Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Genome Res ; 30(11): 1583-1592, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33033057

RESUMEN

Rapid plant genome evolution is crucial to adapt to environmental changes. Chromosomal rearrangements and gene copy number variation (CNV) are two important tools for genome evolution and sources for the creation of new genes. However, their emergence takes many generations. In this study, we show that in Arabidopsis thaliana, a significant loss of ribosomal RNA (rRNA) genes with a past history of a mutation for the chromatin assembly factor 1 (CAF1) complex causes rapid changes in the genome structure. Using long-read sequencing and microscopic approaches, we have identified up to 15 independent large tandem duplications in direct orientation (TDDOs) ranging from 60 kb to 1.44 Mb. Our data suggest that these TDDOs appeared within a few generations, leading to the duplication of hundreds of genes. By subsequently focusing on a line only containing 20% of rRNA gene copies (20rDNA line), we investigated the impact of TDDOs on 3D genome organization, gene expression, and cytosine methylation. We found that duplicated genes often accumulate more transcripts. Among them, several are involved in plant-pathogen response, which could explain why the 20rDNA line is hyper-resistant to both bacterial and nematode infections. Finally, we show that the TDDOs create gene fusions and/or truncations and discuss their potential implications for the evolution of plant genomes.


Asunto(s)
Arabidopsis/genética , Resistencia a la Enfermedad/genética , Duplicación de Gen , Regulación de la Expresión Génica de las Plantas , Genes de ARNr , Expresión Génica , Genes de Plantas , Genoma de Planta , Inestabilidad Genómica
2.
J Plant Res ; 133(4): 463-470, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32372397

RESUMEN

Several layers of mechanisms participate in plant adaptation to heat-stress. For example, the plant metabolism switches from cell growth mode to stress adaptation mode. Ribosome biogenesis is one of the most energy costly pathways. That biogenesis process occurs in the nucleolus, the largest nuclear compartment, whose structure is highly dependent on this pathway. We used a nucleolar marker to track the structure of the nucleolus, and revealed a change in its sub-nucleolar distribution under heat stress. In addition, the nucleolus is implicated in other cellular processes, such as genome organization within the nucleus. However, our analyses of nucleolus-associated chromatin domains under heat stress did not reveal significant differences compared to the control plants, suggesting a lack of connection between two of the main functions of the nucleolus: ribosome biogenesis and nuclear organization.


Asunto(s)
Arabidopsis , Cromatina , Respuesta al Choque Térmico , Arabidopsis/genética , Nucléolo Celular , Núcleo Celular
3.
Nucleus ; 10(1): 67-72, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-30870088

RESUMEN

Genomic interactions can occur in addition to those within chromosome territories and can be organized around nuclear bodies. Several studies revealed how the nucleolus anchors higher order chromatin structures of specific chromosome regions displaying heterochromatic features. In this review, we comment on advances in this emerging field, with a particular focus on a recent study published by Quinodoz et al., that developed a new method to characterize simultaneous genomic interactions in the same cell. Highlighting studies conducted in animal and plant cells, we then discuss the establishment of inactive chromatin at nucleolus organizer region (NOR)-bearing chromosomes.


Asunto(s)
Nucléolo Celular/genética , Cromatina/genética , ARN Ribosómico/genética , Animales , Humanos
4.
Methods Mol Biol ; 1675: 99-109, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29052188

RESUMEN

The nuclear context needs to be taken into consideration to better understand the mechanisms shaping the epigenome and its organization, and therefore its impact on gene expression. For example, in Arabidopsis, heterochromatin is preferentially localized at the nuclear and the nucleolar periphery. Although chromatin domains associating with the nuclear periphery remain to be identified in plant cells, Nucleolus Associated chromatin Domains (NADs) can be identified thanks to a protocol allowing the isolation of pure nucleoli. We describe here the protocol enabling the identification of NADs in Arabidopsis. Providing the transfer of a nucleolus marker as described here in other crop species, this protocol is broadly applicable.


Asunto(s)
Nucléolo Celular/genética , Cromatina/química , Análisis de Secuencia de ADN/métodos , Arabidopsis/genética , Núcleo Celular/genética , Cromatina/genética , Biología Computacional/métodos , ADN de Plantas/genética , Genoma de Planta , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA