Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
J Exp Med ; 221(7)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38771260

RESUMEN

The majority of cancer patients receive radiotherapy during the course of treatment, delivered with curative intent for local tumor control or as part of a multimodality regimen aimed at eliminating distant metastasis. A major focus of research has been DNA damage; however, in the past two decades, emphasis has shifted to the important role the immune system plays in radiotherapy-induced anti-tumor effects. Radiotherapy reprograms the tumor microenvironment, triggering DNA and RNA sensing cascades that activate innate immunity and ultimately enhance adaptive immunity. In opposition, radiotherapy also induces suppression of anti-tumor immunity, including recruitment of regulatory T cells, myeloid-derived suppressor cells, and suppressive macrophages. The balance of pro- and anti-tumor immunity is regulated in part by radiotherapy-induced chemokines and cytokines. Microbiota can also influence radiotherapy outcomes and is under clinical investigation. Blockade of the PD-1/PD-L1 axis and CTLA-4 has been extensively investigated in combination with radiotherapy; we include a review of clinical trials involving inhibition of these immune checkpoints and radiotherapy.


Asunto(s)
Neoplasias , Radioterapia , Microambiente Tumoral , Humanos , Neoplasias/radioterapia , Neoplasias/inmunología , Neoplasias/terapia , Microambiente Tumoral/inmunología , Microambiente Tumoral/efectos de la radiación , Animales , Radioterapia/métodos , Inmunidad Innata/efectos de la radiación , Antígeno CTLA-4/inmunología , Antígeno CTLA-4/metabolismo , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Receptor de Muerte Celular Programada 1/metabolismo , Receptor de Muerte Celular Programada 1/inmunología , Antígeno B7-H1/metabolismo , Antígeno B7-H1/inmunología , Inmunidad Adaptativa
2.
Clin Transl Immunology ; 13(2): e1487, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38304555

RESUMEN

Objectives: Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19). Although an acute SARS-CoV-2 infection mainly presents with respiratory illness, neurologic symptoms and sequelae are increasingly recognised in the long-term treatment of COVID-19 patients. The pathophysiology and the neuropathogenesis behind neurologic complications of COVID-19 remain poorly understood, but mounting evidence points to endothelial dysfunction either directly caused by viral infection or indirectly by inflammatory cytokines, followed by a local immune response that may include virus-specific T cells. However, the type and role of central nervous system-infiltrating T cells in COVID-19 are complex and not fully understood. Methods: We analysed distinct anatomical brain regions of patients who had deceased as a result of COVID-19-associated pneumonia or complications thereof and performed T cell receptor Vß repertoire sequencing. Clonotypes were analysed for SARS-CoV-2 association using public TCR repertoire data. Results: Our descriptive study demonstrates that SARS-CoV-2-associated T cells are found in almost all brain areas of patients with fatal COVID-19 courses. The olfactory bulb, medulla and cerebellum were brain regions showing the most SARS-CoV-2 specific sequence patterns. Neuropathological workup demonstrated primary CD8+ T-cell infiltration with a perivascular infiltration pattern. Conclusion: Future research is needed to better define the relationship between T-cell infiltration and neurological symptoms and its long-term impact on patients' cognitive and mental health.

3.
Clin Cancer Res ; 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38691100

RESUMEN

PURPOSE: Radiation-mediated immune suppression limits efficacy and is a barrier in cancer therapy. Radiation induces negative regulators of tumor immunity including regulatory T cells (Treg). Mechanisms underlying Treg infiltration after radiotherapy (RT) are poorly defined. Given that dendritic cells (cDC) maintain Treg we sought to identify and target cDC signaling to block Treg infiltration after radiation. EXPERIMENTAL DESIGN: Transcriptomics and high dimensional flow cytometry revealed changes in murine tumor cDC that not only mediate Treg infiltration after RT, but associate with worse survival in human cancer datasets. Antibodies perturbing a cDC-CCL22-Treg axis were tested in syngeneic murine tumors. A prototype interferon-anti-epidermal growth factor receptor fusion protein (αEGFR-IFNα) was examined to block Treg infiltration and promote a CD8+ T cell response after RT. RESULTS: Radiation expands a population of mature cDC1 enriched in immunoregulatory markers that mediates Treg infiltration via the Treg-recruiting chemokine CCL22. Blocking CCL22 or Treg depletion both enhanced RT efficacy. αEGFR-IFNα blocked cDC1 CCL22 production while simultaneously inducing an antitumor CD8+ T cell response to enhance RT efficacy in multiple EGFR-expressing murine tumor models, including following systemic administration. CONCLUSIONS: We identify a previously unappreciated cDC mechanism mediating Treg tumor infiltration after RT. Our findings suggest blocking the cDC1-CCL22-Treg axis augments RT efficacy. αEGFR-IFNα added to RT provided robust antitumor responses better than systemic free interferon administration, and may overcome clinical limitations to interferon therapy. Our findings highlight the complex behavior of cDC after RT and provide novel therapeutic strategies for overcoming RT-driven immunosuppression to improve RT efficacy.

4.
Clin Cancer Res ; 30(9): 1945-1958, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38427437

RESUMEN

PURPOSE: Radiotherapy (RT) is a widely employed anticancer treatment. Emerging evidence suggests that RT can elicit both tumor-inhibiting and tumor-promoting immune effects. The purpose of this study is to investigate immune suppressive factors of radiotherapy. EXPERIMENTAL DESIGN: We used a heterologous two-tumor model in which adaptive concomitant immunity was eliminated. RESULTS: Through analysis of PD-L1 expression and myeloid-derived suppressor cells (MDSC) frequencies using patient peripheral blood mononuclear cells and murine two-tumor and metastasis models, we report that local irradiation can induce a systemic increase in MDSC, as well as PD-L1 expression on dendritic cells and myeloid cells, and thereby increase the potential for metastatic dissemination in distal, nonirradiated tissue. In a mouse model using two distinct tumors, we found that PD-L1 induction by ionizing radiation was dependent on elevated chemokine CXCL10 signaling. Inhibiting PD-L1 or MDSC can potentially abrogate RT-induced metastasis and improve clinical outcomes for patients receiving RT. CONCLUSIONS: Blockade of PD-L1/CXCL10 axis or MDSC infiltration during irradiation can enhance abscopal tumor control and reduce metastasis.


Asunto(s)
Antígeno B7-H1 , Células Supresoras de Origen Mieloide , Animales , Antígeno B7-H1/metabolismo , Ratones , Células Supresoras de Origen Mieloide/inmunología , Células Supresoras de Origen Mieloide/metabolismo , Humanos , Metástasis de la Neoplasia , Línea Celular Tumoral , Femenino , Modelos Animales de Enfermedad , Quimiocina CXCL10/metabolismo
5.
J Clin Invest ; 133(24)2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-38099498

RESUMEN

Activation of TGF-ß signaling serves as an extrinsic resistance mechanism that limits the potential for radiotherapy. Bone morphogenetic protein and activin membrane-bound inhibitor (BAMBI) antagonizes TGF-ß signaling and is implicated in cancer progression. However, the molecular mechanisms of BAMBI regulation in immune cells and its impact on antitumor immunity after radiation have not been established. Here, we show that ionizing radiation (IR) specifically reduces BAMBI expression in immunosuppressive myeloid-derived suppressor cells (MDSCs) in both murine models and humans. Mechanistically, YTH N6-methyladenosine RNA-binding protein F2 (YTHDF2) directly binds and degrades Bambi transcripts in an N6-methyladenosine-dependent (m6A-dependent) manner, and this relies on NF-κB signaling. BAMBI suppresses the tumor-infiltrating capacity and suppression function of MDSCs via inhibiting TGF-ß signaling. Adeno-associated viral delivery of Bambi (AAV-Bambi) to the tumor microenvironment boosts the antitumor effects of radiotherapy and radioimmunotherapy combinations. Intriguingly, combination of AAV-Bambi and IR not only improves local tumor control, but also suppresses distant metastasis, further supporting its clinical translation potential. Our findings uncover a surprising role of BAMBI in myeloid cells, unveiling a potential therapeutic strategy for overcoming extrinsic radioresistance.


Asunto(s)
Neoplasias , Factor de Crecimiento Transformador beta , Animales , Humanos , Ratones , Proteínas de la Membrana/metabolismo , Neoplasias/genética , Neoplasias/radioterapia , Proteínas de Unión al ARN/genética , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA