Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
J Enzyme Inhib Med Chem ; 39(1): 2357174, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38814149

RESUMEN

Tyrosinase, a pivotal enzyme in melanin synthesis, is a primary target for the development of depigmenting agents. In this work, in vitro and in silico techniques were employed to identify novel tyrosinase inhibitors from a set of 12 anilino-1,4-naphthoquinone derivatives. Results from the mushroom tyrosinase activity assay indicated that, among the 12 derivatives, three compounds (1, 5, and 10) demonstrated the most significant inhibitory activity against mushroom tyrosinase, surpassing the effectiveness of the kojic acid. Molecular docking revealed that all studied derivatives interacted with copper ions and amino acid residues at the enzyme active site. Molecular dynamics simulations provided insights into the stability of enzyme-inhibitor complexes, in which compounds 1, 5, and particularly 10 displayed greater stability, atomic contacts, and structural compactness than kojic acid. Drug likeness prediction further strengthens the potential of anilino-1,4-naphthoquinones as promising candidates for the development of novel tyrosinase inhibitors for the treatment of hyperpigmentation disorders.


Asunto(s)
Agaricales , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos , Monofenol Monooxigenasa , Naftoquinonas , Monofenol Monooxigenasa/antagonistas & inhibidores , Monofenol Monooxigenasa/metabolismo , Naftoquinonas/farmacología , Naftoquinonas/química , Naftoquinonas/síntesis química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/síntesis química , Agaricales/enzimología , Relación Estructura-Actividad , Estructura Molecular , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular
2.
Phys Chem Chem Phys ; 23(48): 27320-27326, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34850788

RESUMEN

Lead mixed-halide perovskites are promising absorption materials that are suitable for applications in tandem solar cells using existing silicon technology. Charge-carrier mobility is an important factor that affects the performance of tandem solar cells. However, a detailed understanding of the fundamental mechanisms of lead mixed-halide perovskites remains elusive. Here, we used LO (longitudinal optical) phonons and alloy scattering to the elucidate charge-carrier mobilities in the FA0.83Cs0.17Pb(I1-xBrx)3 hybrid perovskite system. It was found that these scattering mechanisms provided very good quantitative agreement with the experimental results, between 11-40 cm2 V-1 s-1. Our findings provide new insights into charge transport scattering in lead mixed-halide hybrid perovskites and pave the way toward design of novel semiconductor alloys for solar cell applications.

3.
Bioorg Chem ; 105: 104384, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33130346

RESUMEN

The development of novel neuroprotective agents is urgently needed for the treatment of neurodegenerative diseases, affecting aging individuals worldwide. In this study, a new set of chalcone-triazole hybrids (6a-g) was synthesized and evaluated for their biological properties including cytotoxicity, antioxidant, anti-apoptosis, and neuroprotection using SH-SY5Y cells. The results showed that 6a and 6e provided neuroprotection in oxidative stress-induced neuronal cell damage. Both compounds significantly improved the morphology of neurons and obviously increased cell survival rate of neuronal cells induced by oxidative stress. Additionally, 6a and 6e counteracted H2O2­induced mitochondrial dysfunction, which was supported by maintaining mitochondrial membrane potential, attenuating BAX protein, and increasing BCL­2 protein within the mitochondria as well as upregulating SOD2 mitochondrial antioxidant enzyme. Interestingly, these compounds promoted neuroprotection via SIRT-FOXO3a signaling pathway similar to resveratrol. The data indicated that the chalcone-triazole derivatives (6a and 6e) could be considered to be promising compounds toward the discovery of disease-modifying candidates for a neurodegenerative therapy.


Asunto(s)
Antioxidantes/farmacología , Chalconas/farmacología , Fármacos Neuroprotectores/farmacología , Triazoles/farmacología , Antioxidantes/síntesis química , Antioxidantes/química , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Chalconas/química , Relación Dosis-Respuesta a Droga , Humanos , Peróxido de Hidrógeno/antagonistas & inhibidores , Peróxido de Hidrógeno/farmacología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Estructura Molecular , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/síntesis química , Fármacos Neuroprotectores/química , Estrés Oxidativo/efectos de los fármacos , Relación Estructura-Actividad , Triazoles/química
4.
Chem Res Toxicol ; 32(11): 2182-2191, 2019 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-31638783

RESUMEN

Oxidative stress has been documented as one of the significant causes of neurodegenerative diseases. Therefore, antioxidant therapy for the prevention of neurodegenerative diseases seems to be an interesting strategy in drug discovery. The quinoline-based compound, namely 5-nitro-8-quinolinol (NQ), has shown excellent antimicrobial, anticancer, and anti-inflammatory activities. However, its neuroprotective effects and precise molecular mechanisms in human neuronal cells have not been elucidated. In this work, the effects of NQ on cell viability and morphology were evaluated by the MTT assay and microscopic observation. Moreover, the underlying mechanisms of this compound, inducing the survival rate of neuronal cells under oxidative stress, were investigated by reactive oxygen species (ROS) assay, flow cytometry, Western blotting, and immunofluorescence techniques. In addition, the molecular interaction of sirtuin1 (SIRT1) with NQ was constructed using the AutoDock 4.2 program. Interestingly, NQ protected SH-SY5Y cells against H2O2-induced neurotoxicity through scavenging ROS, upregulating the levels of SIRT1 and FOXO3a, increasing the levels of antioxidant enzymes (catalase and superoxide dismutase), promoting antiapoptotic BCL-2 protein expression, and reducing apoptosis. Besides, molecular docking also revealed that NQ interacted satisfactorily with the active site of SIRT1 similar to the resveratrol, which is the SIRT1 activator and strong antioxidant. These findings suggest that NQ prevents oxidative-stress-induced neurodegeneration because of its antioxidant capacity as well as antiapoptotic property through SIRT1-FOXO3a signaling pathway. Thus, NQ might be a drug that could be repurposed for prevention of neurodegeneration.


Asunto(s)
Reposicionamiento de Medicamentos , Enfermedades Neurodegenerativas/prevención & control , Neuronas/efectos de los fármacos , Nitroquinolinas/farmacología , Sustancias Protectoras/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Proteína Forkhead Box O3/metabolismo , Humanos , Peróxido de Hidrógeno/toxicidad , Simulación del Acoplamiento Molecular , Neuronas/metabolismo , Neuronas/patología , Especies Reactivas de Oxígeno/metabolismo , Sirtuina 1/metabolismo
5.
Bioorg Med Chem ; 27(19): 115040, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31416738

RESUMEN

A library of bis-sulfonamides (9-26) were synthesized and tested for their aromatase inhibitory activities. Interestingly, all bis-sulfonamide derivatives inhibited the aromatase with IC50 range of 0.05-11.6 µM except for compound 23. The analogs 15 and 16 bearing hydrophobic chloro and bromo groups exhibited the potent aromatase inhibitory activity in sub-micromolar IC50 values (i.e., 50 and 60 nM, respectively) with high safety index. Molecular docking revealed that the chloro and bromo benzenesulfonamides (15 and 16) may play role in the hydrophobic interaction with Leu477 of the aromatase to mimic steroidal backbone of the natural substrate, androstenedione. QSAR study also revealed that the most potent activity of compounds was governed by van der Waals volume (GATS6v) and mass (Mor03m) descriptors. Finally, the two compounds (15 and 16) were highlighted as promising compounds to be further developed as novel aromatase inhibitors.


Asunto(s)
Inhibidores de la Aromatasa/farmacología , Sulfonamidas/farmacología , Aromatasa/química , Aromatasa/metabolismo , Inhibidores de la Aromatasa/síntesis química , Inhibidores de la Aromatasa/metabolismo , Sitios de Unión , Línea Celular Tumoral , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Unión Proteica , Relación Estructura-Actividad Cuantitativa , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Sulfonamidas/síntesis química , Sulfonamidas/metabolismo
6.
Bioorg Chem ; 93: 103327, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31614285

RESUMEN

Novel thirteen triazole-tetrahydroisoquinoline derivatives (2a-m) were synthesized and evaluated for their aromatase inhibitory activities. Seven triazoles showed significant aromatase inhibitory activity (IC50 = 0.07-1.9 µM). Interestingly, the analog bearing naphthalenyloxymethyl substituent at position 4 of the triazole ring (2i) displayed the most potent aromatase inhibitory activity (IC50 = 70 nM) without significant cytotoxicity to a normal cell. Molecular docking also suggested that the direct H-bonding interaction with residue Thr310 may be responsible for a striking inhibitory effect of the most potent compound 2i.


Asunto(s)
Inhibidores de la Aromatasa/farmacología , Tetrahidroisoquinolinas/química , Triazoles/química , Inhibidores de la Aromatasa/síntesis química , Inhibidores de la Aromatasa/química , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Enlace de Hidrógeno , Concentración 50 Inhibidora , Simulación del Acoplamiento Molecular , Análisis Espectral/métodos , Relación Estructura-Actividad
7.
Bioorg Chem ; 79: 171-178, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29758407

RESUMEN

A three series of thioureas, monothiourea type I (4a-g), 1,4-bisthiourea type II (5a-h) and 1,3-bisthiourea type III (6a-h) were synthesized. Their aromatase inhibitory activities have been evaluated. Interestingly, eight thiourea derivatives (4e, 5f-h, 6d, 6f-h) exhibited the aromatase inhibitory activities with IC50 range of 0.6-10.2 µM. The meta-bisthiourea bearing 4-NO2 group (6f) and 3,5-diCF3 groups (6h) were shown to be the most potent compounds with sub-micromolar IC50 values of 0.8 and 0.6 µM, respectively. Molecular docking also revealed that one of the thiourea moieties of these two compounds could mimic steroidal backbone of the natural androstenedione (ASD) via hydrophobic interactions with enzyme residues (Val370, Leu477, Thr310, and Phe221 for 6f, Val370, Leu477, Ser478, and Ile133 for 6h). This is the first time that the bisthioureas have been reported for their potential to be developed as aromatase inhibitors, in which the 4-NO2 and 3,5-diCF3 analogs have been highlighted as promising candidates.


Asunto(s)
Inhibidores de la Aromatasa/farmacología , Tiourea/análogos & derivados , Tiourea/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Antineoplásicos/farmacología , Aromatasa/química , Inhibidores de la Aromatasa/síntesis química , Inhibidores de la Aromatasa/química , Sitios de Unión , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Células MCF-7 , Simulación del Acoplamiento Molecular , Estructura Molecular , Tiourea/síntesis química
8.
Bioorg Med Chem ; 23(13): 3472-80, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-25934226

RESUMEN

A series of 1,4-disubstituted-1,2,3-triazoles (13-35) containing sulfonamide moiety were synthesized and evaluated for their aromatase inhibitory effects. Most triazoles with open-chain sulfonamide showed significant aromatase inhibitory activity (IC50=1.3-9.4µM). Interestingly, the meta analog of triazole-benzene-sulfonamide (34) bearing 6,7-dimethoxy substituents on the isoquinoline ring displayed the most potent aromatase inhibitory activity (IC50=0.2µM) without affecting normal cell. Molecular docking of these triazoles against aromatase revealed that the compounds could snugly occupy the active site of the enzyme through hydrophobic, π-π stacking, and hydrogen bonding interactions. The potent compound 34 was able to form hydrogen bonds with Met374 and Ser478 which were suggested to be the essential residues for the promising inhibition. The study provides compound 34 as a potential lead molecule of anti-aromatase agent for further development.


Asunto(s)
Antineoplásicos/síntesis química , Inhibidores de la Aromatasa/síntesis química , Aromatasa/química , Simulación del Acoplamiento Molecular , Sulfonamidas/síntesis química , Triazoles/síntesis química , Animales , Antineoplásicos/farmacología , Inhibidores de la Aromatasa/farmacología , Dominio Catalítico , Supervivencia Celular/efectos de los fármacos , Chlorocebus aethiops , Humanos , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Isoquinolinas/química , Unión Proteica , Relación Estructura-Actividad , Sulfonamidas/farmacología , Triazoles/farmacología , Células Vero
9.
Mol Divers ; 17(3): 595-604, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23813045

RESUMEN

A series of arylsulfonyl mono-indoles (10-15), bis-indoles (16-27), and tris-indoles (28-32) have been synthesized and evaluated for their cytotoxicity toward four human cancer cell lines including HuCCA-1 (cholangiocarcinoma), HepG2 (hepatocellular carcinoma), A-549 (lung carcinoma), and MOLT-3 (lymphoblastic leukemia). Most of the synthesized indoles displayed cytotoxicity against the MOLT-3 cell line except for analogs 16, 17, and 32. Significantly, the [Formula: see text]-sulfonylphenolic bis-indole series (18-27) and the [Formula: see text]-chlorobenzenesulfonyl tris-indole (30) showed higher antiproliferative activity against HepG2 cell than the reference drug, etoposide. Promisingly, the [Formula: see text]-chlorobenzenesulfonyl bis-indole (20) and tris-indole (30) provided 3-fold and 2-fold stronger activity, respectively, against HepG2 cell than etoposide. Moreover, the phenolic bis-indole (20) was also shown to be the most potent cytotoxic agent against HuCCA-1 and A-549 cell lines with [Formula: see text] values of 7.75 and [Formula: see text], respectively. The tris-indole analogs 28, 29, and 31 also exhibited selectivity against MOLT-3 cell. The findings disclosed that [Formula: see text]-arylsulfonyl bis-indoles-bearing phenolic groups are potentially interesting lead pharmacophores of anticancer agents that should be further investigated in more detail.


Asunto(s)
Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Neoplasias/tratamiento farmacológico , Sulfonamidas/síntesis química , Sulfonamidas/farmacología , Antineoplásicos/química , Arilsulfonatos/síntesis química , Arilsulfonatos/química , Arilsulfonatos/farmacología , Carcinoma Hepatocelular/tratamiento farmacológico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Colangiocarcinoma/tratamiento farmacológico , Ensayos de Selección de Medicamentos Antitumorales , Células Hep G2 , Humanos , Indoles/síntesis química , Indoles/química , Indoles/farmacología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Relación Estructura-Actividad , Sulfonamidas/química
10.
ACS Omega ; 8(37): 33367-33379, 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37744807

RESUMEN

Encouraged by the lack of effective treatments and the dramatic growth in the global prevalence of neurodegenerative diseases along with various pharmacological properties of chalcone pharmacophores, this study focused on the development of aminochalcone-based compounds, organic molecules characterized by a chalcone backbone (consisting of two aromatic rings connected by a three-carbon α,ß-unsaturated carbonyl system) with an amino group attached to one of the aromatic rings, as potential neuroprotective agents. Thus, the aminochalcone-based compounds in this study were designed by bearing a -OCH3 moiety at different positions on the ring and synthesized by the Claisen-Schmidt condensation. The compounds exhibited strong neuroprotective effects against hydrogen peroxide-induced neuronal death in the human neuroblastoma (SH-SY5Y) cell line (i.e., by improving cell survival, reducing reactive oxygen species production, maintaining mitochondrial function, and preventing cell membrane damage). The aminochalcone-based compounds showed mild toxicity toward a normal embryonic lung cell line (MRC-5) and a human neuroblastoma cell line, and were predicted to have preferable pharmacokinetic profiles with potential for oral administration. Molecular docking simulation indicated that the studied aminochalcones may act as competitive activators of the well-known protective protein, SIRT1, and provided beneficial knowledge regarding the essential key chemical moieties and interacting amino acid residues. Collectively, this work provides a series of four promising candidate agents that could be developed for neuroprotection.

11.
ACS Omega ; 8(36): 32593-32605, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37720749

RESUMEN

This work presents a flexible synthesis of 10 novel naphthoquinone-chalcone derivatives (1-10) by nucleophilic substitution of readily accessible aminochalcones and 2,3-dichloro-1,4-naphthoquinone. All compounds displayed broad-spectrum cytotoxic activities against all the tested cancer cell lines (i.e., HuCCA-1, HepG2, A549, MOLT-3, T47D, and MDA-MB-231) with IC50 values in the range of 0.81-62.06 µM, especially the four most potent compounds 1, 3, 8, and 9. The in vitro investigation on the fibroblast growth factor receptor 1 (FGFR1) inhibitory effect indicated that eight derivatives (1-2, 4-5, and 7-10) were active FGFR1 inhibitors (IC50 = 0.33-3.13 nM) with more potency than that of the known FGFR1 inhibitor, AZD4547 (IC50 = 12.17 nM). Promisingly, compounds 5 (IC50 = 0.33 ± 0.01 nM), 9 (IC50 = 0.50 ± 0.04 nM), and 7 (IC50 = 0.85 ± 0.08 nM) were the three most potent FGFR1 inhibitors. Molecular docking, molecular dynamics simulations, and MM/GBSA-based free energy calculation revealed that the key amino acid residues involved in the binding of the compounds 5, 7, and 9 and the target FGFR1 protein were similar with those of the AZD4547 (i.e., Val492, Lys514, Ile545, Val561, Ala640, and Asp641). These findings revealed that the newly synthesized naphthoquinone-chalcone scaffold is a promising structural feature for an efficient inhibition of FGFR1.

12.
ACS Omega ; 8(49): 46977-46988, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38107906

RESUMEN

The discovery of novel bioactive molecules as potential multifunctional neuroprotective agents has clinically drawn continual interest due to devastating oxidative damage in the pathogenesis and progression of neurodegenerative diseases. Synthetic 8-aminoquinoline antimalarial drug is an attractive pharmacophore in drug development and chemical modification owing to its wide range of biological activities, yet the underlying molecular mechanisms are not fully elucidated in preclinical models for oxidative damage. Herein, the neuroprotective effects of two 8-aminoquinoline-uracil copper complexes were investigated on the hydrogen peroxide-induced human neuroblastoma SH-SY5Y cells. Both metal complexes markedly restored cell survival, alleviated apoptotic cascades, maintained antioxidant defense, and prevented mitochondrial function by upregulating the sirtuin 1 (SIRT1)/3-FOXO3a signaling pathway. Intriguingly, in silico molecular docking and pharmacokinetic prediction suggested that these synthetic compounds acted as SIRT1 activators with potential drug-like properties, wherein the uracil ligands (5-iodoracil and 5-nitrouracil) were essential for effective binding interactions with the target protein SIRT1. Taken together, the synthetic 8-aminoquinoline-based metal complexes are promising brain-targeting drugs for attenuating neurodegenerative diseases.

13.
EXCLI J ; 21: 360-379, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36320811

RESUMEN

A series of sixteen acetamidosulfonamide derivatives (1-16) have been synthesized and investigated for their antioxidant (radical scavenging and superoxide dismutase (SOD)) and antimicrobial activities. Most compounds exhibited antioxidant activities in which compound 15 displayed the most potent radical scavenging and SOD activities. Quantitative structure-activity relationship (QSAR) has been studied using multiple linear regression. The constructed QSAR models displayed high correlation coefficient (Q 2 LOO-CV = 0.9708 and 0.8753 for RSA and SOD activities, respectively), but low root mean square error (RMSE LOO-CV = 0.5105 and 1.3571 for RSA and SOD activities, respectively). The structure-activity relationship showed that an ethylene group connected to pyridine ring provided significant antioxidant activities. The QSAR models give insight into the rational designed of eighty new sulfonamides with various electron donating and withdrawing groups. The top five new designed sulfonamides with nitro group are potential antioxidants to be further developed for medicinal applications.

14.
Heliyon ; 8(8): e10067, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35991984

RESUMEN

Sulfur-containing compounds are considered as attractive pharmacophores for discovery of new drugs regarding their versatile properties to interact with various biological targets. Quantitative structure-activity relationship (QSAR) modeling is one of well-recognized in silico tools for successful drug discovery. In this work, a set of 38 sulfur-containing derivatives (Types I-VI) were evaluated for their in vitro anticancer activities against 6 cancer cell lines. In vitro findings indicated that compound 13 was the most potent cytotoxic agent toward HuCCA-1 cell line (IC50 = 14.47 µM). Compound 14 exhibited the most potent activities against 3 investigated cell lines (i.e., HepG2, A549, and MDA-MB-231: IC50 range = 1.50-16.67 µM). Compound 10 showed the best activity for MOLT-3 (IC50 = 1.20 µM) whereas compound 22 was noted for T47D (IC50 = 7.10 µM). Subsequently, six QSAR models were built using multiple linear regression (MLR) algorithm. All constructed QSAR models provided reliable predictive performance (training sets: Rtr range = 0.8301-0.9636 and RMSEtr = 0.0666-0.2680; leave-one-out cross validation sets: RCV range = 0.7628-0.9290 and RMSECV = 0.0926-0.3188). From QSAR modeling, chemical properties such as mass, polarizability, electronegativity, van der Waals volume, octanol-water partition coefficient, as well as frequency/presence of C-N, F-F, and N-N bonds in the molecule are essential key predictors for anticancer activities of the compounds. In summary, a series of promising fluoro-thiourea derivatives (10, 13, 14, 22) were suggested as potential molecules for future development as anticancer agents. Key structure-activity knowledge obtained from the QSAR modeling was suggested to be advantageous for suggesting the effective rational design of the related sulfur-containing anticancer compounds with improved bioactivities and properties.

15.
ACS Omega ; 7(21): 17881-17893, 2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35664590

RESUMEN

Epidermal growth factor receptor (EGFR) has been recognized as one of the attractive targets for anticancer drug development. Herein, a set of anilino-1,4-naphthoquinone derivatives (3-18) was synthesized and investigated for their anticancer and EGFR inhibitory potentials. Among all tested compounds, three derivatives (3, 8, and 10) were selected for studying EGFR inhibitory activity (in vitro and in silico) due to their most potent cytotoxic activities against six tested cancer cell lines (i.e., HuCCA-1, HepG2, A549, MOLT-3, MDA-MB-231, and T47D; IC50 values = 1.75-27.91 µM), high selectivity index (>20), and good predicted drug-like properties. The experimental results showed that these three promising compounds are potent EGFR inhibitors with nanomolar IC50 values (3.96-18.64 nM). Interestingly, the most potent compound 3 bearing 4-methyl substituent on the phenyl ring displayed 4-fold higher potency than the known EGFR inhibitor, erlotinib. Molecular docking, molecular dynamics simulation, and MM/GBSA-based free energy calculation revealed that van der Waals force played a major role in the accommodations of compound 3 within the ATP-binding pocket of EGFR. Additionally, the 4-CH3 moiety of the compound was noted to be a key chemical feature contributing to the highly potent EGFR inhibitory activity via its formations of alkyl interactions with A743, K745, M766, and L788 residues as well as additional interactions with M766 and T790.

16.
Front Mol Neurosci ; 15: 890838, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35935335

RESUMEN

Parkinson's disease (PD) is considered one of the health problems in the aging society. Due to the limitations of currently available drugs in preventing disease progression, the discovery of novel neuroprotective agents has been challenged. Sulfonamide and its derivatives were reported for several biological activities. Herein, a series of 17 bis-sulfonamide derivatives were initially tested for their neuroprotective potential and cytotoxicity against the 6-hydroxydopamine (6-OHDA)-induced neuronal death in SH-SY5Y cells. Subsequently, six compounds (i.e., 2, 4, 11, 14, 15, and 17) were selected for investigations on underlying mechanisms. The data demonstrated that the pretreatment of selected compounds (5 µM) can significantly restore the level of cell viability, protect against mitochondrial membrane dysfunction, decrease the activity of lactate dehydrogenase (LDH), decrease the intracellular oxidative stress, and enhance the activity of NAD-dependent deacetylase sirtuin-1 (SIRT1). Molecular docking was also performed to support that these compounds could act as SIRT1 activators. In addition, in silico pharmacokinetic and toxicity profile prediction was also conducted for guiding the potential development. Thus, the six neuroprotective bis-sulfonamides were highlighted as potential agents to be further developed for PD management.

17.
ACS Omega ; 6(47): 31854-31868, 2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34870008

RESUMEN

A library of 44 indole-sulfonamide derivatives (1-44) were investigated for their cytotoxic activities against four cancer cell lines (i.e., HuCCA-1, HepG2, A549, and MOLT-3) and antimalarial effect. Most of the studied indoles exhibit anticancer activity against the MOLT-3 cell line, whereas only hydroxyl-containing bisindoles displayed anticancer activities against the other tested cancer cells as well as antimalarial effect. The most promising anticancer compounds were noted to be CF3, Cl, and NO2 derivatives of hydroxyl-bearing bisindoles (30, 31, and 36), while the most promising antimalarial compound was an OCH3 derivative of non-hydroxyl-containing bisindole 11. Five quantitative structure-activity relationship (QSAR) models were successfully constructed, providing acceptable predictive performance (training set: R = 0.6186-0.9488, RMSE = 0.0938-0.2432; validation set: R = 0.4242-0.9252, RMSE = 0.1100-0.2785). QSAR modeling revealed that mass, charge, polarizability, van der Waals volume, and electronegativity are key properties governing activities of the compounds. QSAR models were further applied to guide the rational design of an additional set of 22 compounds (P1-P22) in which their activities were predicted. The prediction revealed a set of promising virtually constructed compounds (P1, P3, P9, P10, and P16) for further synthesis and development as anticancer and antimalarial agents. Molecular docking was also performed to reveal possible modes of bindings and interactions between the studied compounds and target proteins. Taken together, insightful structure-activity relationship information obtained herein would be beneficial for future screening, design, and structural optimization of the related compounds.

18.
Sci Rep ; 11(1): 20187, 2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34642420

RESUMEN

5-Amino-8-hydroxyquinoline (5A8HQ), an amino derivative of 8-hydroxyquinoline, has become a potential anticancer candidate because of its promising proteasome inhibitory activity to overcome and yet synergize bortezomib for fighting cancers. Therefore, in this study, its physicochemical properties and interaction activities with serum protein have extensively been elucidated by both in vitro and in silico approaches to fulfill the pharmacokinetic and pharmacodynamic gaps. 5A8HQ exhibited the drug-likeness properties, where oral administration seems to be a route of choice owing to its high-water solubility and intestinal absorptivity. Multi-spectroscopic investigations suggested that 5A8HQ tended to associate with bovine serum albumin (BSA), a representative of serum protein, via the ground-state complexation. It apparently bound in a protein cleft between subdomains IIA and IIIA of BSA as suggested by the molecular docking and molecular dynamics simulations. The binding was mainly driven by hydrogen bonding and electrostatic interactions with a moderate binding constant at 104 M-1, conforming with the predicted free fraction in serum at 0.484. Therefore, 5A8HQ seems to display a good bioavailability in plasma to reach target sites and exerts its potent pharmacological activity. Likewise, serum albumin is a good candidate to be reservoir and transporter of 5A8HQ in the circulatory system.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Hidroxiquinolinas/química , Hidroxiquinolinas/farmacología , Albúmina Sérica Bovina/química , Albúmina Sérica Bovina/metabolismo , Animales , Sitios de Unión , Bovinos , Dicroismo Circular , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Estructura Molecular , Unión Proteica , Conformación Proteica , Espectrometría de Fluorescencia , Espectrofotometría Ultravioleta , Termodinámica
19.
Molecules ; 15(2): 988-96, 2010 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-20335957

RESUMEN

Thiosemicarbazone analogs of papaveraldine and related compounds 1-6 were synthesized and evaluated for cytotoxic and antimalarial activities. The cytotoxic activity was tested against HuCCA-1, HepG2, A549 and MOLT-3 human cancer cell lines. Thiosemicarbazones 1-5 displayed cytotoxicity toward all the tested cell lines, while compounds 2-5 selectively showed potent activity against the MOLT-3 cell lines. Significantly, N(4)-phenyl-2-benzoylpyridine thiosemicarbazone 4 exhibited the most potent activity against HuCCA-1, HepG2, A549 and MOLT-3 cell lines with IC50 values of 0.03, 4.75, 0.04 and 0.004 microg/mL, respectively. In addition, 2-benzoylpyridine thio-semicarbazones 3 and 4 showed antimalarial activity against Plasmodium falciparum with IC50 of 10-7 to < 10-6 M. The study demonstrates the quite promising activity of analog 4 as a lead molecule for further development.


Asunto(s)
Antimaláricos/síntesis química , Antimaláricos/farmacología , Isoquinolinas/química , Tiosemicarbazonas/síntesis química , Tiosemicarbazonas/farmacología , Antimaláricos/química , Antineoplásicos/farmacología , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Humanos , Plasmodium falciparum/efectos de los fármacos , Tiosemicarbazonas/química
20.
Molecules ; 14(8): 2768-79, 2009 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-19701123

RESUMEN

This study reports the synthesis of some substituted 5-iodouracils and their bioactivities. Alkylation of 5-iodouracils gave predominately N1-substituted-(R)-5-iodouracil compounds 7a-d (R = n-C(4)H(9), s-C(4)H(9), CH(2)C(6)H(11), CH(2)C(6)H(5)) together with N1,N3-disubstituted (R) analogs 8a-b (R = n-C(4)H(9), CH(2)C(6)H(11)). Their antimicrobial activity was tested against 27 strains of microorganisms using the agar dilution method. The analogs 7a, 7c and 7d displayed 25-50% inhibition against Branhamella catarrhalis, Neisseria mucosa and Streptococcus pyogenes at 0.128 mg/mL. No antimalarial activity was detected for any of the analogs when tested against Plasmodium falciparum (T9.94). Their anticancer activity was also examined. Cyclohexylmethyl analogs 7c and 8b inhibited the growth of HepG2 cells. Significantly, N1,N3-dicyclohexylmethyl analog 8b displayed the most potent anticancer activity, with an IC(50) of 16.5 microg/mL. These 5-iodouracil analogs represent a new group of anticancer and antibacterial agents with potential for development for medicinal applications.


Asunto(s)
Antibacterianos/síntesis química , Antimaláricos/síntesis química , Antimaláricos/farmacología , Uracilo/análogos & derivados , Animales , Antibacterianos/química , Antibacterianos/farmacología , Antimaláricos/química , Línea Celular Tumoral , Humanos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Moraxella catarrhalis/efectos de los fármacos , Neisseria mucosa/efectos de los fármacos , Plasmodium falciparum/efectos de los fármacos , Streptococcus pyogenes/efectos de los fármacos , Uracilo/síntesis química , Uracilo/química , Uracilo/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA