Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Genes Dev ; 34(3-4): 226-238, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31919190

RESUMEN

Centromeres are maintained epigenetically by the presence of CENP-A, an evolutionarily conserved histone H3 variant, which directs kinetochore assembly and hence centromere function. To identify factors that promote assembly of CENP-A chromatin, we affinity-selected solubilized fission yeast CENP-ACnp1 chromatin. All subunits of the Ino80 complex were enriched, including the auxiliary subunit Hap2. Chromatin association of Hap2 is Ies4-dependent. In addition to a role in maintenance of CENP-ACnp1 chromatin integrity at endogenous centromeres, Hap2 is required for de novo assembly of CENP-ACnp1 chromatin on naïve centromere DNA and promotes H3 turnover on centromere regions and other loci prone to CENP-ACnp1 deposition. Prior to CENP-ACnp1 chromatin assembly, Hap2 facilitates transcription from centromere DNA. These analyses suggest that Hap2-Ino80 destabilizes H3 nucleosomes on centromere DNA through transcription-coupled histone H3 turnover, driving the replacement of resident H3 nucleosomes with CENP-ACnp1 nucleosomes. These inherent properties define centromere DNA by directing a program that mediates CENP-ACnp1 assembly on appropriate sequences.


Asunto(s)
Cromatina/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Transcripción Genética/fisiología , Cromatina/genética , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas Fúngicos/genética , Cromosomas Fúngicos/metabolismo , ADN de Hongos/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Factores de Transcripción/metabolismo
2.
Nature ; 585(7825): 453-458, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32908306

RESUMEN

Heterochromatin that depends on histone H3 lysine 9 methylation (H3K9me) renders embedded genes transcriptionally silent1-3. In the fission yeast Schizosaccharomyces pombe, H3K9me heterochromatin can be transmitted through cell division provided the counteracting demethylase Epe1 is absent4,5. Heterochromatin heritability might allow wild-type cells under certain conditions to acquire epimutations, which could influence phenotype through unstable gene silencing rather than DNA change6,7. Here we show that heterochromatin-dependent epimutants resistant to caffeine arise in fission yeast grown with threshold levels of caffeine. Isolates with unstable resistance have distinct heterochromatin islands with reduced expression of embedded genes, including some whose mutation confers caffeine resistance. Forced heterochromatin formation at implicated loci confirms that resistance results from heterochromatin-mediated silencing. Our analyses reveal that epigenetic processes promote phenotypic plasticity, letting wild-type cells adapt to unfavourable environments without genetic alteration. In some isolates, subsequent or coincident gene-amplification events augment resistance. Caffeine affects two anti-silencing factors: Epe1 is downregulated, reducing its chromatin association, and a shortened isoform of Mst2 histone acetyltransferase is expressed. Thus, heterochromatin-dependent epimutation provides a bet-hedging strategy allowing cells to adapt transiently to insults while remaining genetically wild type. Isolates with unstable caffeine resistance show cross-resistance to antifungal agents, suggesting that related heterochromatin-dependent processes may contribute to resistance of plant and human fungal pathogens to such agents.


Asunto(s)
Farmacorresistencia Fúngica/genética , Silenciador del Gen , Heterocromatina/genética , Heterocromatina/metabolismo , Schizosaccharomyces/genética , Cafeína/farmacología , Farmacorresistencia Fúngica/efectos de los fármacos , Silenciador del Gen/efectos de los fármacos , Heterocromatina/efectos de los fármacos , Histona Acetiltransferasas/metabolismo , Proteínas Nucleares/metabolismo , Fenotipo , Schizosaccharomyces/citología , Schizosaccharomyces/efectos de los fármacos , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo
3.
Mol Biol Evol ; 36(8): 1612-1623, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31077324

RESUMEN

The relationship between DNA sequence, biochemical function, and molecular evolution is relatively well-described for protein-coding regions of genomes, but far less clear in noncoding regions, particularly, in eukaryote genomes. In part, this is because we lack a complete description of the essential noncoding elements in a eukaryote genome. To contribute to this challenge, we used saturating transposon mutagenesis to interrogate the Schizosaccharomyces pombe genome. We generated 31 million transposon insertions, a theoretical coverage of 2.4 insertions per genomic site. We applied a five-state hidden Markov model (HMM) to distinguish insertion-depleted regions from insertion biases. Both raw insertion-density and HMM-defined fitness estimates showed significant quantitative relationships to gene knockout fitness, genetic diversity, divergence, and expected functional regions based on transcription and gene annotations. Through several analyses, we conclude that transposon insertions produced fitness effects in 66-90% of the genome, including substantial portions of the noncoding regions. Based on the HMM, we estimate that 10% of the insertion depleted sites in the genome showed no signal of conservation between species and were weakly transcribed, demonstrating limitations of comparative genomics and transcriptomics to detect functional units. In this species, 3'- and 5'-untranslated regions were the most prominent insertion-depleted regions that were not represented in measures of constraint from comparative genomics. We conclude that the combination of transposon mutagenesis, evolutionary, and biochemical data can provide new insights into the relationship between genome function and molecular evolution.


Asunto(s)
Aptitud Genética , Genoma Fúngico , Schizosaccharomyces/genética , Modelos Genéticos , Mutagénesis Insercional
5.
PLoS Genet ; 11(3): e1004986, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25738810

RESUMEN

Centromere sequences are not conserved between species, and there is compelling evidence for epigenetic regulation of centromere identity, with location being dictated by the presence of chromatin containing the histone H3 variant CENP-A. Paradoxically, in most organisms CENP-A chromatin generally occurs on particular sequences. To investigate the contribution of primary DNA sequence to establishment of CENP-A chromatin in vivo, we utilised the fission yeast Schizosaccharomyces pombe. CENP-ACnp1 chromatin is normally assembled on ∼10 kb of central domain DNA within these regional centromeres. We demonstrate that overproduction of S. pombe CENP-ACnp1 bypasses the usual requirement for adjacent heterochromatin in establishing CENP-ACnp1 chromatin, and show that central domain DNA is a preferred substrate for de novo establishment of CENP-ACnp1 chromatin. When multimerised, a 2 kb sub-region can establish CENP-ACnp1 chromatin and form functional centromeres. Randomization of the 2 kb sequence to generate a sequence that maintains AT content and predicted nucleosome positioning is unable to establish CENP-ACnp1 chromatin. These analyses indicate that central domain DNA from fission yeast centromeres contains specific information that promotes CENP-ACnp1 incorporation into chromatin. Numerous transcriptional start sites were detected on the forward and reverse strands within the functional 2 kb sub-region and active promoters were identified. RNAPII is enriched on central domain DNA in wild-type cells, but only low levels of transcripts are detected, consistent with RNAPII stalling during transcription of centromeric DNA. Cells lacking factors involved in restarting transcription-TFIIS and Ubp3-assemble CENP-ACnp1 on central domain DNA when CENP-ACnp1 is at wild-type levels, suggesting that persistent stalling of RNAPII on centromere DNA triggers chromatin remodelling events that deposit CENP-ACnp1. Thus, sequence-encoded features of centromeric DNA create an environment of pervasive low quality RNAPII transcription that is an important determinant of CENP-ACnp1 assembly. These observations emphasise roles for both genetic and epigenetic processes in centromere establishment.


Asunto(s)
Autoantígenos/genética , Centrómero/genética , Cromatina/genética , Proteínas Cromosómicas no Histona/genética , Epigénesis Genética , Transcripción Genética , Proteína A Centromérica , Ensamble y Desensamble de Cromatina/genética , ADN/genética , Heterocromatina/genética , Histonas/genética , Cinetocoros , Schizosaccharomyces
6.
Mol Cell ; 33(3): 299-311, 2009 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-19217404

RESUMEN

The mechanisms ensuring specific incorporation of CENP-A at centromeres are poorly understood. Mis16 and Mis18 are required for CENP-A localization at centromeres and form a complex that is conserved from fission yeast to human. Fission yeast sim1 mutants that alleviate kinetochore domain silencing are defective in Scm3(Sp), the ortholog of budding yeast Scm3(Sc). Scm3(Sp) depends on Mis16/18 for its centromere localization and like them is recruited to centromeres in late anaphase. Importantly, Scm3(Sp) coaffinity purifies with CENP-A(Cnp1) and associates with CENP-A(Cnp1) in vitro, yet localizes independently of intact CENP-A(Cnp1) chromatin and is differentially released from chromatin. While Scm3(Sc) has been proposed to form a unique hexameric nucleosome with CENP-A(Cse4) and histone H4 at budding yeast point centromeres, we favor a model in which Scm3(Sp) acts as a CENP-A(Cnp1) receptor/assembly factor, cooperating with Mis16 and Mis18 to receive CENP-A(Cnp1) from the Sim3 escort and mediate assembly of CENP-A(Cnp1) into subkinetochore chromatin.


Asunto(s)
Proteínas Portadoras/metabolismo , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Cinetocoros/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Proteínas Portadoras/genética , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/análisis , Mutación , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/análisis , Proteínas de Schizosaccharomyces pombe/genética
7.
PLoS Genet ; 8(9): e1002985, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23028377

RESUMEN

Specialized chromatin containing CENP-A nucleosomes instead of H3 nucleosomes is found at all centromeres. However, the mechanisms that specify the locations at which CENP-A chromatin is assembled remain elusive in organisms with regional, epigenetically regulated centromeres. It is known that normal centromeric DNA is transcribed in several systems including the fission yeast, Schizosaccharomyces pombe. Here, we show that factors which preserve stable histone H3 chromatin during transcription also play a role in preventing promiscuous CENP-A(Cnp1) deposition in fission yeast. Mutations in the histone chaperone FACT impair the maintenance of H3 chromatin on transcribed regions and promote widespread CENP-A(Cnp1) incorporation at non-centromeric sites. FACT has little or no effect on CENP-A(Cnp1) assembly at endogenous centromeres where CENP-A(Cnp1) is normally assembled. In contrast, Clr6 complex II (Clr6-CII; equivalent to Rpd3S) histone deacetylase function has a more subtle impact on the stability of transcribed H3 chromatin and acts to prevent the ectopic accumulation of CENP-A(Cnp1) at specific loci, including subtelomeric regions, where CENP-A(Cnp1) is preferentially assembled. Moreover, defective Clr6-CII function allows the de novo assembly of CENP-A(Cnp1) chromatin on centromeric DNA, bypassing the normal requirement for heterochromatin. Thus, our analyses show that alterations in the process of chromatin assembly during transcription can destabilize H3 nucleosomes and thereby allow CENP-A(Cnp1) to assemble in its place. We propose that normal centromeres provide a specific chromatin context that limits reassembly of H3 chromatin during transcription and thereby promotes the establishment of CENP-A(Cnp1) chromatin and associated kinetochores. These findings have important implications for genetic and epigenetic processes involved in centromere specification.


Asunto(s)
Aminopeptidasas/genética , Centrómero/genética , Proteínas Cromosómicas no Histona/genética , Chaperonas Moleculares/genética , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Transcripción Genética , Proteínas de Ciclo Celular/genética , Centrómero/metabolismo , Ensamble y Desensamble de Cromatina , Proteínas Cromosómicas no Histona/metabolismo , ADN/genética , Epigénesis Genética , Heterocromatina/genética , Histonas/genética , Cinetocoros , Nucleosomas/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
8.
Curr Biol ; 32(14): 3121-3136.e6, 2022 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-35830853

RESUMEN

The establishment of centromere-specific CENP-A chromatin is influenced by epigenetic and genetic processes. Central domain sequences from fission yeast centromeres are preferred substrates for CENP-ACnp1 incorporation, but their use is context dependent, requiring adjacent heterochromatin. CENP-ACnp1 overexpression bypasses heterochromatin dependency, suggesting that heterochromatin ensures exposure to conditions or locations permissive for CENP-ACnp1 assembly. Centromeres cluster around spindle-pole bodies (SPBs). We show that heterochromatin-bearing minichromosomes localize close to SPBs, consistent with this location promoting CENP-ACnp1 incorporation. We demonstrate that heterochromatin-independent de novo CENP-ACnp1 chromatin assembly occurs when central domain DNA is placed near, but not far from, endogenous centromeres or neocentromeres. Moreover, direct tethering of central domain DNA at SPBs permits CENP-ACnp1 assembly, suggesting that the nuclear compartment surrounding SPBs is permissive for CENP-ACnp1 incorporation because target sequences are exposed to high levels of CENP-ACnp1 and associated assembly factors. Thus, nuclear spatial organization is a key epigenetic factor that influences centromere identity.


Asunto(s)
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Centrómero/metabolismo , Proteína A Centromérica/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , ADN/genética , Heterocromatina/genética , Heterocromatina/metabolismo , Histonas/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
9.
Nat Struct Mol Biol ; 29(8): 745-758, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35879419

RESUMEN

Epe1 histone demethylase restricts H3K9-methylation-dependent heterochromatin, preventing it from spreading over, and silencing, gene-containing regions in fission yeast. External stress induces an adaptive response allowing heterochromatin island formation that confers resistance on surviving wild-type lineages. Here we investigate the mechanism by which Epe1 is regulated in response to stress. Exposure to caffeine or antifungals results in Epe1 ubiquitylation and proteasome-dependent removal of the N-terminal 150 residues from Epe1, generating truncated Epe1 (tEpe1) which accumulates in the cytoplasm. Constitutive tEpe1 expression increases H3K9 methylation over several chromosomal regions, reducing expression of underlying genes and enhancing resistance. Reciprocally, constitutive non-cleavable Epe1 expression decreases resistance. tEpe1-mediated resistance requires a functional JmjC demethylase domain. Moreover, caffeine-induced Epe1-to-tEpe1 cleavage is dependent on an intact cell integrity MAP kinase stress signaling pathway, mutations in which alter resistance. Thus, environmental changes elicit a mechanism that curtails the function of this key epigenetic modifier, allowing heterochromatin to reprogram gene expression, thereby bestowing resistance to some cells within a population. H3K9me-heterochromatin components are conserved in human and crop-plant fungal pathogens for which a limited number of antifungals exist. Our findings reveal how transient heterochromatin-dependent antifungal resistant epimutations develop and thus inform on how they might be countered.


Asunto(s)
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Antifúngicos/metabolismo , Cafeína/metabolismo , Citoplasma/metabolismo , Heterocromatina/genética , Heterocromatina/metabolismo , Humanos , Proteínas Nucleares/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo
10.
Curr Biol ; 17(14): 1219-24, 2007 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-17614284

RESUMEN

Centromeres exert vital cellular functions in mitosis and meiosis. A specialized histone and other chromatin-bound factors nucleate a dynamic protein assembly that is required for the proper segregation of sister chromatids. In several organisms, including the fission yeast, Schizosaccharomyces pombe, the RNAi pathway contributes to the formation of silent chromatin in pericentromeric regions. Little is known about how chromatin-remodeling factors contribute to heterochromatic integrity and centromere function. Here we show that the histone chaperone and remodeling complex FACT is required for centromeric-heterochromatin integrity and accurate chromosome segregation. We show that Spt16 and Pob3 are two subunits of the S. pombe FACT complex. Surprisingly, yeast strains deleted for pob3+ are viable and alleviate gene silencing at centromeric repeats and at the silent mating-type locus. Importantly, like heterochromatin and RNAi pathway mutants, Pob3 null strains exhibit lagging chromosomes on anaphase spindles. Whereas the processing of centromeric RNA transcripts into siRNAs is maintained in Pob3 mutants, Swi6-association with the centromere is reduced. Our studies provide the first experimental evidence for a role of the RNA polymerase II cofactor FACT in heterochromatin integrity and in centromere function.


Asunto(s)
Centrómero/metabolismo , Segregación Cromosómica/fisiología , Heterocromatina/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Regulación Fúngica de la Expresión Génica , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Interferencia de ARN , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética
11.
Curr Biol ; 17(14): 1190-200, 2007 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-17627824

RESUMEN

BACKGROUND: Accurate chromosome segregation depends on the establishment of correct-amphitelic-kinetochore orientation. Merotelic kinetochore orientation is an error that occurs when a single kinetochore attaches to microtubules emanating from opposite spindle poles, a condition that hinders segregation of the kinetochore to a spindle pole in anaphase. To avoid chromosome missegregation resulting from merotelic kinetochore orientation, cells have developed mechanisms to prevent or correct merotelic attachment. A protein called Pcs1 has been implicated in preventing merotelic attachment in mitosis and meiosis II in the fission yeast S. pombe. RESULTS: We report that Pcs1 forms a complex with a protein called Mde4. Both Pcs1 and Mde4 localize to the central core of centromeres. Deletion of mde4(+), like that of pcs1(+), causes the appearance of lagging chromosomes during the anaphases of mitotic and meiosis II cells. We provide evidence that the kinetochores of lagging chromosomes in both pcs1 and mde4 mutant cells are merotelically attached. In addition, we find that lagging chromosomes in cells with defective centromeric heterochromatin also display features consistent with merotelic attachment. CONCLUSIONS: We suggest that the Pcs1/Mde4 complex is the fission yeast counterpart of the budding yeast monopolin subcomplex Csm1/Lrs4, which promotes the segregation of sister kinetochores to the same pole during meiosis I. We propose that the Pcs1/Mde4 complex acts in the central kinetochore domain to clamp microtubule binding sites together, the centromeric heterochromatin coating the flanking domains provides rigidity, and both systems contribute to the prevention of merotelic attachment.


Asunto(s)
Segregación Cromosómica/fisiología , Heterocromatina/metabolismo , Cinetocoros/fisiología , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/fisiología , Proteínas de Ciclo Celular/metabolismo , N-Metiltransferasa de Histona-Lisina , Cinetocoros/metabolismo , Espectrometría de Masas , Meiosis/fisiología , Metiltransferasas/metabolismo , Mitosis/fisiología , Complejos Multiproteicos/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo
12.
PLoS Genet ; 3(7): e121, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17677001

RESUMEN

The histone H3 variant CENP-A assembles into chromatin exclusively at centromeres. The process of CENP-A chromatin assembly is epigenetically regulated. Fission yeast centromeres are composed of a central kinetochore domain on which CENP-A chromatin is assembled, and this is flanked by heterochromatin. Marker genes are silenced when placed within kinetochore or heterochromatin domains. It is not known if fission yeast CENP-A(Cnp1) chromatin is confined to specific sequences or whether histone H3 is actively excluded. Here, we show that fission yeast CENP-A(Cnp1) can assemble on noncentromeric DNA when it is inserted within the central kinetochore domain, suggesting that in fission yeast CENP-A(Cnp1) chromatin assembly is driven by the context of a sequence rather than the underlying DNA sequence itself. Silencing in the central domain is correlated with the amount of CENP-A(Cnp1) associated with the marker gene and is also affected by the relative level of histone H3. Our analyses indicate that kinetochore integrity is dependent on maintaining the normal ratio of H3 and H4. Excess H3 competes with CENP-A(Cnp1) for assembly into central domain chromatin, resulting in less CENP-A(Cnp1) and other kinetochore proteins at centromeres causing defective kinetochore function, which is manifest as aberrant mitotic chromosome segregation. Alterations in the levels of H3 relative to H4 and CENP-A(Cnp1) influence the extent of DNA at centromeres that is packaged in CENP-A(Cnp1) chromatin and the composition of this chromatin. Thus, CENP-A(Cnp1) chromatin assembly in fission yeast exhibits plasticity with respect to the underlying sequences and is sensitive to the levels of CENP-A(Cnp1) and other core histones.


Asunto(s)
Autoantígenos/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Histonas/metabolismo , Schizosaccharomyces/metabolismo , Centrómero/metabolismo , Proteína A Centromérica , Cromatina/metabolismo , ADN/química , Cartilla de ADN/química , Proteínas Fúngicas/química , Genoma Fúngico , Cinetocoros/metabolismo , Modelos Biológicos , Plásmidos/metabolismo , Estructura Terciaria de Proteína , Huso Acromático/metabolismo
13.
Elife ; 92020 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-32915140

RESUMEN

During mitosis chromosomes reorganise into highly compact, rod-shaped forms, thought to consist of consecutive chromatin loops around a central protein scaffold. Condensin complexes are involved in chromatin compaction, but the contribution of other chromatin proteins, DNA sequence and histone modifications is less understood. A large region of fission yeast DNA inserted into a mouse chromosome was previously observed to adopt a mitotic organisation distinct from that of surrounding mouse DNA. Here, we show that a similar distinct structure is common to a large subset of insertion events in both mouse and human cells and is coincident with the presence of high levels of heterochromatic H3 lysine nine trimethylation (H3K9me3). Hi-C and microscopy indicate that the heterochromatinised fission yeast DNA is organised into smaller chromatin loops than flanking euchromatic mouse chromatin. We conclude that heterochromatin alters chromatin loop size, thus contributing to the distinct appearance of heterochromatin on mitotic chromosomes.


Asunto(s)
Cromosomas , Heterocromatina , Mitosis/genética , Animales , Cromosomas/química , Cromosomas/genética , Cromosomas/metabolismo , ADN de Hongos/química , ADN de Hongos/genética , ADN de Hongos/metabolismo , ADN Recombinante/química , ADN Recombinante/genética , ADN Recombinante/metabolismo , Células HeLa , Heterocromatina/química , Heterocromatina/genética , Heterocromatina/metabolismo , Histonas/química , Histonas/genética , Histonas/metabolismo , Humanos , Ratones , Células 3T3 NIH , Schizosaccharomyces/genética , Transfección
14.
Wellcome Open Res ; 5: 274, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33313420

RESUMEN

The CRISPR/Cas9 system allows scarless, marker-free genome editing. Current CRISPR/Cas9 systems for the fission yeast  Schizosaccharomyces pombe rely on tedious and time-consuming cloning procedures to introduce a specific sgRNA target sequence into a Cas9-expressing plasmid. In addition, Cas9 endonuclease has been reported to be toxic to fission yeast when constitutively overexpressed from the strong  adh1 promoter. To overcome these problems we have developed an improved system,  SpEDIT, that uses a synthesised Cas9 sequence codon-optimised for  S. pombe expressed from the medium strength  adh15 promoter. The  SpEDIT system exhibits a flexible modular design where the sgRNA is fused to the 3' end of the self-cleaving hepatitis delta virus (HDV) ribozyme, allowing expression of the sgRNA cassette to be driven by RNA polymerase III from a tRNA gene sequence. Lastly, the inclusion of sites for the  BsaI type IIS restriction enzyme flanking a GFP placeholder enables one-step Golden Gate mediated replacement of GFP with synthesized sgRNAs for expression. The  SpEDIT system allowed a 100% mutagenesis efficiency to be achieved when generating targeted point mutants in the  ade6 +  or  ura4 + genes by transformation of cells from asynchronous cultures.  SpEDIT also permitted insertion, tagging and deletion events to be obtained with minimal effort. Simultaneous editing of two independent non-homologous loci was also readily achieved. Importantly the  SpEDIT system displayed reduced toxicity compared to currently available  S. pombe editing systems. Thus,  SpEDIT provides an effective and user-friendly CRISPR/Cas9 procedure that significantly improves the genome editing toolbox for fission yeast.

15.
J Cell Biol ; 161(2): 295-307, 2003 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-12719471

RESUMEN

Fission yeast centromeres are composed of two domains: the central core and the outer repeats. Although both regions are required for full centromere function, the central core has a distinct chromatin structure and is likely to underlie the kinetochore itself, as it is associated with centromere-specific proteins. Genes placed within either region are transcriptionally silenced, reflecting the formation of a functional kinetochore complex and flanking centromeric heterochromatin. Here, transcriptional silencing was exploited to identify components involved in central core silencing and kinetochore assembly or structure. The resulting sim (silencing in the middle of the centromere) mutants display severe chromosome segregation defects. sim2+ encodes a known kinetochore protein, the centromere-specific histone H3 variant Cnp1CENP-A. sim4+ encodes a novel essential coiled-coil protein, which is specifically associated with the central core region and is required for the unusual chromatin structure of this region. Sim4 coimmunoprecipitates with the central core component Mis6 and, like Mis6, affects Cnp1CENP-A association with the central domain. Functional Mis6 is required for Sim4 localization at the kinetochore. Our analyses illustrate the fundamental link between silencing, chromatin structure, and kinetochore function, and establish defective silencing as a powerful approach for identifying proteins required to build a functional kinetochore.


Asunto(s)
Centrómero/genética , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/aislamiento & purificación , Segregación Cromosómica/genética , Silenciador del Gen/fisiología , Cinetocoros/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/aislamiento & purificación , Schizosaccharomyces/genética , Secuencia de Aminoácidos/genética , Secuencia de Bases/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , División Celular/genética , Centrómero/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Regulación Fúngica de la Expresión Génica/genética , Pruebas Genéticas , Datos de Secuencia Molecular , Mutación/genética , Schizosaccharomyces/citología , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Elementos Silenciadores Transcripcionales/genética
16.
Nat Commun ; 10(1): 2343, 2019 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-31138803

RESUMEN

Despite the conserved essential function of centromeres, centromeric DNA itself is not conserved. The histone-H3 variant, CENP-A, is the epigenetic mark that specifies centromere identity. Paradoxically, CENP-A normally assembles on particular sequences at specific genomic locations. To gain insight into the specification of complex centromeres, here we take an evolutionary approach, fully assembling genomes and centromeres of related fission yeasts. Centromere domain organization, but not sequence, is conserved between Schizosaccharomyces pombe, S. octosporus and S. cryophilus with a central CENP-ACnp1 domain flanked by heterochromatic outer-repeat regions. Conserved syntenic clusters of tRNA genes and 5S rRNA genes occur across the centromeres of S. octosporus and S. cryophilus, suggesting conserved function. Interestingly, nonhomologous centromere central-core sequences from S. octosporus and S. cryophilus are recognized in S. pombe, resulting in cross-species establishment of CENP-ACnp1 chromatin and functional kinetochores. Therefore, despite the lack of sequence conservation, Schizosaccharomyces centromere DNA possesses intrinsic conserved properties that promote assembly of CENP-A chromatin.


Asunto(s)
Centrómero/genética , Ensamble y Desensamble de Cromatina/genética , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/genética , ADN/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Centrómero/metabolismo , Proteína A Centromérica/genética , Proteína A Centromérica/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Secuencia Conservada , Epigénesis Genética , Histonas , Cinetocoros , ARN Ribosómico 5S , ARN de Transferencia , Proteínas de Schizosaccharomyces pombe/metabolismo , Sintenía
17.
Curr Biol ; 28(24): 3924-3936.e4, 2018 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-30503616

RESUMEN

Active centromeres are defined by the presence of nucleosomes containing CENP-A, a histone H3 variant, which alone is sufficient to direct kinetochore assembly. Once assembled at a location, CENP-A chromatin and kinetochores are maintained at that location through a positive feedback loop where kinetochore proteins recruited by CENP-A promote deposition of new CENP-A following replication. Although CENP-A chromatin itself is a heritable entity, it is normally associated with specific sequences. Intrinsic properties of centromeric DNA may favor the assembly of CENP-A rather than H3 nucleosomes. Here we investigate histone dynamics on centromere DNA. We show that during S phase, histone H3 is deposited as a placeholder at fission yeast centromeres and is subsequently evicted in G2, when we detect deposition of the majority of new CENP-ACnp1. We also find that centromere DNA has an innate property of driving high rates of turnover of H3-containing nucleosomes, resulting in low nucleosome occupancy. When placed at an ectopic chromosomal location in the absence of any CENP-ACnp1 assembly, centromere DNA appears to retain its ability to impose S phase deposition and G2 eviction of H3, suggesting that features within centromere DNA program H3 dynamics. Because RNA polymerase II (RNAPII) occupancy on this centromere DNA coincides with H3 eviction in G2, we propose a model in which RNAPII-coupled chromatin remodeling promotes replacement of H3 with CENP-ACnp1 nucleosomes.


Asunto(s)
Centrómero/metabolismo , Proteínas Cromosómicas no Histona/genética , ADN de Hongos/metabolismo , Histonas/metabolismo , Nucleosomas/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Proteínas Cromosómicas no Histona/metabolismo , Mitosis , Fase S , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo
18.
Mol Cell Biol ; 22(20): 7168-83, 2002 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12242294

RESUMEN

Precise segregation of chromosomes requires the activity of a specialized chromatin region, the centromere, that assembles the kinetochore complex to mediate the association with spindle microtubules. We show here that Mal2p, previously identified as a protein required for genome stability, is an essential component of the fission yeast centromere. Loss of functional Mal2p leads to extreme missegregation of chromosomes due to nondisjunction of sister chromatids and results in inviable cells. Mal2p associates specifically with the central region of the complex fission yeast centromere, where it is required for the specialized chromatin architecture as well as for transcriptional silencing of this region. Genetic evidence indicates that mal2(+) interacts with mis12(+), encoding another component of the inner centromere core complex. In addition, Mal2p is required for correct metaphase spindle length. Our data imply that the Mal2p protein is required to build up a functional fission yeast centromere.


Asunto(s)
Proteínas Portadoras , Centrómero/metabolismo , Cromosomas Fúngicos/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Schizosaccharomyces pombe , Complejos de Ubiquitina-Proteína Ligasa , Ciclosoma-Complejo Promotor de la Anafase , Proteínas de Unión al Calcio/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Centrómero/fisiología , Cromátides , Cromatina , Segregación Cromosómica , Cromosomas Fúngicos/fisiología , Proteínas Fúngicas/genética , Proteínas Fúngicas/fisiología , Ligasas , Proteínas Mad2 , Metafase , Proteínas Asociadas a Microtúbulos/metabolismo , No Disyunción Genética , Proteínas Nucleares/genética , Proteínas Nucleares/fisiología , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Schizosaccharomyces/fisiología
19.
Elife ; 62017 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-28718400

RESUMEN

Recurrent somatic mutations of H3F3A in aggressive pediatric high-grade gliomas generate K27M or G34R/V mutant histone H3.3. H3.3-G34R/V mutants are common in tumors with mutations in p53 and ATRX, an H3.3-specific chromatin remodeler. To gain insight into the role of H3-G34R, we generated fission yeast that express only the mutant histone H3. H3-G34R specifically reduces H3K36 tri-methylation and H3K36 acetylation, and mutants show partial transcriptional overlap with set2 deletions. H3-G34R mutants exhibit genomic instability and increased replication stress, including slowed replication fork restart, although DNA replication checkpoints are functional. H3-G34R mutants are defective for DNA damage repair by homologous recombination (HR), and have altered HR protein dynamics in both damaged and untreated cells. These data suggest H3-G34R slows resolution of HR-mediated repair and that unresolved replication intermediates impair chromosome segregation. This analysis of H3-G34R mutant fission yeast provides mechanistic insight into how G34R mutation may promote genomic instability in glioma.


Asunto(s)
Replicación del ADN , Inestabilidad Genómica , Histonas/metabolismo , Recombinación Homóloga , Proteínas Mutantes/metabolismo , Schizosaccharomyces/metabolismo , Reparación del ADN , Histonas/genética , Proteínas Mutantes/genética , Mutación Missense , Schizosaccharomyces/genética
20.
Science ; 348(6230): 132-5, 2015 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-25838386

RESUMEN

Posttranslational histone modifications are believed to allow the epigenetic transmission of distinct chromatin states, independently of associated DNA sequences. Histone H3 lysine 9 (H3K9) methylation is essential for heterochromatin formation; however, a demonstration of its epigenetic heritability is lacking. Fission yeast has a single H3K9 methyltransferase, Clr4, that directs all H3K9 methylation and heterochromatin. Using releasable tethered Clr4 reveals that an active process rapidly erases H3K9 methylation from tethering sites in wild-type cells. However, inactivation of the putative histone demethylase Epe1 allows H3K9 methylation and silent chromatin maintenance at the tethering site through many mitotic divisions, and transgenerationally through meiosis, after release of tethered Clr4. Thus, H3K9 methylation is a heritable epigenetic mark whose transmission is usually countered by its active removal, which prevents the unauthorized inheritance of heterochromatin.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Epigénesis Genética , Histonas/metabolismo , Lisina/metabolismo , Metiltransferasas/metabolismo , Procesamiento Proteico-Postraduccional/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/enzimología , Schizosaccharomyces/genética , Heterocromatina/metabolismo , N-Metiltransferasa de Histona-Lisina , Metilación , Mutación , Proteínas Nucleares/genética , Proteínas de Schizosaccharomyces pombe/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA