Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Brain Behav Immun ; 121: 1-12, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39002812

RESUMEN

induced-pluripotent stem cell (iPSC)-derived neurospheroid (NSPH) models are an emerging in vitro toolkit to study the influence of inflammatory triggers on neurodegeneration and repair in a 3D neural environment. In contrast to their human counterpart, the absence of murine iPSC-derived NSPHs for profound characterisation and validation studies is a major experimental research gap, even though they offer the only possibility to truly compare or validate in vitro NSPH responses with in vivo brain responses. To contribute to these developments, we here describe the generation and characterisation of 5-week-old CX3CR1eGFP+/- CCR2RFP+/- murine (m)iPSC-derived bi-partite (neurons + astrocytes) and tri-partite (neurons + astrocytes + microglia) NSPH models that can be subjected to cellular activation following pro-inflammatory stimulation. First, cytokine analysis demonstrates that both bi-partite and tri-partite NSPHs can be triggered to release IL6 and CXCL10 following three days of stimulation with, respectively, TNFα + IL1ß + IFNγ and LPS + IFNγ. Additionally, immunocytochemical analysis for G3BP1 and PABPC1 revealed the development of stress granules in both bi-partite and tri-partite NSPHs after 3 days of stimulation. To further investigate the observed signs of inflammatory response and cellular stress, we performed an untargeted transcriptomic and proteomic analysis of bi- and tri-partite NSPHs under steady-state and inflammatory conditions. Here, using the combined differential gene and protein expression profiles between unstimulated and stimulated NSPHs, Ingenuity Pathway Analysis (IPA) confirms the activation of canonical pathways associated with inflammation and cellular stress in both bi-partite and tri-partite NSPHs. Moreover, our multi-omics analysis suggests a higher level of downstream inflammatory responses, impairment of homeostatic and developmental processes, as well as activation of cell death processes in stimulated tri-partite NSPHs compared to bi-partite NSPHs. Concluding, these results emphasise the advantages of including microglia in NSPH research to study inflammation-induced neurodegeneration in a 3D neural environment.


Asunto(s)
Células Madre Pluripotentes Inducidas , Inflamación , Microglía , Neuronas , Proteómica , Transcriptoma , Animales , Ratones , Células Madre Pluripotentes Inducidas/metabolismo , Proteómica/métodos , Inflamación/metabolismo , Microglía/metabolismo , Neuronas/metabolismo , Astrocitos/metabolismo , Receptor 1 de Quimiocinas CX3C/metabolismo , Receptor 1 de Quimiocinas CX3C/genética , Diferenciación Celular , Citocinas/metabolismo , Proteoma/metabolismo , Quimiocina CXCL10/metabolismo , Receptores CCR2/metabolismo , Receptores CCR2/genética
2.
EMBO Rep ; 23(12): e55687, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36281991

RESUMEN

Primary cilia (PC) are important signaling hubs, and we here explored their role in colonic pathology. In the colon, PC are mostly present on fibroblasts, and exposure of mice to either chemically induced colitis-associated colon carcinogenesis (CAC) or dextran sodium sulfate (DSS)-induced acute colitis decreases PC numbers. We generated conditional knockout mice with reduced numbers of PC on colonic fibroblasts. These mice show increased susceptibility to CAC, as well as DSS-induced colitis. Secretome and immunohistochemical analyses of DSS-treated mice display an elevated production of the proinflammatory cytokine IL-6 in PC-deficient colons. An inflammatory environment diminishes PC presence in primary fibroblast cultures, which is triggered by IL-6 as identified by RNA-seq analysis together with blocking experiments. These findings suggest an activation loop between IL-6 production and PC loss. An analysis of PC presence on biopsies of patients with ulcerative colitis or colorectal cancer (CRC) reveals decreased numbers of PC on colonic fibroblasts in pathological compared with surrounding normal tissue. Taken together, we provide evidence that a decrease in colonic PC numbers promotes colitis and CRC.


Asunto(s)
Cilios , Interleucina-6 , Ratones , Animales , Interleucina-6/genética
3.
Radiol Med ; 129(5): 712-726, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38538828

RESUMEN

Treatment response assessment of rectal cancer patients is a critical component of personalized cancer care and it allows to identify suitable candidates for organ-preserving strategies. This pilot study employed a novel multi-omics approach combining MRI-based radiomic features and untargeted metabolomics to infer treatment response at staging. The metabolic signature highlighted how tumor cell viability is predictively down-regulated, while the response to oxidative stress was up-regulated in responder patients, showing significantly reduced oxoproline values at baseline compared to non-responder patients (p-value < 10-4). Tumors with a high degree of texture homogeneity, as assessed by radiomics, were more likely to achieve a major pathological response (p-value < 10-3). A machine learning classifier was implemented to summarize the multi-omics information and discriminate responders and non-responders. Combining all available radiomic and metabolomic features, the classifier delivered an AUC of 0.864 (± 0.083, p-value < 10-3) with a best-point sensitivity of 90.9% and a specificity of 81.8%. Our results suggest that a multi-omics approach, integrating radiomics and metabolomic data, can enhance the predictive value of standard MRI and could help to avoid unnecessary surgical treatments and their associated long-term complications.


Asunto(s)
Multiómica , Estadificación de Neoplasias , Neoplasias del Recto , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Aprendizaje Automático , Imagen por Resonancia Magnética/métodos , Metabolómica , Proyectos Piloto , Valor Predictivo de las Pruebas , Neoplasias del Recto/diagnóstico por imagen , Neoplasias del Recto/patología , Neoplasias del Recto/terapia , Sensibilidad y Especificidad , Resultado del Tratamiento
4.
Haematologica ; 108(4): 1141-1157, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36546455

RESUMEN

Cardiovascular (CV) disease prevention with low-dose aspirin can be less effective in patients with a faster recovery of platelet (PLT) cyclooxygenase (COX)-1 activity during the 24-hour dosing interval. We previously showed that incomplete suppression of TXA2 over 24 hours can be rescued by a twice daily aspirin regimen. Here we show that reduced PLT glycoprotein (GP)Ibα shedding characterizes patients with accelerated COX-1 recovery and may contribute to higher thrombopoietin (TPO) production and higher rates of newly formed PLT, escaping aspirin inhibition over 24 hours. Two hundred aspirin-treated patients with high CV risk (100 with type 2 diabetes mellitus) were stratified according to the kinetics of PLT COX-1 activity recovery during the 10- to 24-hour dosing interval. Whole proteome analysis showed that PLT from patients with accelerated COX-1 recovery were enriched in proteins involved in cell survival, inhibition of apoptosis and cellular protrusion formation. In agreement, we documented increased plasma TPO, megakaryocyte maturation and proplatelet formation, and conversely increased PLT galactose and reduced caspase 3, phosphatidylserine exposure and ADAM17 activation, translating into diminished GPIbα cleavage and glycocalicin (GC) release. Treatment of HepG2 cells with recombinant GC led to a dose-dependent reduction of TPO mRNA in the liver, suggesting that reduced GPIbα ectodomain shedding may unleash thrombopoiesis. A cluster of clinical markers, including younger age, non-alcoholic fatty liver disease, visceral obesity and higher TPO/GC ratio, predicted with significant accuracy the likelihood of faster COX-1 recovery and suboptimal aspirin response. Circulating TPO/GC ratio, reflecting a dysregulation of PLT lifespan and production, may provide a simple tool to identify patients amenable to more frequent aspirin daily dosing.


Asunto(s)
Diabetes Mellitus Tipo 2 , Trombocitopenia , Humanos , Aspirina/farmacología , Trombopoyesis , Diabetes Mellitus Tipo 2/metabolismo , Plaquetas/metabolismo , Trombocitopenia/metabolismo , Glicoproteínas de Membrana Plaquetaria/metabolismo
5.
J Cell Mol Med ; 26(5): 1380-1391, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35122387

RESUMEN

Ponatinib (PON), a tyrosine kinase inhibitor approved in chronic myeloid leukaemia, has proven cardiovascular toxicity. We assessed mechanisms of sex-related PON-induced cardiotoxicity and identified rescue strategies in a murine model. PON+scrambled siRNA-treated male mice had a higher number of TUNEL-positive cells (%TdT+6.12 ± 0.17), higher percentage of SA-ß-gal-positive senescent cardiac area (%SA-ß-gal 1.41 ± 0.59) and a lower reactivity degree (RD) for the survival marker Bmi1 [Abs (OD) 5000 ± 703] compared to female (%TdT+3.75 ± 0.35; %SA-ß-gal 0.77 ± 0.02; Bmi1 [Abs (OD) 8567 ± 2173]. Proteomics analysis of cardiac tissue showed downstream activation of cell death in PON+siRNA scrambled compared to vehicle or PON+siRNA-Notch1-treated male mice. Upstream analysis showed beta-oestradiol activation, and downstream analysis showed activation of cell survival and inhibition of cell death in PON+scrambled siRNA compared to vehicle or PON+siRNA-Notch1-treated female mice. PON+scrambled siRNA-treated mice also had a downregulation of cardiac actin-more marked in males-and vessel density-more marked in females. Female hearts showed greater cardiac fibrosis than their male counterparts at baseline, with no significant change after PON treatment. PON+siRNA-scrambled mice had less fibrosis than vehicle or PON+siRNA-Notch1-treated mice. The left ventricular systolic dysfunction showed by PON+scrambled siRNA-treated mice (male %EF 28 ± 9; female %EF 36 ± 7) was reversed in both PON+siRNA-Notch1-treated male (%EF 53 ± 9) and female mice (%EF 52 ± 8). We report sex-related differential susceptibility and Notch1 modulation in PON-induced cardiotoxicity. This can help to identify biomarkers and potential mechanisms underlying sex-related differences in PON-induced cardiotoxicity.


Asunto(s)
Cardiotoxicidad , Piridazinas , Animales , Cardiotoxicidad/etiología , Modelos Animales de Enfermedad , Femenino , Imidazoles , Masculino , Ratones , Piridazinas/farmacología , ARN Interferente Pequeño
6.
J Cell Biochem ; 123(1): 65-76, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34741485

RESUMEN

Pancreatic ductal adenoma carcinoma (PDAC) is considered one of the deadliest solid cancers as it is usually diagnosed in advanced stages and has a poor response to treatment. The enormous effort made in the last 2 decades in the oncology field has not led to significant progress in improving early diagnosis or therapy for PDAC. The stroma of PDAC plays an active role in tumour initiation and progression and includes immune cells and stromal cells. We previously reported that Bcl2-associated athanogene (BAG3) secreted by PDAC cells activates tumour-associated macrophages to promote tumour growth. The disruption of this tumour-stroma axis by the anti-BAG3 H2L4 therapeutic antibody is sufficient to delay tumour growth and limit metastatic spreading in different PDAC preclinical models. In the present study, we examined the role of BAG3 to activate human fibroblasts (HF) in releasing cytokines capable of supporting tumour progression. Treatment of fibroblasts with recombinant BAG3 induced important changes in the organisation of the cytoskeleton of these cells and stimulated the production of interleukin-6, monocyte chemoattractant protein-1/C-C motif chemokine ligand 2, and hepatocyte growth factor. Specifically, we observed that BAG3 triggered a depolymerisation of microtubules at the periphery of the cell while they were conserved in the perinuclear area. Conversely, the vimentin-based intermediate filaments increased and spread to the edges of the cells. Finally, the conditioned medium (CM) collected from BAG3-treated HF promoted the survival, proliferation, and migration of the PDAC cells. Blocking of the PDAC-fibroblast axis by the H2L4 therapeutic anti-BAG3 antibody, resulted in inhibition of cytokine release and, consequently, the inhibition of the migratory phenotype conferred by the CM to PDAC cells.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/farmacología , Proteínas Reguladoras de la Apoptosis/farmacología , Carcinoma Ductal Pancreático/metabolismo , Movimiento Celular/efectos de los fármacos , Citocinas/metabolismo , Citocinas/farmacología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Neoplasias Pancreáticas/metabolismo , Transducción de Señal/efectos de los fármacos , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/farmacología , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/inmunología , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Medios de Cultivo Condicionados/farmacología , Humanos , Neoplasias Pancreáticas/patología , Proteínas Recombinantes/farmacología , Células Sf9 , Spodoptera
7.
Int J Mol Sci ; 23(5)2022 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-35269932

RESUMEN

The Special Issue, "Molecular Research in Multiple Sclerosis", provides a better comprehension of the disease and establishes possible new biomarkers to ensure better care of MS patients in the future [...].


Asunto(s)
Esclerosis Múltiple , Biomarcadores , Humanos , Esclerosis Múltiple/genética
8.
Int J Mol Sci ; 23(16)2022 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-36012246

RESUMEN

Recently, the protective and/or pathological role of virus-specific T cells in SARS-CoV-2 infection has been the focus of many studies. We investigated the anti-spike IgG levels and SARS-CoV-2-specific T cells in 125 donors (90 vaccinated with four different vaccine platforms, 16 individuals with a previous natural infection, and 19 not vaccinated donors who did not report previous SARS-CoV-2 infections). Our data show that anti-spike IgG titers were similar between naturally infected subjects and those vaccinated with adenoviral vector vaccines. Of note, all immunized donors produced memory CD4+ and/or CD8+ T cells. A sustained polyfunctionality of SARS-CoV-2-specific T cells in all immunized donors was also demonstrated. Altogether, our data suggest that the natural infection produces an overall response like that induced by vaccination. Therefore, this detailed immunological evaluation may be relevant for other vaccine efforts especially for the monitoring of novel vaccines effective against emerging virus variants.


Asunto(s)
COVID-19 , Vacunas Virales , Anticuerpos Antivirales , Linfocitos T CD8-positivos , COVID-19/prevención & control , Humanos , Inmunoglobulina G , SARS-CoV-2 , Vacunación
9.
Int J Mol Sci ; 23(23)2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36499243

RESUMEN

Platelet-rich plasma (PRP) has great potential in regenerative medicine. In addition to the well-known regenerative potential of secreted growth factors, extracellular vesicles (EVs) are emerging as potential key players in the regulation of tissue repair. However, little is known about their therapeutic potential as regenerative agents. In this study, we have identified and subtyped circulating EVs (platelet-, endothelial-, and leukocyte-derived EVs) in the peripheral blood of athletes recovering from recent muscular injuries and undergoing a submaximal strength rehabilitation program. We found a significant increase in circulating platelet-derived EVs at the end of the rehabilitation program. Moreover, EVs from PRP samples were isolated by fluorescence-activated cell sorting and analyzed by label-free proteomics. The proteomic analysis of PRP-EVs revealed that 32% of the identified proteins were associated to "defense and immunity", and altogether these proteins were involved in vesicle-mediated transport (GO: 0016192; FDR = 3.132 × 10-19), as well as in wound healing (GO: 0042060; FDR = 4.252 × 10-13) and in the events regulating such a process (GO: 0061041; FDR = 2.812 × 10-12). Altogether, these data suggest that platelet-derived EVs may significantly contribute to the regeneration potential of PRP preparations.


Asunto(s)
Vesículas Extracelulares , Enfermedades Musculares , Humanos , Proteómica , Vesículas Extracelulares/metabolismo , Medicina Regenerativa , Enfermedades Musculares/metabolismo , Atletas , Músculos
10.
Int J Mol Sci ; 23(14)2022 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-35886999

RESUMEN

Nucleostemin (NS; a product of the GNL3 gene) is a nucleolar-nucleoplasm shuttling GTPase whose levels are high in stem cells and rapidly decrease upon differentiation. NS levels are also high in several solid and hematological neoplasms, including acute myeloid leukaemia (AML). While a role in telomere maintenance, response to stress stimuli and favoring DNA repair has been proposed in solid cancers, little or no information is available as to the role of nucleostemin in AML. Here, we investigate this issue via a proteomics approach. We use as a model system the OCI-AML 3 cell line harboring a heterozygous mutation at the NPM1 gene, which is the most frequent driver mutation in AML (approximately 30% of total AML cases). We show that NS is highly expressed in this cell line, and, contrary to what has previously been shown in other cancers, that its presence is dispensable for cell growth and viability. However, proteomics analysis of the OCI-AML 3 cell line before and after nucleostemin (NS) silencing showed several effects on different biological functions, as highlighted by ingenuity pathway analysis (IPA). In particular, we report an effect of down-regulating DNA repair through homologous recombination, and we confirmed a higher DNA damage rate in OCI-AML 3 cells when NS is depleted, which considerably increases upon stress induced by the topoisomerase II inhibitor etoposide. The data used are available via ProteomeXchange with the identifier PXD034012.


Asunto(s)
Proteínas de Unión al GTP , Leucemia Mieloide Aguda , Proteínas Nucleares , Nucleofosmina , Línea Celular Tumoral , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleofosmina/genética , Nucleofosmina/metabolismo , Proteómica
11.
Int J Mol Sci ; 24(1)2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36613462

RESUMEN

Coronavirus disease 2019 (COVID-19) is characterized by a broad spectrum of clinical symptoms. After acute infection, some subjects develop a post-COVID-19 syndrome known as long-COVID. This study aims to recognize the molecular and functional mechanisms that occur in COVID-19 and long-COVID patients and identify useful biomarkers for the management of patients with COVID-19 and long-COVID. Here, we profiled the response to COVID-19 by performing a proteomic analysis of lymphocytes isolated from patients. We identified significant changes in proteins involved in iron metabolism using different biochemical analyses, considering ceruloplasmin (Cp), transferrin (Tf), hemopexin (HPX), lipocalin 2 (LCN2), and superoxide dismutase 1 (SOD1). Moreover, our results show an activation of 5-lipoxygenase (5-LOX) in COVID-19 and in long-COVID possibly through an iron-dependent post-translational mechanism. Furthermore, this work defines leukotriene B4 (LTB4) and lipocalin 2 (LCN2) as possible markers of COVID-19 and long-COVID and suggests novel opportunities for prevention and treatment.


Asunto(s)
COVID-19 , Hierro , Humanos , Hierro/metabolismo , Lipocalina 2 , Síndrome Post Agudo de COVID-19 , Araquidonato 5-Lipooxigenasa/metabolismo , Proteómica , Biomarcadores
12.
Int J Mol Sci ; 23(23)2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36498922

RESUMEN

Allergic reactions to COVID-19 vaccine components are rare but should be considered. Polyethylene glycol (PEG) is responsible for anaphylaxis in mRNA vaccines. Skin tests have been used in the allergological work-up programs for COVID-19 vaccine evaluation. However, the reproducibility of the skin prick test is time-dependent and the reactivity declines over time. Therefore, we combined the administration of the skin tests with the basophil activation test (BAT) using PEG2000, PEG4000 and DMG-PEG2000, where the BAT was considered positive when the percentage of activated basophils was higher than 6%, 5% and 6.5%, for PEG 4000, PEG2000 and DMG-PEG2000, respectively. To this end, among the subjects that underwent allergy counseling at the Allergy Unit of our Institution during the 2020/2021 vaccination campaign, 13 patients had a suggested medical history of PEG/drug hypersensitivity and were enrolled together with 10 healthy donors. Among the enrolled patients 2 out of 13 tested patients were positive to the skin test. The BAT was negative in terms of the percentages of activated basophils in all analyzed samples, but the stimulation index (SI) was higher than 2.5 in 4 out of 13 patients. These data evidenced that, when the SI is higher than 2.5, even in the absence of positivity to BAT, the BAT to PEG may be a useful tool to be coupled to skin tests to evidence even low-grade reactions.


Asunto(s)
Anafilaxia , COVID-19 , Hipersensibilidad , Humanos , Prueba de Desgranulación de los Basófilos , Vacunas contra la COVID-19 , Reproducibilidad de los Resultados , Basófilos , Hipersensibilidad/diagnóstico , Pruebas Cutáneas , Polietilenglicoles/efectos adversos
13.
Int J Mol Sci ; 22(11)2021 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-34071707

RESUMEN

Cardiac connexins (Cxs) are proteins responsible for proper heart function. They form gap junctions that mediate electrical and chemical signalling throughout the cardiac system, and thus enable a synchronized contraction. Connexins can also individually participate in many signal transduction pathways, interacting with intracellular proteins at various cellular compartments. Altered connexin expression and localization have been described in diseased myocardium and the aim of this study is to assess the involvement of Cx43, Cx26, and some related molecules in ponatinib-induced cardiac toxicity. Ponatinib is a new multi-tyrosine kinase inhibitor that has been successfully used against human malignancies, but its cardiotoxicity remains worrisome. Therefore, understanding its signaling mechanism is important to adopt potential anti cardiac damage strategies. Our experiments were performed on hearts from male and female mice treated with ponatinib and with ponatinib plus siRNA-Notch1 by using immunofluorescence, Western blotting, and proteomic analyses. The altered cardiac function and the change in Cxs expression observed in mice after ponatinib treatment, were results dependent on the Notch1 pathway and sex. Females showed a lower susceptibility to ponatinib than males. The downmodulation of cardiac Cx43, Cx26 and miR-122, high pS368-Cx43 phosphorylation, cell viability and survival activation could represent some of the female adaptative/compensatory reactions to ponatinib cardiotoxicity.


Asunto(s)
Cardiomiopatías , Conexina 26 , Conexina 43 , Imidazoles , Piridazinas , Factores Sexuales , Anomalías Inducidas por Medicamentos , Animales , Antineoplásicos/efectos adversos , Antineoplásicos/farmacología , Cardiomiopatías/etiología , Cardiomiopatías/fisiopatología , Cardiotoxicidad , Conexina 26/efectos de los fármacos , Conexina 26/metabolismo , Conexina 43/efectos de los fármacos , Conexina 43/metabolismo , Modelos Animales de Enfermedad , Femenino , Uniones Comunicantes/efectos de los fármacos , Expresión Génica/efectos de los fármacos , Corazón/efectos de los fármacos , Corazón/fisiopatología , Imidazoles/efectos adversos , Imidazoles/farmacología , Masculino , Ratones , Miocardio/metabolismo , Miocardio/patología , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteómica , Piridazinas/efectos adversos , Piridazinas/farmacología , Receptor Notch1/metabolismo , Transducción de Señal
14.
Int J Mol Sci ; 22(10)2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-34063504

RESUMEN

Protein kinase C (PKC) activation induces cellular reprogramming and differentiation in various cell models. Although many effectors of PKC physiological actions have been elucidated, the molecular mechanisms regulating oligodendrocyte differentiation after PKC activation are still unclear. Here, we applied a liquid chromatography-mass spectrometry (LC-MS/MS) approach to provide a comprehensive analysis of the proteome expression changes in the MO3.13 oligodendroglial cell line after PKC activation. Our findings suggest that multiple networks that communicate and coordinate with each other may finally determine the fate of MO3.13 cells, thus identifying a modular and functional biological structure. In this work, we provide a detailed description of these networks and their participating components and interactions. Such assembly allows perturbing each module, thus describing its physiological significance in the differentiation program. We applied this approach by targeting the Rho-associated protein kinase (ROCK) in PKC-activated cells. Overall, our findings provide a resource for elucidating the PKC-mediated network modules that contribute to a more robust knowledge of the molecular dynamics leading to this cell fate transition.


Asunto(s)
Diferenciación Celular/fisiología , Oligodendroglía/citología , Oligodendroglía/metabolismo , Proteína Quinasa C/metabolismo , Diferenciación Celular/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Humanos , Espectrometría de Masas/métodos , Oligodendroglía/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Acetato de Tetradecanoilforbol/farmacología , Quinasas Asociadas a rho/metabolismo
15.
Int J Mol Sci ; 22(22)2021 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-34830330

RESUMEN

Marinesco-Sjogren syndrome (MSS) is a rare multisystem pediatric disorder, caused by loss-of-function mutations in the gene encoding the endoplasmic reticulum cochaperone SIL1. SIL1 acts as a nucleotide exchange factor for BiP, which plays a central role in secretory protein folding. SIL1 mutant cells have reduced BiP-assisted protein folding, cannot fulfil their protein needs, and experience chronic activation of the unfolded protein response (UPR). Maladaptive UPR may explain the cerebellar and skeletal muscle degeneration responsible for the ataxia and muscle weakness typical of MSS. However, the cause of other more variable, clinical manifestations, such as mild to severe mental retardation, hypogonadism, short stature, and skeletal deformities, is less clear. To gain insights into the pathogenic mechanisms and/or adaptive responses to SIL1 loss, we carried out cell biological and proteomic investigations in skin fibroblasts derived from a young patient carrying the SIL1 R111X mutation. Despite fibroblasts not being overtly affected in MSS, we found morphological and biochemical changes indicative of UPR activation and altered cell metabolism. All the cell machineries involved in RNA splicing and translation were strongly downregulated, while protein degradation via lysosome-based structures was boosted, consistent with an attempt of the cell to reduce the workload of the endoplasmic reticulum and dispose of misfolded proteins. Cell metabolism was extensively affected as we observed a reduction in lipid synthesis, an increase in beta oxidation, and an enhancement of the tricarboxylic acid cycle, with upregulation of eight of its enzymes. Finally, the catabolic pathways of various amino acids, including valine, leucine, isoleucine, tryptophan, lysine, aspartate, and phenylalanine, were enhanced, while the biosynthetic pathways of arginine, serine, glycine, and cysteine were reduced. These results indicate that, in addition to UPR activation and increased protein degradation, MSS fibroblasts have profound metabolic alterations, which may help them cope with the absence of SIL1.


Asunto(s)
Fibroblastos/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Mutación con Pérdida de Función , Empalme del ARN , Degeneraciones Espinocerebelosas/genética , Respuesta de Proteína Desplegada , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Aminoácidos/metabolismo , Niño , Ciclo del Ácido Cítrico/genética , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Factor 2 Eucariótico de Iniciación/genética , Factor 2 Eucariótico de Iniciación/metabolismo , Fibroblastos/patología , Expresión Génica , Perfilación de la Expresión Génica , Ontología de Genes , Redes Reguladoras de Genes , Factores de Intercambio de Guanina Nucleótido/deficiencia , Humanos , Metabolismo de los Lípidos/genética , Anotación de Secuencia Molecular , Cultivo Primario de Células , Proteolisis , Degeneraciones Espinocerebelosas/metabolismo , Degeneraciones Espinocerebelosas/patología , Proteína 1 de Unión a la X-Box/genética , Proteína 1 de Unión a la X-Box/metabolismo
16.
Int J Mol Sci ; 22(20)2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34681773

RESUMEN

Metabolomics-based technologies map in vivo biochemical changes that may be used as early indicators of pathological abnormalities prior to the development of clinical symptoms in neurological conditions. Metabolomics may also reveal biochemical pathways implicated in tissue dysfunction and damage and thus assist in the development of novel targeted therapeutics for neuroinflammation and neurodegeneration. Metabolomics holds promise as a non-invasive, high-throughput and cost-effective tool for early diagnosis, follow-up and monitoring of treatment response in multiple sclerosis (MS), in combination with clinical and imaging measures. In this review, we offer evidence in support of the potential of metabolomics as a biomarker and drug discovery tool in MS. We also use pathway analysis of metabolites that are described as potential biomarkers in the literature of MS biofluids to identify the most promising molecules and upstream regulators, and show novel, still unexplored metabolic pathways, whose investigation may open novel avenues of research.


Asunto(s)
Metabolómica , Esclerosis Múltiple/diagnóstico , Esclerosis Múltiple/terapia , Animales , Biomarcadores/metabolismo , Humanos , Metaboloma/fisiología , Metabolómica/métodos , Esclerosis Múltiple/metabolismo , Pronóstico
17.
Appl Microbiol Biotechnol ; 104(20): 8937-8948, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32875367

RESUMEN

The probiotic bacteria are helpful for nutritional and therapeutic purposes, and they are commercially available in various forms, such as capsules or powders. Increasing pieces of evidence indicate that different growth conditions and variability in manufacturing processes can determine the properties of probiotic products. In recent years, the lipidomic approach has become a useful tool to evaluate the impact that probiotics induce in host physiology. In this work, two probiotic formulations with identical species composition, produced in two different sites, the USA and Italy, were utilized to feed Caenorhabditis elegans, strains and alterations in lipid composition in the host and bacteria were investigated. Indeed, the multicellular organism C. elegans is considered a simple model to study the in vivo effects of probiotics. Nematodes fat metabolism was assessed by gene expression analysis and by mass spectrometry-based lipidomics. Lipid droplet analysis revealed a high accumulation of lipid droplets in worms fed US-made products, correlating with an increased expression of genes involved in the fatty acid synthesis. We also evaluated the lifespan of worms defective in genes involved in the insulin/IGF-1-mediated pathway and monitored the nuclear translocation of DAF-16. These data demonstrated the involvement of the signaling in C. elegans responses to the two diets. Lipidomics analysis of the two formulations was also conducted, and the results indicated differences in phosphatidylglycerol (PG) and phosphatidylcholine (PC) contents that, in turn, could influence nematode host physiology. Results demonstrated that different manufacturing processes could influence probiotics and host properties in terms of lipid composition. KEY POINTS: • Probiotic formulations impact on Caenorhabditis elegans lipid metabolism; • Lipidomic analysis highlighted phospholipid abundance in the two products; • Phosphocholines and phosphatidylglycerols were analyzed in worms fed the two probiotic formulations.


Asunto(s)
Caenorhabditis elegans , Probióticos , Animales , Italia , Lipidómica , Longevidad
18.
Int J Mol Sci ; 21(7)2020 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-32260425

RESUMEN

Extracellular vesicles act as shuttle vectors or signal transducers that can deliver specific biological information and have progressively emerged as key regulators of organized communities of cells within multicellular organisms in health and disease. Here, we survey the evolutionary origin, general characteristics, and biological significance of extracellular vesicles as mediators of intercellular signaling, discuss the various subtypes of extracellular vesicles thus far described and the principal methodological approaches to their study, and review the role of extracellular vesicles in tumorigenesis, immunity, non-synaptic neural communication, vascular-neural communication through the blood-brain barrier, renal pathophysiology, and embryo-fetal/maternal communication through the placenta.


Asunto(s)
Biomarcadores/metabolismo , Enfermedad/genética , Vesículas Extracelulares/metabolismo , Comunicación Celular , Vesículas Extracelulares/genética , Predisposición Genética a la Enfermedad , Humanos , Inmunidad , Transducción de Señal
19.
Int J Mol Sci ; 22(1)2020 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-33374539

RESUMEN

Extracellular vesicles (EVs) are released by shedding during different physiological processes and are increasingly thought to be new potential biomarkers. However, the impact of pre-analytical processing phases on the final measurement is not predictable and for this reason, the translation of basic research into clinical practice has been precluded. Here we have optimized a simple procedure in combination with polychromatic flow cytometry (PFC), to identify, classify, enumerate, and separate circulating EVs from different cell origins. This protocol takes advantage of a lipophilic cationic dye (LCD) able to probe EVs. Moreover, the application of the newly optimized PFC protocol here described allowed the obtainment of repeatable EVs counts. The translation of this PFC protocol to fluorescence-activated cell sorting allowed us to separate EVs from fresh peripheral blood samples. Sorted EVs preparations resulted particularly suitable for proteomic analyses, which we applied to study their protein cargo. Here we show that LCD staining allowed PFC detection and sorting of EVs from fresh body fluids, avoiding pre-analytical steps of enrichment that could impact final results. Therefore, LCD staining is an essential step towards the assessment of EVs clinical significance.


Asunto(s)
Biomarcadores , Vesículas Extracelulares/metabolismo , Citometría de Flujo , Biopsia Líquida , Animales , Citometría de Flujo/métodos , Humanos , Biopsia Líquida/métodos , Tamaño de la Partícula , Plasma , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA