Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Liver Int ; 41(4): 656-682, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33486884

RESUMEN

Cholestatic liver disease denotes any situation associated with impaired bile flow concomitant with a noxious bile acid accumulation in the liver and/or systemic circulation. Cholestatic liver disease can be subdivided into different types according to its clinical phenotype, such as biliary atresia, drug-induced cholestasis, gallstone liver disease, intrahepatic cholestasis of pregnancy, primary biliary cholangitis and primary sclerosing cholangitis. Considerable effort has been devoted to elucidating underlying mechanisms of cholestatic liver injuries and explore novel therapeutic and diagnostic strategies using animal models. Animal models employed according to their appropriate applicability domain herein play a crucial role. This review provides an overview of currently available in vivo animal models, fit-for-purpose in modelling different types of cholestatic liver diseases. Moreover, a practical guide and workflow is provided which can be used for translational research purposes, including all advantages and disadvantages of currently available in vivo animal models.


Asunto(s)
Colangitis Esclerosante , Colestasis Intrahepática , Colestasis , Cirrosis Hepática Biliar , Animales , Femenino , Embarazo , Roedores , Investigación Biomédica Traslacional
2.
Int J Mol Sci ; 22(20)2021 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-34681664

RESUMEN

Drug-induced liver injury, including cholestasis, is an important clinical issue and economic burden for pharmaceutical industry and healthcare systems. However, human-relevant in vitro information on the ability of other types of chemicals to induce cholestatic hepatotoxicity is lacking. This work aimed at investigating the cholestatic potential of non-pharmaceutical chemicals using primary human hepatocytes cultured in 3D spheroids. Spheroid cultures were repeatedly (co-) exposed to drugs (cyclosporine-A, bosentan, macitentan) or non-pharmaceutical chemicals (paraquat, tartrazine, triclosan) and a concentrated mixture of bile acids for 4 weeks. Cell viability (adenosine triphosphate content) was checked every week and used to calculate the cholestatic index, an indicator of cholestatic liability. Microarray analysis was performed at specific time-points to verify the deregulation of genes related to cholestasis, steatosis and fibrosis. Despite the evident inter-donor variability, shorter exposures to cyclosporine-A consistently produced cholestatic index values below 0.80 with transcriptomic data partially supporting its cholestatic burden. Bosentan confirmed to be hepatotoxic, while macitentan was not toxic in the tested concentrations. Prolonged exposure to paraquat suggested fibrotic potential, while triclosan markedly deregulated genes involved in different types of hepatotoxicity. These results support the applicability of primary human hepatocyte spheroids to study hepatotoxicity of non-pharmaceutical chemicals in vitro.


Asunto(s)
Ácidos y Sales Biliares/farmacología , Paraquat/farmacología , Esferoides Celulares/efectos de los fármacos , Bosentán/farmacología , Técnicas de Cultivo de Célula , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Ciclosporinas/farmacología , Femenino , Hepatocitos/citología , Hepatocitos/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Esferoides Celulares/citología , Esferoides Celulares/metabolismo , Transcriptoma/efectos de los fármacos
3.
Int J Mol Sci ; 22(21)2021 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-34769157

RESUMEN

Connexin-based channels play key roles in cellular communication and can be affected by deleterious chemicals. In this study, the effects of various genotoxic carcinogenic compounds, non-genotoxic carcinogenic compounds and non-carcinogenic compounds on the expression and functionality of connexin-based channels, both gap junctions and connexin hemichannels, were investigated in human hepatoma HepaRG cell cultures. Expression of connexin26, connexin32, and connexin43 was evaluated by means of real-time reverse transcription quantitative polymerase chain reaction analysis, immunoblot analysis and in situ immunostaining. Gap junction functionality was assessed via a scrape loading/dye transfer assay. Opening of connexin hemichannels was monitored by measuring extracellular release of adenosine triphosphate. It was found that both genotoxic and non-genotoxic carcinogenic compounds negatively affect connexin32 expression. However, no specific effects related to chemical type were observed at gap junction or connexin hemichannel functionality level.


Asunto(s)
Carcinógenos/toxicidad , Carcinoma Hepatocelular/inducido químicamente , Conexinas/metabolismo , Neoplasias Hepáticas/inducido químicamente , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Conexina 26/genética , Conexina 26/metabolismo , Conexina 43/genética , Conexina 43/metabolismo , Conexinas/genética , Uniones Comunicantes/efectos de los fármacos , Uniones Comunicantes/genética , Uniones Comunicantes/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Proteína beta1 de Unión Comunicante
4.
Int J Mol Sci ; 22(22)2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34830068

RESUMEN

Liver cancer cell lines are frequently used in vitro tools to test candidate anti-cancer agents as well as to elucidate mechanisms of liver carcinogenesis. Among such mechanisms is cellular communication mediated by connexin-based gap junctions. The present study investigated changes in connexin expression and gap junction functionality in liver cancer in vitro. For this purpose, seven human liver cancer cell lines, as well as primary human hepatocytes, were subjected to connexin and gap junction analysis at the transcriptional, translational and activity level. Real-time quantitative reverse transcription polymerase chain reaction analysis showed enhanced expression of connexin43 in the majority of liver cancer cell lines at the expense of connexin32 and connexin26. Some of these changes were paralleled at the protein level, as evidenced by immunoblot analysis and in situ immunocytochemistry. Gap junctional intercellular communication, assessed by the scrape loading/dye transfer assay, was generally low in all liver cancer cell lines. Collectively, these results provide a full scenario of modifications in hepatocyte connexin production and gap junction activity in cultured liver cancer cell lines. The findings may be valuable for the selection of neoplastic hepatocytes for future mechanistic investigation and testing of anti-cancer drugs that target connexins and their channels.


Asunto(s)
Conexinas/genética , Conexinas/metabolismo , Uniones Comunicantes/metabolismo , Neoplasias Hepáticas/metabolismo , Comunicación Celular , Línea Celular Tumoral , Conexina 26/genética , Conexina 26/metabolismo , Conexina 43/genética , Conexina 43/metabolismo , Hepatocitos/citología , Hepatocitos/metabolismo , Humanos , Neoplasias Hepáticas/patología , Cultivo Primario de Células , Proteína beta1 de Unión Comunicante
5.
Int J Mol Sci ; 22(9)2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-34068678

RESUMEN

The liver is among the most frequently targeted organs by noxious chemicals of diverse nature. Liver toxicity testing using laboratory animals not only raises serious ethical questions, but is also rather poorly predictive of human safety towards chemicals. Increasing attention is, therefore, being paid to the development of non-animal and human-based testing schemes, which rely to a great extent on in vitro methodology. The present paper proposes a rationalized tiered in vitro testing strategy to detect liver toxicity triggered by chemicals, in which the first tier is focused on assessing general cytotoxicity, while the second tier is aimed at identifying liver-specific toxicity as such. A state-of-the-art overview is provided of the most commonly used in vitro assays that can be used in both tiers. Advantages and disadvantages of each assay as well as overall practical considerations are discussed.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Técnicas In Vitro/tendencias , Hígado/efectos de los fármacos , Pruebas de Toxicidad/tendencias , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Humanos , Modelos Animales , Medición de Riesgo
6.
J Toxicol Environ Health B Crit Rev ; 23(6): 255-275, 2020 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-32568623

RESUMEN

Gap junctions in liver, as in other organs, play a critical role in tissue homeostasis. Inherently, these cellular constituents are major targets for systemic toxicity and diseases, including cancer. This review provides an overview of chemicals that compromise liver gap junctions, in particular biological toxins, organic solvents, pesticides, pharmaceuticals, peroxides, metals and phthalates. The focus in this review is placed upon the mechanistic scenarios that underlie these adverse effects. Further, the potential use of gap junctional activity as an in vitro biomarker to identify non-genotoxic hepatocarcinogenic chemicals is discussed.


Asunto(s)
Comunicación Celular/efectos de los fármacos , Uniones Comunicantes/efectos de los fármacos , Hígado/efectos de los fármacos , Animales , Conexinas/biosíntesis , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Humanos , Hígado/metabolismo , Metales/toxicidad , Peróxidos/toxicidad , Plaguicidas/toxicidad , Ácidos Ftálicos/toxicidad , Medición de Riesgo , Solventes/toxicidad , Toxinas Biológicas/toxicidad
7.
Int J Mol Sci ; 21(18)2020 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-32906817

RESUMEN

Connexins are goal keepers of tissue homeostasis, including in the liver. As a result, they are frequently involved in disease. The current study was set up to investigate the effects of cholestatic disease on the production of connexin26, connexin32 and connexin43 in the liver. For this purpose, bile duct ligation, a well-known trigger of cholestatic liver injury, was applied to mice. In parallel, human hepatoma HepaRG cell cultures were exposed to cholestatic drugs and bile acids. Samples from both the in vivo and in vitro settings were subsequently subjected to assessment of mRNA and protein quantities as well as to in situ immunostaining. While the outcome of cholestasis on connexin26 and connexin43 varied among experimental settings, a more generalized repressing effect was seen for connexin32. This has also been observed in many other liver pathologies and could suggest a role for connexin32 as a robust biomarker of liver disease and toxicity.


Asunto(s)
Colestasis/fisiopatología , Conexinas/metabolismo , Animales , Ácidos y Sales Biliares/metabolismo , Conductos Biliares/metabolismo , Células Cultivadas , Colestasis/metabolismo , Conexina 26/metabolismo , Conexina 43/metabolismo , Hepatocitos/metabolismo , Humanos , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , ARN Mensajero/metabolismo , Proteína beta1 de Unión Comunicante
8.
J Autoimmun ; 103: 102284, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31176559

RESUMEN

Autoantibodies against CASPR2 (contactin-associated protein-like 2) have been linked to autoimmune limbic encephalitis that manifests with memory disorders and temporal lobe seizures. According to the growing number of data supporting a role for CASPR2 in neuronal excitability, CASPR2 forms a molecular complex with transient axonal glycoprotein-1 (TAG-1) and shaker-type voltage-gated potassium channels (Kv1.1 and Kv1.2) in compartments critical for neuronal activity and is required for Kv1 proper positioning. Whereas the perturbation of these functions could explain the symptoms observed in patients, the pathogenic role of anti-CASPR2 antibodies has been poorly studied. In the present study, we find that patient autoantibodies alter Caspr2 distribution at the cell membrane promoting cluster formation. We confirm in a HEK cellular model that the anti-CASPR2 antibodies impede CASPR2/TAG-1 interaction and we identify the domains of CASPR2 and TAG-1 taking part in this interaction. Moreover, introduction of CASPR2 into HEK cells induces a marked increase of the level of Kv1.2 surface expression and in cultures of hippocampal neurons Caspr2-positive inhibitory neurons appear to specifically express high levels of Kv1.2. Importantly, in both cellular models, anti-CASPR2 patient autoAb increase Kv1.2 expression. These results provide new insights into the pathogenic role of autoAb in the disease.


Asunto(s)
Autoanticuerpos/metabolismo , Membrana Celular/metabolismo , Contactina 2/metabolismo , Encefalitis/inmunología , Enfermedad de Hashimoto/inmunología , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/fisiología , Canales de Potasio de la Superfamilia Shaker/metabolismo , Animales , Contactina 2/genética , Células HEK293 , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/inmunología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/inmunología , Unión Proteica , Dominios y Motivos de Interacción de Proteínas/genética , Ratas , Agregación de Receptores , Canales de Potasio de la Superfamilia Shaker/genética , Regulación hacia Arriba
9.
Biomark Med ; 15(6): 437-454, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33709780

RESUMEN

Cholestasis is a major pathological manifestation, often resulting in detrimental liver conditions, which occurs in a variety of indications collectively termed cholestatic liver diseases. The frequent asymptomatic character and complexity of cholestasis, together with the lack of a straightforward biomarker, hampers early detection and treatment of the condition. The 'omics' era, however, has resulted in a plethora of cholestatic indicators, yet a single clinically applicable biomarker for a given cholestatic disease remains missing. The criteria to fulfil as an ideal biomarker as well as the challenging molecular pathways in cholestatic liver diseases advocate for a scenario in which multiple biomarkers, originating from different domains, will be assessed concomitantly. This review gives an overview of classical clinical and novel molecular biomarkers in cholestasis, focusing on their benefits and drawbacks.


Asunto(s)
Biomarcadores/metabolismo , Colestasis/diagnóstico , Hepatopatías/diagnóstico , Hígado/patología , Animales , Colestasis/metabolismo , Humanos , Hígado/metabolismo , Hepatopatías/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA