Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nanoscale ; 16(27): 13161-13170, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38913015

RESUMEN

In recent years, there has been an increasing interest in developing new inorganic compounds with exceptional properties for advanced materials. Specifically, compounds containing europium have attracted much attention due to their luminescent properties. These compounds are used in electronics, biotechnology, medicine, and catalysis. Eu is known for its characteristic red emission, which can be influenced by the environment. This study investigates the surface-enhancement luminescence of europium-doped spinel oxides using modified surface with silver (Ag@SiO2 core-shell) nanoparticles as the enhancers. The europium-doped spinels were synthesized through a sol-gel method, and characterization techniques were used to analyze their structure and morphology. Photoluminescence spectra exhibited characteristic Eu3+ transitions, with the hypersensitive transition being the most prominent. The interaction with an Ag@SiO2 modified-surface led to a significant increase in photoluminescence. The study also analyzed the photoluminescence excitation and lifetimes of the oxides, leading to a 7.3-fold increase in photoluminescence. The improvements observed in the luminescence of these tailor-made materials show their potential interest in next-generation technologies.

2.
Nanoscale ; 16(27): 13211, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38952232

RESUMEN

Correction for 'Photoluminescence modification of europium(III)-doped MAl2O4 (M = Zn, Mg) spinels induced by Ag@SiO2 core-shell nanoparticles' by Rodrigo A. Valenzuela-Fernández et al., Nanoscale, 2024, https://doi.org/10.1039/d4nr01526f.

3.
Pharmaceutics ; 15(6)2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37376107

RESUMEN

The ideal treatment for chronic wounds is based on the use of bioactive dressings capable of releasing active agents. However, the control of the rate at which these active agents are released is still a challenge. Bioactive polymeric fiber mats of poly(styrene-co-maleic anhydride) [PSMA] functionalized with amino acids of different hydropathic indices and L-glutamine, L-phenylalanine and L-tyrosine levels allowed obtaining derivatives of the copolymers named PSMA@Gln, PSMA@Phe and PSMA@Tyr, respectively, with the aim of modulating the wettability of the mats. The bioactive characteristics of mats were obtained by the incorporation of the active agents Calendula officinalis (Cal) and silver nanoparticles (AgNPs). A higher wettability for PSMA@Gln was observed, which is in accordance with the hydropathic index value of the amino acid. However, the release of AgNPs was higher for PSMA and more controlled for functionalized PSMA (PSMAf), while the release curves of Cal did not show behavior related to the wettability of the mats due to the apolar character of the active agent. Finally, the differences in the wettability of the mats also affected their bioactivity, which was evaluated in bacterial cultures of Staphylococcus aureus ATCC 25923 and methicillin-resistant Staphylococcus aureus ATCC 33592, an NIH/3T3 fibroblast cell line and red blood cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA