RESUMEN
Type 2 diabetes (T2D) is a chronic systemic disease with a complex etiology, characterized by insulin resistance and mitochondrial dysfunction in various cell tissues. To explore this relationship, we conducted a secondary analysis of complete mtDNA sequences from 1261 T2D patients and 1105 control individuals. Our findings revealed significant associations between certain single-nucleotide polymorphisms (SNPs) and T2D. Notably, the variants m.1438A>G (rs2001030) (controls: 32 [27.6%], T2D: 84 [72.4%]; OR: 2.46; 95%CI: 1.64-3.78; p < 0.001), m.14766C>T (rs193302980) (controls: 498 [36.9%], T2D: 853 [63.1%]; OR: 2.57, 95%CI: 2.18-3.04, p < 0.001), and m.16519T>C (rs3937033) (controls: 363 [43.4%], T2D: 474 [56.6%]; OR: 1.24, 95%CI: 1.05-1.47, p = 0.012) were significantly associated with the likelihood of developing diabetes. The variant m.16189T>C (rs28693675), which has been previously documented in several studies across diverse populations, showed no association with T2D in our analysis (controls: 148 [13.39] T2D: 171 [13.56%]; OR: 1.03; 95%CI: 0.815-1.31; p = 0.83). These results provide evidence suggesting a link between specific mtDNA polymorphisms and T2D, possibly related to association rules, topological patterns, and three-dimensional conformations associated with regions where changes occur, rather than specific point mutations in the sequence.