAC and is conserved in evolution.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Mitosis/fisiología , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Huso Acromático/metabolismo , Proteínas Cdc20 , Proteínas de Ciclo Celular/aislamiento & purificación , Proteínas Mad2 , Modelos Biológicos , Proteínas Nucleares/aislamiento & purificación , Unión Proteica , Conformación Proteica , Proteínas de Saccharomyces cerevisiae/aislamiento & purificación
14.
FEMS Yeast Res ; 11(1): 60-71, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21059189

RESUMEN

The proteasomal lid subunit Rpn11 is essential for maintaining a correct cell cycle and mitochondrial morphology in Saccharomyces cerevisiae. In this paper, we show that the rpn11-m1 mutant has a peculiar cell cycle defect reminiscent of mutants defective in the FEAR pathway that delay the release of the Cdc14 protein phosphatase from the nucleolus. We analyzed the rpn11-m1 phenotypes and found that overexpression of Cdc14 suppresses all the rpn11-m1 defects, including the mitochondrial ones. Suppression by Cdc14 of the rpn11-m1 mitochondrial morphology defect reveals an uncharacterized connection between mitochondrial and cell cycle events. Interestingly, the overexpression of Cdc14 also partially restores the tubular network in an Δmmm2 strain, which lacks a mitochondrial protein belonging to the complex necessary to anchor the mitochondrion to the actin cytoskeleton. Altogether our findings indicate, for the first time, a cross-talk between the cell cycle and mitochondrial morphology.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular , Endopeptidasas/genética , Endopeptidasas/metabolismo , Mitocondrias/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Proteínas de Ciclo Celular/genética , Expresión Génica , Mitocondrias/ultraestructura , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas Tirosina Fosfatasas/genética , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestructura
15.
Biochem Soc Trans ; 38(6): 1645-9, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21118141

RESUMEN

Many cancer-treating compounds used in chemotherapies, the so-called antimitotics, target the mitotic spindle. Spindle defects in turn trigger activation of the SAC (spindle assembly checkpoint), a surveillance mechanism that transiently arrests cells in mitosis to provide the time for error correction. When the SAC is satisfied, it is silenced. However, after a variable amount of time, cells escape from the mitotic arrest, even if the SAC is not satisfied, through a process called adaptation or mitotic slippage. Adaptation weakens the killing properties of antimitotics, ultimately giving rise to resistant cancer cells. We summarize here the mechanisms underlying this process and propose a strategy to identify the factors involved using budding yeast as a model system. Inhibition of factors involved in SAC adaptation could have important therapeutic applications by potentiating the ability of antimitotics to cause cell death.


Asunto(s)
Antimitóticos/farmacología , Células Eucariotas/metabolismo , Huso Acromático/efectos de los fármacos , Huso Acromático/metabolismo , Adaptación Fisiológica , Aneuploidia , Antimitóticos/uso terapéutico , Proteínas de Ciclo Celular/metabolismo , Células Eucariotas/citología , Proteínas Fúngicas/metabolismo , Humanos , Neoplasias/tratamiento farmacológico , Nocodazol/farmacología
16.
Curr Biol ; 30(8): R347-R349, 2020 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-32315632

RESUMEN

In many eukaryotes septin filaments form an hourglass-like structure at the division site that rearranges into a double ring at cytokinesis. A new study elucidates how an anillin-RhoGEF complex guides the assembly of the septin double ring in budding yeast.


Asunto(s)
Citocinesis , Septinas , Proteínas Contráctiles/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho , Septinas/metabolismo
17.
J Cell Biol ; 219(12)2020 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-33206134

RESUMEN

Silencing of the spindle assembly checkpoint involves two protein phosphatases, PP1 and PP2A-B56, that are thought to extinguish checkpoint signaling through dephosphorylation of a checkpoint scaffold at kinetochores. In this issue, Cordeiro et al. (2020. J. Cell Biol.https://doi.org/10.1083/jcb.202002020) now show that a critical function of these phosphatases in checkpoint silencing is removal of Polo kinase at kinetochores, which would otherwise autonomously sustain the checkpoint.


Asunto(s)
Cinetocoros , Puntos de Control de la Fase M del Ciclo Celular , Proteínas de Ciclo Celular/genética , Monoéster Fosfórico Hidrolasas , Proteínas Serina-Treonina Quinasas , Proteínas Proto-Oncogénicas , Quinasa Tipo Polo 1
18.
Curr Biol ; 30(2): 335-343.e5, 2020 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-31928870

RESUMEN

Accurate chromosome segregation requires bipolar attachment of kinetochores to spindle microtubules. A conserved surveillance mechanism, the spindle assembly checkpoint (SAC), responds to lack of kinetochore-microtubule connections and delays anaphase onset until all chromosomes are bipolarly attached [1]. SAC signaling fires at kinetochores and involves a soluble mitotic checkpoint complex (MCC) that inhibits the anaphase-promoting complex (APC) [2, 3]. The mitotic delay imposed by SAC, however, is not everlasting. If kinetochores fail to establish bipolar connections, cells can escape from the SAC-induced mitotic arrest through a process called mitotic slippage [4]. Mitotic slippage occurs in the presence of SAC signaling at kinetochores [5, 6], but whether and how MCC stability and APC inhibition are actively controlled during slippage is unknown. The PP1 phosphatase has emerged as a key factor in SAC silencing once all kinetochores are bipolarly attached [7, 8]. PP1 turns off SAC signaling through dephosphorylation of the SAC scaffold Knl1/Blinkin at kinetochores [9-11]. Here, we show that, in budding yeast, PP1 is also required for mitotic slippage. However, its involvement in this process is not linked to kinetochores but rather to MCC stability. We identify S268 of Mad3 as a critical target of PP1 in this process. Mad3 S268 dephosphorylation destabilizes the MCC without affecting the initial SAC-induced mitotic arrest. Conversely, it accelerates mitotic slippage and overcomes the slippage defect of PP1 mutants. Thus, slippage is not the mere consequence of incomplete APC inactivation that brings about mitotic exit, as originally proposed, but involves the exertive antagonism between kinases and phosphatases.


Asunto(s)
Proteínas de Ciclo Celular/genética , Segregación Cromosómica , Puntos de Control de la Fase M del Ciclo Celular/genética , Mitosis/genética , Proteínas Nucleares/genética , Proteína Fosfatasa 1/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiología , Proteínas de Ciclo Celular/metabolismo , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
19.
J Cell Biol ; 160(6): 857-74, 2003 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-12642613

RESUMEN

We report the characterization of the dominant-negative CLA4t allele of the budding yeast CLA4 gene, encoding a member of the p21-activated kinase (PAK) family of protein kinases, which, together with its homologue STE20, plays an essential role in promoting budding and cytokinesis. Overproduction of the Cla4t protein likely inhibits both endogenous Cla4 and Ste20 and causes a delay in the onset of anaphase that correlates with inactivation of Cdc20/anaphase-promoting complex (APC)-dependent proteolysis of both the cyclinB Clb2 and securin. Although the precise mechanism of APC inhibition by Cla4t remains to be elucidated, our results suggest that Cla4 and Ste20 may regulate the first wave of cyclinB proteolysis mediated by Cdc20/APC, which has been shown to be crucial for activation of the mitotic exit network (MEN). We show that the Cdk1-inhibitory kinase Swe1 is required for the Cla4t-dependent delay in cell cycle progression, suggesting that it might be required to prevent full Cdc20/APC and MEN activation. In addition, inhibition of PAK kinases by Cla4t prevents mitotic exit also by a Swe1-independent mechanism impinging directly on the MEN activator Tem1.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Mitosis/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Saccharomyces cerevisiae/enzimología , Complejos de Ubiquitina-Proteína Ligasa , Anafase/fisiología , Ciclosoma-Complejo Promotor de la Anafase , Proteínas de Ciclo Celular/genética , Células Cultivadas , Ciclina B/genética , Ciclina B/metabolismo , Genes cdc/fisiología , Péptidos y Proteínas de Señalización Intracelular , Ligasas/genética , Ligasas/metabolismo , Quinasas Quinasa Quinasa PAM , Proteínas de Unión al GTP Monoméricas/genética , Proteínas de Unión al GTP Monoméricas/metabolismo , Mutación/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Securina
20.
Microb Cell ; 6(6): 295-298, 2019 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-31172014

RESUMEN

In many eukaryotic cells cytokinesis involves a contractile actomyosin ring (CAR) that drives cleavage furrow ingression. What triggers CAR constriction at a precise time of the cell cycle and how constriction is coupled to chromosome segregation are fundamental questions. In the budding yeast Saccharomyces cerevisiae, CAR assembly strictly requires a rigid septin collar that forms at the bud neck early during the cell cycle. At the time of cytokinesis, a sudden remodelling of the septin collar occurs, leading to its splitting into two separate rings that sandwich the CAR. We have shown that septin displacement during splitting is an essential prerequisite for CAR constriction [Tamborrini et al., Nat Commun. 9(1):4308]. Thus, cytokinesis in budding yeast is a two-step mechanism: during the first step, the septin collar organizes the assembly of the cytokinetic machinery at the right place while restraining CAR-driven membrane ingression; during the second step, a confined eviction of septins from the division site during septin ring splitting triggers CAR constriction. Our data further indicate that septin ring splitting is prompted by the Mitotic Exit Network (MEN), and in particular by its downstream phosphatase Cdc14, independently of its mitotic exit function. Surprisingly, MEN signalling at spindle pole bodies (SPBs) is critical for septin ring splitting and cytokinesis. Ubiquitination of the MEN anchor at SPBs by the Dma1/2 ubiquitin ligase attenuates MEN signalling and could have a decisive role in coupling cytokinesis to chromosome and organelle segregation. Altogether, our data emphasize the importance of septin ring splitting, which has been mysterious so far, and highlight a novel mechanism to prevent CAR constriction and cytokinesis in unpropitious conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA