RESUMEN
Reprogramming of mRNA translation has a key role in cancer development and drug resistance 1 . However, the molecular mechanisms that are involved in this process remain poorly understood. Wobble tRNA modifications are required for specific codon decoding during translation2,3. Here we show, in humans, that the enzymes that catalyse modifications of wobble uridine 34 (U34) tRNA (U34 enzymes) are key players of the protein synthesis rewiring that is induced by the transformation driven by the BRAF V600E oncogene and by resistance to targeted therapy in melanoma. We show that BRAF V600E -expressing melanoma cells are dependent on U34 enzymes for survival, and that concurrent inhibition of MAPK signalling and ELP3 or CTU1 and/or CTU2 synergizes to kill melanoma cells. Activation of the PI3K signalling pathway, one of the most common mechanisms of acquired resistance to MAPK therapeutic agents, markedly increases the expression of U34 enzymes. Mechanistically, U34 enzymes promote glycolysis in melanoma cells through the direct, codon-dependent, regulation of the translation of HIF1A mRNA and the maintenance of high levels of HIF1α protein. Therefore, the acquired resistance to anti-BRAF therapy is associated with high levels of U34 enzymes and HIF1α. Together, these results demonstrate that U34 enzymes promote the survival and resistance to therapy of melanoma cells by regulating specific mRNA translation.
Asunto(s)
Codón/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Melanoma/tratamiento farmacológico , Melanoma/genética , Biosíntesis de Proteínas , Animales , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Codón/efectos de los fármacos , Femenino , Humanos , Masculino , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Melanoma/patología , Melanoma Experimental/tratamiento farmacológico , Melanoma Experimental/genética , Melanoma Experimental/patología , Ratones , Ratones Endogámicos NOD , Ratones SCID , Fosforilación , Biosíntesis de Proteínas/efectos de los fármacos , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Proteínas Proto-Oncogénicas B-raf/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Transferencia/química , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Transducción de Señal , Factores de Elongación Transcripcional , Uridina/química , Uridina/genética , Uridina/metabolismo , Vemurafenib/farmacología , Vemurafenib/uso terapéutico , Pez Cebra/genéticaRESUMEN
Radiation therapy (RT) is a common treatment for lung cancer. Still, it can lead to irreversible loss of pulmonary function and a significant reduction in quality of life for one-third of patients. Preexisting comorbidities, such as chronic obstructive pulmonary disease (COPD), are frequent in patients with lung cancer and further increase the risk of complications. Because lung stem cells are crucial for the regeneration of lung tissue following injury, we hypothesized that airway stem cells from patients with COPD with lung cancer might contribute to increased radiation sensitivity. We used the air-liquid interface model, a three-dimensional (3D) culture system, to compare the radiation response of primary human airway stem cells from healthy and patients with COPD. We found that COPD-derived airway stem cells, compared to healthy airway stem cell cultures, exhibited disproportionate pathological mucociliary differentiation, aberrant cell cycle checkpoints, residual DNA damage, reduced survival of stem cells and self-renewal, and terminally differentiated cells post-irradiation, which could be reversed by blocking the Notch pathway using small-molecule γ-secretase inhibitors. Our findings shed light on the mechanisms underlying the increased radiation sensitivity of COPD and suggest that airway stem cells reflect part of the pathological remodeling seen in lung tissue from patients with lung cancer receiving thoracic RT.
Asunto(s)
Diferenciación Celular , Daño del ADN , Reparación del ADN , Enfermedad Pulmonar Obstructiva Crónica , Tolerancia a Radiación , Células Madre , Humanos , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/patología , Células Madre/metabolismo , Células Madre/citología , Masculino , Femenino , Persona de Mediana Edad , Anciano , Células Cultivadas , Pulmón/patología , Pulmón/metabolismoRESUMEN
PURPOSE: Tumor hypoxia imposes a main obstacle to the efficacy of anti-cancer therapy. Understanding the cellular dynamics of individual hypoxic cells before, during and post-treatment has been hampered by the technical inability to identify and trace these cells over time. METHODS AND MATERIALS: Here, we present a novel lineage-tracing reporter for hypoxic cells based on the conditional expression of a HIF1a-CreERT2-UnaG biosensor that can visualize hypoxic cells in a time-dependent manner and trace the fate of hypoxic cells over time. We combine this system with multiphoton microscopy, flow cytometry, and immunofluorescence to characterize the role of hypoxic cells in tumor relapse after irradiation in H1299 tumor spheroids and in vivo xenografts. RESULTS: We validate the reporter in monolayer cultures and we show that tagged cells colocalize in spheroids and human tumor xenografts with the hypoxic marker pimonidazole. We found that irradiation of H1299-HIFcreUnaG spheroids leads to preferential outgrowth of cells from the hypoxic core. Similarly, in xenografts tumors, although initially UnaG-positive-cells coincide with pimonidazole-positive tumor areas and they are merely quiescent, upon Irradiation UnaG-positive cells enrich in regrowing tumors and are mainly proliferative. CONCLUSIONS: Collectively, our data provide clear evidence that the hypoxic cells drive tumor relapse after irradiation.
RESUMEN
Notch receptor activation is regulated by the intramembrane protease γ-secretase, which cleaves and liberates the Notch intracellular domain (Nicd) that regulates gene transcription. While γ-secretase cleavage is necessary, we demonstrate it is insufficient for Notch activation and requires vesicular trafficking. Here, we report Divalent metal transporter 1 (Dmt1, Slc11A2) as a novel and essential regulator of Notch signalling. Dmt1-deficient cells are defective in Notch signalling and have perturbed endolysosomal trafficking and function. Dmt1 encodes for two isoforms, with and without an iron response element (ire). We show that isoform-specific silencing of Dmt1-ire and Dmt1+ire has opposite consequences on Notch-dependent cell fates in cell lines and intestinal organoids. Loss of Dmt1-ire suppresses Notch activation and promotes differentiation, whereas loss of Dmt1+ire causes Notch activation and maintains stem-progenitor cell fates. Dmt1 isoform expression correlates with Notch and Wnt signalling in Apc-deficient intestinal organoids and human colorectal cancers. Consistently, Dmt1-ire silencing induces Notch-dependent differentiation in colorectal cancer cells. These data identify Dmt1 isoforms as binary switches controlling Notch cell fate decisions in normal and tumour cells.
Asunto(s)
Secretasas de la Proteína Precursora del Amiloide , Proteínas de Transporte de Catión , Hierro , Humanos , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Línea Celular , Hierro/metabolismo , Proteínas de Unión a Hierro/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas de Transporte de Catión/genética , Secuencias Reguladoras de Ácidos NucleicosRESUMEN
Background: Treatment resistance and tumor relapse are the primary causes of mortality in glioblastoma (GBM), with intratumoral heterogeneity playing a significant role. Patient-derived cancer organoids have emerged as a promising model capable of recapitulating tumor heterogeneity. Our objective was to develop patient-derived GBM organoids (PGO) to investigate treatment response and resistance. Methods: GBM samples were used to generate PGOs and analyzed using whole-exome sequencing (WES) and single-cell karyotype sequencing. PGOs were subjected to temozolomide (TMZ) to assess viability. Bulk RNA sequencing was performed before and after TMZ. Results: WES analysis on individual PGOs cultured for 3 time points (1-3 months) showed a high inter-organoid correlation and retention of genetic variants (range 92.3%-97.7%). Most variants were retained in the PGO compared to the tumor (range 58%-90%) and exhibited similar copy number variations. Single-cell karyotype sequencing demonstrated preservation of genetic heterogeneity. Single-cell multiplex immunofluorescence showed maintenance of cellular states. TMZ treatment of PGOs showed a differential response, which largely corresponded with MGMT promoter methylation. Differentially expressed genes before and after TMZ revealed an upregulation of the JNK kinase pathway. Notably, the combination treatment of a JNK kinase inhibitor and TMZ demonstrated a synergistic effect. Conclusions: Overall, these findings demonstrate the robustness of PGOs in retaining the genetic and phenotypic heterogeneity in culture and the application of measuring clinically relevant drug responses. These data show that PGOs have the potential to be further developed into avatars for personalized adaptive treatment selection and actionable drug target discovery and as a platform to study GBM biology.
RESUMEN
Manganese (Mn) is an important element; yet acute and/or chronic exposure to this metal has been linked to neurotoxicity and neurodegenerative illnesses such as Parkinson's disease and others via an unknown mechanism. To better understand it, we exposed a human neuroblastoma cell model (SH-SY5Y) to two Mn chemical species, MnCl2 and Citrate of Mn(II) (0-2000 µM), followed by a cell viability assay, transcriptomics, and bioinformatics. Even though these cells have been chemically and genetically modified, which may limit the significance of our findings, we discovered that by using RA-differentiated cells instead of undifferentiated SH-SY5Y cell line, both chemical species induce a similar toxicity, potentially governed by disruption of protein metabolism, with some differences. The MnCl2 altered amino acid metabolism, which affects RNA metabolism and protein synthesis. Citrate of Mn(II), however, inhibited the E3 ubiquitin ligases-target protein degradation pathway, which can lead to the buildup of damaged/unfolded proteins, consistent with histone modification. Finally, we discovered that Mn(II)-induced cytotoxicity in RA-SH-SY5Y cells shared 84 percent of the pathways involved in neurodegenerative diseases.
RESUMEN
An increasing number of findings from epidemiological studies support associations between exposure to air pollution and the onset of several diseases, including pulmonary, cardiovascular and neurodegenerative diseases, and malignancies. However, intermediate, and potentially mediating, biological mechanisms associated with exposure to air pollutants are largely unknown. Previous studies on the human exposome have shown that the expression of certain circulating microRNAs (miRNAs), regulators of gene expression, are altered upon exposure to traffic-related air pollutants. In the present study, we investigated the relationship between particulate matter (PM) smaller than 2.5 µm (PM2.5), PM2.5 absorbance (as a proxy of black carbon and soot), and ultrafine-particles (UFP, smaller than 0.1 µm), measured in healthy volunteers by 24 h personal monitoring (PEM) sessions and global expression levels of peripheral blood miRNAs. The PEM sessions were conducted in four European countries, namely Switzerland (Basel), United Kingdom (Norwich), Italy (Turin), and The Netherlands (Utrecht). miRNAs expression levels were analysed using microarray technology on blood samples from 143 participants. Seven miRNAs, hsa-miR-24-3p, hsa-miR-4454, hsa-miR-4763-3p, hsa-miR-425-5p, hsa-let-7d-5p, hsa-miR-502-5p, and hsa-miR-505-3p were significantly (FDR corrected) expressed in association with PM2.5 personal exposure, while no significant association was found between miRNA expression and the other pollutants. The results obtained from this investigation suggest that personal exposure to PM2.5 is associated with miRNA expression levels, showing the potential for these circulating miRNAs as novel biomarkers for air pollution health risk assessment.
Asunto(s)
MicroARNs , Material Particulado , Europa (Continente) , Perfilación de la Expresión Génica , Humanos , Italia , Países Bajos , Suiza , Reino UnidoRESUMEN
Translational control is a cellular response mechanism which initiates adaptation during various stress situations. Here, we investigated the role of translational control after benzo[a]pyrene (BaP) exposure in primary mouse hepatocytes. Translated mRNAs were separated and captured based on the number of associated ribosomes using sucrose gradients and subjected to RNA sequencing (RNAseq) to investigate translational changes. Furthermore, unseparated RNA (total RNA) was used for RNAseq to determine the transcriptional alterations. We showed that, after 24â¯h of exposure to 10 µM BaP, the number of genes altered by changes in mRNA translation was substantially higher compared with the number of genes altered by transcription. Although part of the BaP regulated genes were regulated by both transcription and translation, we identified genes that were uniquely regulated by mRNA translation. These mRNA transcripts encode proteins that are involved in biological processes that are not affected by transcriptional regulation. Al together this work identified a new layer of gene expression regulation that might contribute to BaP-induced carcinogenesis.
Asunto(s)
Benzo(a)pireno/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Hepatocitos/efectos de los fármacos , Biosíntesis de Proteínas/efectos de los fármacos , Ribosomas/efectos de los fármacos , Animales , Células Cultivadas , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Hepatocitos/metabolismo , Ratones , Cultivo Primario de Células , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribosomas/metabolismo , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Transcripción Genética/efectos de los fármacosRESUMEN
Diesel vehicle emissions are the major source of genotoxic compounds in ambient air from urban areas. These pollutants are linked to risks of cardiovascular diseases, lung cancer, respiratory infections and adverse neurological effects. Biological events associated with exposure to some air pollutants are widely unknown but applying omics techniques may help to identify the molecular processes that link exposure to disease risk. Most data on health risks are related to long-term exposure, so the aim of this study is to investigate the impact of short-term exposure (two hours) to air pollutants on the blood transcriptome and microRNA expression levels. We analyzed transcriptomics and microRNA expression using microarray technology on blood samples from volunteers participating in studies in London, the Oxford Street cohort, and, in Barcelona, the TAPAS cohort. Personal exposure levels measurements of particulate matter (PM10, PM2.5), ultrafine particles (UFPC), nitrogen oxides (NO2, NO and NOx), black carbon (BC) and carbon oxides (CO and CO2) were registered for each volunteer. Associations between air pollutant levels and gene/microRNA expression were evaluated using multivariate normal models (MVN). MVN-models identified compound-specific expression of blood cell genes and microRNAs associated with air pollution despite the low exposure levels, the short exposure periods and the relatively small-sized cohorts. Hsa-miR-197-3p, hsa-miR-29a-3p, hsa-miR-15a-5p, hsa-miR-16-5p and hsa-miR-92a-3p are found significantly expressed in association with exposures. These microRNAs target also relevant transcripts, indicating their potential relevance in the research of omics-biomarkers responding to air pollution. Furthermore, these microRNAs are also known to be associated with diseases previously linked to air pollution exposure including several cancers such lung cancer and Alzheimer's disease. In conclusion, we identified in this study promising compound-specific mRNA and microRNA biomarkers after two hours of exposure to low levels of air pollutants during two hours that suggest increased cancer risks.
Asunto(s)
Contaminación del Aire/estadística & datos numéricos , Exposición a Riesgos Ambientales/estadística & datos numéricos , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Biomarcadores , Enfermedades Cardiovasculares/epidemiología , Estudios de Cohortes , Exposición a Riesgos Ambientales/análisis , Femenino , Humanos , Londres , Neoplasias Pulmonares/epidemiología , Masculino , MicroARNs , Óxidos de Nitrógeno , Material Particulado/análisis , Proyectos de Investigación , Infecciones del Sistema Respiratorio/epidemiología , Transcriptoma , Emisiones de Vehículos/análisisRESUMEN
The infiltrative behavior of diffuse gliomas severely reduces therapeutic potential of surgical resection and radiotherapy, and urges for the identification of new drug-targets affecting glioma growth and migration. To address the potential role of protein tyrosine phosphatases (PTPs), we performed mRNA expression profiling for 91 of the 109 known human PTP genes on a series of clinical diffuse glioma samples of different grades and compared our findings with in silico knowledge from REMBRANDT and TCGA databases. Overall PTP family expression levels appeared independent of characteristic genetic aberrations associated with lower grade or high grade gliomas. Notably, seven PTP genes (DUSP26, MTMR4, PTEN, PTPRM, PTPRN2, PTPRT and PTPRZ1) were differentially expressed between grade II-III gliomas and (grade IV) glioblastomas. For DUSP26, PTEN, PTPRM and PTPRT, lower expression levels correlated with poor prognosis, and overexpression of DUSP26 or PTPRT in E98 glioblastoma cells reduced tumorigenicity. Our study represents the first in-depth analysis of PTP family expression in diffuse glioma subtypes and warrants further investigations into PTP-dependent signaling events as new entry points for improved therapy.