Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Huntingtons Dis ; 11(3): 291-305, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35938256

RESUMEN

BACKGROUND: The use of biomarkers has become a major component of clinical trial design. In Huntington's disease (HD), quantifying the amount of huntingtin protein (HTT) in patient cerebrospinal fluid (CSF) has served as a pharmacodynamic readout for HTT-lowering therapeutic approaches and is a potential disease progression biomarker. To date, an ultrasensitive immunoassay to quantify mutant HTT protein (mHTT) has been used, but additional assays are needed to measure other forms of HTT protein. OBJECTIVE: We aimed to develop an ultrasensitive immunoassay to quantify HTT protein in a polyglutamine length-independent manner (mHTT and non-expanded wild type HTT combined) in control and HD participant CSF samples. METHODS: An ultrasensitive, bead-based, single molecule counting (SMC) immunoassay platform was used for the detection of HTT protein in human CSF samples. RESULTS: A novel ultrasensitive SMC immunoassay was developed to quantify HTT protein in a polyglutamine length-independent manner and shown to measure HTT in both control and HD participant CSF samples. We validate the selectivity and specificity of the readout using biochemical and molecular biology tools, and we undertook a preliminary analytical qualification of this assay to enable its clinical use. We also used this novel assay, along with the previously described mHTT assay, to analyze CSF from control and HD participants. The results of this preliminary set suggests that correlation is present between mHTT and the polyglutamine length-independent HTT levels in human CSF. CONCLUSION: We have developed a novel ultrasensitive immunoassay that is able to quantify HTT protein in a polyglutamine length-independent manner in control and HD participant CSF.


Asunto(s)
Enfermedad de Huntington , Biomarcadores , Humanos , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/metabolismo , Proteínas Mutantes/metabolismo , Péptidos/metabolismo
2.
Sci Transl Med ; 13(588)2021 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-33827977

RESUMEN

Huntingtin (HTT)-lowering therapies hold promise to slow down neurodegeneration in Huntington's disease (HD). Here, we assessed the translatability and long-term durability of recombinant adeno-associated viral vector serotype 5 expressing a microRNA targeting human HTT (rAAV5-miHTT) administered by magnetic resonance imaging-guided convention-enhanced delivery in transgenic HD minipigs. rAAV5-miHTT (1.2 × 1013 vector genome (VG) copies per brain) was successfully administered into the striatum (bilaterally in caudate and putamen), using age-matched untreated animals as controls. Widespread brain biodistribution of vector DNA was observed, with the highest concentration in target (striatal) regions, thalamus, and cortical regions. Vector DNA presence and transgene expression were similar at 6 and 12 months after administration. Expression of miHTT strongly correlated with vector DNA, with a corresponding reduction of mutant HTT (mHTT) protein of more than 75% in injected areas, and 30 to 50% lowering in distal regions. Translational pharmacokinetic and pharmacodynamic measures in cerebrospinal fluid (CSF) were largely in line with the effects observed in the brain. CSF miHTT expression was detected up to 12 months, with CSF mHTT protein lowering of 25 to 30% at 6 and 12 months after dosing. This study demonstrates widespread biodistribution, strong and durable efficiency of rAAV5-miHTT in disease-relevant regions in a large brain, and the potential of using CSF analysis to determine vector expression and efficacy in the clinic.


Asunto(s)
Enfermedad de Huntington , MicroARNs , Animales , Modelos Animales de Enfermedad , Terapia Genética , Vectores Genéticos/genética , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/genética , Enfermedad de Huntington/terapia , MicroARNs/metabolismo , Porcinos , Porcinos Enanos/metabolismo , Distribución Tisular
3.
Sci Rep ; 10(1): 22137, 2020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-33335120

RESUMEN

Huntington's disease (HD) is a monogenetic neurodegenerative disorder that is caused by the expansion of a polyglutamine region within the huntingtin (HTT) protein, but there is still an incomplete understanding of the molecular mechanisms that drive pathology. Expression of the mutant form of HTT is a key aspect of diseased tissues, and the most promising therapeutic approaches aim to lower expanded HTT levels. Consequently, the investigation of HTT expression in time and in multiple tissues, with assays that accurately quantify expanded and non-expanded HTT, are required to delineate HTT homeostasis and to best design and interpret pharmacodynamic readouts for HTT lowering therapeutics. Here we evaluate mutant polyglutamine-expanded (mHTT) and polyglutamine-independent HTT specific immunoassays for validation in human HD and control fibroblasts and use to elucidate the CSF/brain and peripheral tissue expression of HTT in preclinical HD models.


Asunto(s)
Expresión Génica , Proteína Huntingtina/genética , Enfermedad de Huntington/genética , Mutación , Animales , Biomarcadores , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Fibroblastos/metabolismo , Técnicas de Sustitución del Gen , Humanos , Proteína Huntingtina/líquido cefalorraquídeo , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/tratamiento farmacológico , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Inmunoensayo , Inmunohistoquímica , Ratones , Ratas , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA