Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 110(4): 1315-20, 2013 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-23302696

RESUMEN

The influenza A virus M2 proton channel (A/M2) is the target of the antiviral drugs amantadine and rimantadine, whose use has been discontinued due to widespread drug resistance. Among the handful of drug-resistant mutants, S31N is found in more than 95% of the currently circulating viruses and shows greatly decreased inhibition by amantadine. The discovery of inhibitors of S31N has been hampered by the limited size, polarity, and dynamic nature of its amantadine-binding site. Nevertheless, we have discovered small-molecule drugs that inhibit S31N with potencies greater than amantadine's potency against WT M2. Drug binding locks the protein into a well-defined conformation, and the NMR structure of the complex shows the drug bound in the homotetrameric channel, threaded between the side chains of Asn31. Unrestrained molecular dynamics simulations predicted the same binding site. This S31N inhibitor, like other potent M2 inhibitors, contains a charged ammonium group. The ammonium binds as a hydrate to one of three sites aligned along the central cavity that appear to be hotspots for inhibition. These sites might stabilize hydronium-like species formed as protons diffuse through the outer channel to the proton-shuttling residue His37 near the cytoplasmic end of the channel.


Asunto(s)
Antivirales/química , Antivirales/farmacología , Genes Fúngicos , Virus de la Influenza A/química , Virus de la Influenza A/genética , Mutación , Proteínas de la Matriz Viral/química , Proteínas de la Matriz Viral/genética , Amantadina/análogos & derivados , Amantadina/síntesis química , Amantadina/química , Amantadina/farmacología , Antivirales/síntesis química , Sitios de Unión , Diseño de Fármacos , Farmacorresistencia Viral/genética , Humanos , Virus de la Influenza A/efectos de los fármacos , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Proteínas Recombinantes/antagonistas & inhibidores , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Relación Estructura-Actividad , Proteínas de la Matriz Viral/antagonistas & inhibidores
2.
Biochim Biophys Acta ; 1838(4): 1082-7, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24269540

RESUMEN

The influenza A/M2 protein is a homotetrameric single-pass integral membrane protein encoded by the influenza A viral genome. Its transmembrane domain represents both a crucial drug target and a minimalistic model system for transmembrane proton transport and charge stabilization. Recent structural and functional studies of M2 have suggested that the proton transport mechanism involves sequential extraviral protonation and intraviral deprotonation of a highly conserved His37 side chain by the transported proton, consistent with a pH-activated proton shuttle mechanism. Multiple tautomeric forms of His can be formed, and it is not known whether they contribute to the mechanism of proton shuttling. Here we present the thermodynamic and functional characterization of an unnatural amino acid mutant at His37, where the imidazole side chain is substituted with a 4-thiazolyl group that is unable to undergo tautomerization and has a significantly lower solution pKa. The mutant construct has a similar stability to the wild-type protein at pH8 in bilayers and is virtually inactive at external pH7.4 in a semiquantitative liposome flux assay as expected from its lower sidechain pKa. However when the external buffer pH is lowered to 4.9 and 2.4, the mutant shows increasing amantadine sensitive flux of a similar magnitude to that of the wild type construct at pH7.4 and 4.9 respectively. These findings are in line with mechanistic hypotheses suggesting that proton flux through M2 is mediated by proton exchange from adjacent water molecules with the His37 sidechain, and that tautomerization is not required for proton translocation. This article is part of a Special Issue entitled: Viral Membrane Proteins - Channels for Cellular Networking.


Asunto(s)
Virus de la Influenza A/química , Proteínas de la Matriz Viral/fisiología , Secuencia de Aminoácidos , Concentración de Iones de Hidrógeno , Datos de Secuencia Molecular , Mutación , Termodinámica , Proteínas de la Matriz Viral/química
3.
J Am Chem Soc ; 136(52): 17987-95, 2014 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-25470189

RESUMEN

Influenza virus infections lead to numerous deaths and millions of hospitalizations each year. One challenge facing anti-influenza drug development is the heterogeneity of the circulating influenza viruses, which comprise several strains with variable susceptibility to antiviral drugs. For example, the wild-type (WT) influenza A viruses, such as the seasonal H1N1, tend to be sensitive to antiviral drugs, amantadine and rimantadine, while the S31N mutant viruses, such as the pandemic 2009 H1N1 (H1N1pdm09) and seasonal H3N2, are resistant to this class of drugs. Thus, drugs targeting both WT and the S31N mutant are highly desired. We report our design of a novel class of dual inhibitors along with their ion channel blockage and antiviral activities. The potency of the most active compound 11 in inhibiting WT and the S31N mutant influenza viruses is comparable with that of amantadine in inhibiting WT influenza virus. Solution NMR studies and molecular dynamics (MD) simulations of drug-M2 interactions supported our design hypothesis: namely, the dual inhibitor binds in the WT M2 channel with an aromatic group facing down toward the C-terminus, while the same drug binds in the S31N M2 channel with its aromatic group facing up toward the N-terminus. The flip-flop mode of drug binding correlates with the structure-activity relationship (SAR) and has paved the way for the next round of rational design of broad-spectrum antiviral drugs.


Asunto(s)
Amantadina/farmacología , Descubrimiento de Drogas , Farmacorresistencia Viral/genética , Virus de la Influenza A/efectos de los fármacos , Mutación , Inhibidores de la Bomba de Protones/farmacología , Bombas de Protones/metabolismo , Animales , Perros , Farmacorresistencia Viral/efectos de los fármacos , Virus de la Influenza A/genética , Células de Riñón Canino Madin Darby , Simulación de Dinámica Molecular , Porosidad , Unión Proteica , Conformación Proteica , Inhibidores de la Bomba de Protones/química , Inhibidores de la Bomba de Protones/metabolismo , Bombas de Protones/química , Bombas de Protones/genética , Relación Estructura-Actividad , Tiofenos/química , Tiofenos/metabolismo , Tiofenos/farmacología
4.
Proc Natl Acad Sci U S A ; 107(34): 15075-80, 2010 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-20689043

RESUMEN

The M2 proton channel from influenza A virus is an essential protein that mediates transport of protons across the viral envelope. This protein has a single transmembrane helix, which tetramerizes into the active channel. At the heart of the conduction mechanism is the exchange of protons between the His37 imidazole moieties of M2 and waters confined to the M2 bundle interior. Protons are conducted as the total charge of the four His37 side chains passes through 2(+) and 3(+) with a pK(a) near 6. A 1.65 A resolution X-ray structure of the transmembrane protein (residues 25-46), crystallized at pH 6.5, reveals a pore that is lined by alternating layers of sidechains and well-ordered water clusters, which offer a pathway for proton conduction. The His37 residues form a box-like structure, bounded on either side by water clusters with well-ordered oxygen atoms at close distance. The conformation of the protein, which is intermediate between structures previously solved at higher and lower pH, suggests a mechanism by which conformational changes might facilitate asymmetric diffusion through the channel in the presence of a proton gradient. Moreover, protons diffusing through the channel need not be localized to a single His37 imidazole, but instead may be delocalized over the entire His-box and associated water clusters. Thus, the new crystal structure provides a possible unification of the discrete site versus continuum conduction models.


Asunto(s)
Virus de la Influenza A/metabolismo , Canales Iónicos/química , Canales Iónicos/metabolismo , Proteínas de la Matriz Viral/química , Proteínas de la Matriz Viral/metabolismo , Secuencia de Aminoácidos , Animales , Fenómenos Biofísicos , Cristalografía por Rayos X , Femenino , Histidina/química , Concentración de Iones de Hidrógeno , Técnicas In Vitro , Virus de la Influenza A/genética , Canales Iónicos/genética , Transporte Iónico , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Oocitos/metabolismo , Conformación Proteica , Multimerización de Proteína , Estabilidad Proteica , Protones , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas de la Matriz Viral/genética , Xenopus
5.
Bioorg Med Chem ; 20(2): 942-8, 2012 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-22178660

RESUMEN

The synthesis of several 6,7,8,9,10,11-hexahydro-9-methyl-5,7:9,11-dimethano-5H-benzocyclononen-7-amines is reported. Several of them display low micromolar NMDA receptor antagonist and/or trypanocidal activities. Two compounds are endowed with micromolar anti vesicular stomatitis virus activity, while only one compound shows micromolar anti-influenza activity. The anti-influenza activity of this compound does not seem to be mediated by blocking of the M2 protein.


Asunto(s)
Aminas/síntesis química , Aminas/farmacología , Virus ADN/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Trypanosoma brucei brucei/efectos de los fármacos , Aminas/química , Antivirales/síntesis química , Antivirales/química , Antivirales/farmacología , Humanos , Receptores de N-Metil-D-Aspartato/metabolismo , Tripanocidas/síntesis química , Tripanocidas/química , Tripanocidas/farmacología
6.
Proc Natl Acad Sci U S A ; 106(44): 18775-9, 2009 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-19841275

RESUMEN

Influenza A virus M2 (A/M2) and the influenza B virus BM2 are both small integral membrane proteins that form proton-selective ion channels. Influenza A virus A/M2 channel is the target of the antiviral drug amantadine (and its methyl derivative rimantadine), whereas BM2 channel activity is not affected by the drug. The atomic structure of the pore-transmembrane (TM) domain peptide has been determined by x-ray crystallography [Stouffer et al. (2008) Nature 451:596-599] and of a larger M2 peptide by NMR methods [Schnell and Chou (2008) Nature 451:591-595]. The crystallographic data show electron density (at 3.5 A resolution) in the channel pore, consistent with amantadine blocking the pore of the channel. In contrast, the NMR data show 4 rimantadine molecules bound on the outside of the helices toward the cytoplasmic side of the membrane. Drug binding includes interactions with residues 40-45 and a polar hydrogen bond between rimantadine and aspartic acid residue 44 (D44). These 2 distinct drug-binding sites led to 2 incompatible drug inhibition mechanisms. We have generated chimeric channels between amantadine-sensitive A/M2 and amantadine-insensitive BM2 designed to define the drug-binding site. Two chimeras containing 5 residues of the A/M2 ectodomain and residues 24-36 of the A/M2 TM domain show 85% amantadine/rimantadine sensitivity and specific activity comparable to that of WT BM2. These functional data suggest that the amantadine/rimantadine binding site identified on the outside of the 4 helices is not the primary site associated with the pharmacologic inhibition of the A/M2 ion channel.


Asunto(s)
Amantadina/farmacología , Virus de la Influenza B/efectos de los fármacos , Canales Iónicos/antagonistas & inhibidores , Proteínas Recombinantes/metabolismo , Proteínas Virales/antagonistas & inhibidores , Secuencia de Aminoácidos , Sustitución de Aminoácidos/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Concentración de Iones de Hidrógeno/efectos de los fármacos , Activación del Canal Iónico/efectos de los fármacos , Canales Iónicos/química , Canales Iónicos/metabolismo , Datos de Secuencia Molecular , Mutación/genética , Proteínas Recombinantes/química , Proteínas Virales/química , Proteínas Virales/metabolismo
7.
Proc Natl Acad Sci U S A ; 106(30): 12283-8, 2009 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-19590009

RESUMEN

The influenza A virus M2 protein (A/M2) is a homotetrameric pH-activated proton transporter/channel that mediates acidification of the interior of endosomally encapsulated virus. This 97-residue protein has a single transmembrane (TM) helix, which associates to form homotetramers that bind the anti-influenza drug amantadine. However, the minimal fragment required for assembly and proton transport in cellular membranes has not been defined. Therefore, the conductance properties of truncation mutants expressed in Xenopus oocytes were examined. A short fragment spanning residues 21-61, M2(21-61), was inserted into the cytoplasmic membrane and had specific, amantadine-sensitive proton transport activity indistinguishable from that of full-length A/M2; an epitope-tagged version of an even shorter fragment, M2(21-51)-FLAG, had specific activity within a factor of 2 of the full-length protein. Furthermore, synthetic fragments including a peptide spanning residues 22-46 were found to transport protons into liposomes in an amantadine-sensitive manner. In addition, the functionally important His-37 residue pK(a) values are highly perturbed in the tetrameric form of the protein, a property conserved in the TM peptide and full-length A/M2 in both micelles and bilayers. These data demonstrate that the determinants for folding, drug binding, and proton translocation are packaged in a remarkably small peptide that can now be studied with confidence.


Asunto(s)
Canales Iónicos/fisiología , Fragmentos de Péptidos/fisiología , Proteínas de la Matriz Viral/fisiología , Amantadina/farmacología , Secuencia de Aminoácidos , Animales , Transporte Biológico/efectos de los fármacos , Dopaminérgicos/farmacología , Femenino , Células HeLa , Humanos , Concentración de Iones de Hidrógeno , Canales Iónicos/química , Canales Iónicos/genética , Potenciales de la Membrana/efectos de los fármacos , Microinyecciones , Datos de Secuencia Molecular , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Multimerización de Proteína , Protones , Homología de Secuencia de Aminoácido , Termodinámica , Proteínas de la Matriz Viral/química , Proteínas de la Matriz Viral/genética , Xenopus
8.
J Am Chem Soc ; 133(35): 13844-7, 2011 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-21819109

RESUMEN

We describe the use of organosilanes as inhibitors and structural probes of a membrane protein, the M2 proton channel from influenza A virus. Organosilane amine inhibitors were found to be generally as potent as their carbon analogues in targeting WT A/M2 and more potent against the drug-resistant A/M2-V27A mutant. In addition, intermolecular NOESY spectra with dimethyl-substituted organosilane amine inhibitors clearly located the drug binding site at the N-terminal lumen of the A/M2 channel close to V27.


Asunto(s)
Antivirales/farmacología , Virus de la Influenza A/efectos de los fármacos , Inhibidores de la Bomba de Protones/farmacología , Bombas de Protones/metabolismo , Silanos/farmacología , Proteínas Virales/metabolismo , Aminas/química , Aminas/farmacología , Antivirales/química , Sitios de Unión , Farmacorresistencia Viral , Humanos , Virus de la Influenza A/genética , Gripe Humana/tratamiento farmacológico , Modelos Moleculares , Mutación , Inhibidores de la Bomba de Protones/química , Bombas de Protones/genética , Silanos/química , Proteínas Virales/antagonistas & inhibidores , Proteínas Virales/genética
9.
J Am Chem Soc ; 133(32): 12834-41, 2011 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-21744829

RESUMEN

Influenza A virus M2 (A/M2) forms a homotetrameric proton selective channel in the viral membrane. It has been the drug target of antiviral drugs such as amantadine and rimantadine. However, most of the current virulent influenza A viruses carry drug-resistant mutations alongside the drug binding site, such as S31N, V27A, and L26F, etc., each of which might be dominant in a given flu season. Among these mutations, the V27A mutation was prevalent among transmissible viruses under drug selection pressure. Until now, V27A has not been successfully targeted by small molecule inhibitors, despite years of extensive medicinal chemistry research efforts and high throughput screening. Guided by molecular dynamics (MD) simulation of drug binding and the influence of drug binding on the dynamics of A/M2 from earlier experimental studies, we designed a series of potent spirane amine inhibitors targeting not only WT, but also both A/M2-27A and L26F mutants with IC(50)s similar to that seen for amantadine's inhibition of the WT channel. The potencies of these inhibitors were further demonstrated in experimental binding and plaque reduction assays. These results demonstrate the power of MD simulations to probe the mechanism of drug binding as well as the ability to guide design of inhibitors of targets that had previously appeared to be undruggable.


Asunto(s)
Antivirales/química , Antivirales/farmacología , Farmacorresistencia Viral , Virus de la Influenza A/efectos de los fármacos , Gripe Humana/tratamiento farmacológico , Proteínas de la Matriz Viral/antagonistas & inhibidores , Proteínas de la Matriz Viral/genética , Diseño de Fármacos , Humanos , Virus de la Influenza A/genética , Simulación de Dinámica Molecular , Ensayo de Placa Viral
10.
J Virol ; 84(10): 5078-88, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20219914

RESUMEN

Influenza A virus buds from cells as spherical (approximately 100-nm diameter) and filamentous (approximately 100 nm x 2 to 20 microm) virions. Previous work has determined that the matrix protein (M1) confers the ability of the virus to form filaments; however, additional work has suggested that the influenza virus M2 integral membrane protein also plays a role in viral filament formation. In examining the role of the M2 protein in filament formation, we observed that the cytoplasmic tail of M2 contains several sites that are essential for filament formation. Additionally, whereas M2 is a nonraft protein, expression of other viral proteins in the context of influenza virus infection leads to the colocalization of M2 with sites of virus budding and lipid raft domains. We found that an amphipathic helix located within the M2 cytoplasmic tail is able to bind cholesterol, and we speculate that M2 cholesterol binding is essential for both filament formation and the stability of existing viral filaments.


Asunto(s)
Virus de la Influenza A/fisiología , Proteínas de la Matriz Viral/fisiología , Virión/ultraestructura , Ensamble de Virus , Secuencia de Aminoácidos , Animales , Línea Celular , Colesterol/metabolismo , Perros , Humanos , Microscopía Electrónica , Microscopía Fluorescente , Datos de Secuencia Molecular , Unión Proteica
11.
Proc Natl Acad Sci U S A ; 105(31): 10967-72, 2008 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-18669647

RESUMEN

Influenza A and B viruses contain proton-selective ion channels, A/M2 and BM2, respectively, and the A/M2 channel activity is inhibited by the drugs amantadine and its methyl derivative rimantadine. The structure of the pore-transmembrane domain has been determined by both x-ray crystallography [Stouffer et al. (2008) Nature 451:596-599] and by NMR methods [Schnell and Chou (2008) Nature 451:591-595]. Whereas the crystal structure indicates a single amantadine molecule in the pore of the channel, the NMR data show four rimantadine molecules bound on the outside of the helices toward the cytoplasmic side of the membrane. Drug binding includes interactions with residues 40-45 with a polar hydrogen bond between rimantadine and aspartic acid residue 44 (D44) that appears to be important. These two distinct drug-binding sites led to two incompatible drug inhibition mechanisms. We mutagenized D44 and R45 to alanine as these mutations are likely to interfere with rimantadine binding and lead to a drug insensitive channel. However, the D44A channel was found to be sensitive to amantadine when measured by electrophysiological recordings in oocytes of Xenopus laevis and in mammalian cells, and when the D44 and R45 mutations were introduced into the influenza virus genome. Furthermore, transplanting A/M2 pore residues 24-36 into BM2, yielded a pH-activated chimeric ion channel that was partially inhibited by amantadine. Thus, taken together our functional data suggest that amantadine/rimantadine binding outside of the channel pore is not the primary site associated with the pharmacological inhibition of the A/M2 ion channel.


Asunto(s)
Amantadina/metabolismo , Antivirales/metabolismo , Modelos Moleculares , Proteínas de la Matriz Viral/metabolismo , Amantadina/farmacología , Animales , Antivirales/farmacología , Sitios de Unión/genética , Línea Celular , Perros , Humanos , Mutagénesis , Técnicas de Placa-Clamp , Proteínas de la Matriz Viral/antagonistas & inhibidores , Proteínas de la Matriz Viral/genética , Xenopus laevis
12.
Biochemistry ; 49(47): 10061-71, 2010 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-20968306

RESUMEN

The influenza A/M2 protein exhibits inwardly rectifying, pH-activated proton transport that saturates at low pH. A comparison of high-resolution structures of the transmembrane domain at high and low pH suggests that pH-dependent conformational changes may facilitate proton conduction by alternately changing the accessibility of the N-terminal and C-terminal regions of the channel as a proton transits through the transmembrane domain. Here, we show that M2 functionally reconstituted in liposomes populates at least three different conformational states over a physiologically relevant pH range, with transition midpoints that are consistent with previously reported His37 pK(a) values. We then develop and test two similar, quantitative mechanistic models of proton transport, where protonation shifts the equilibrium between structural states having different proton affinities and solvent accessibilities. The models account well for a collection of experimental data sets over a wide range of pH values and voltages and require only a small number of adjustable parameters to accurately describe the data. While the kinetic models do not require any specific conformation for the protein, they nevertheless are consistent with a large body of structural information based on high-resolution nuclear magnetic resonance and crystallographic structures, optical spectroscopy, and molecular dynamics calculations.


Asunto(s)
Conformación Proteica/efectos de los fármacos , Protones , Proteínas de la Matriz Viral/química , Animales , Concentración de Iones de Hidrógeno , Virus de la Influenza A/metabolismo , Canales Iónicos/fisiología , Cinética , Liposomas , Oocitos/metabolismo , Xenopus
13.
Biochemistry ; 49(4): 696-708, 2010 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-20028125

RESUMEN

The A/M2 protein of influenza A virus forms a tetrameric proton-selective pH-gated ion channel. The H(37)xxxW(41) motif located in the channel pore is responsible for its gating and proton selectivity. Channel activation most likely involves protonation of the H37 residues, while the conductive state of the channel is characterized by two or three charged His residues in a tetrad. A/M2 channel activity is inhibited by the antiviral drug amantadine. Although a large number of functional amantadine-resistant mutants of A/M2 have been observed in vitro, only a few are observed in highly transmissible viruses in the presence or absence of amantadine. We therefore examined 49 point mutants of the pore-lining residues, representing both natural and nonnatural variants. Their ion selectivity, amantadine sensitivity, specific activity, and pH-dependent conductance were measured in Xenopus oocytes. These measurements showed how variations in the sequence lead to variations in the proton conduction. The results are consistent with a multistep mechanism that allows the protein to fine-tune its pH-rate profile over a wide range of proton concentrations, hypothesized to arise from different protonation states of the H37 tetrad. Mutations that give native-like conductance at low pH as well as minimal leakage current at pH 7.0 were surprisingly rare. Moreover, the results are consistent with a location of the amantadine-binding site inside the channel pore. These findings have helped to define the set of functionally fit mutants that should be targeted when considering the design of novel drugs that inhibit amantadine-resistant strains of influenza A virus.


Asunto(s)
Canales Iónicos/química , Canales Iónicos/genética , Mutación , Proteínas de la Matriz Viral/química , Proteínas de la Matriz Viral/genética , Antivirales/química , Antivirales/metabolismo , Sitios de Unión , Farmacorresistencia Viral , Concentración de Iones de Hidrógeno , Virus de la Influenza A/metabolismo , Activación del Canal Iónico , Canales Iónicos/metabolismo , Modelos Moleculares , Conformación Proteica , Protones , Relación Estructura-Actividad , Proteínas de la Matriz Viral/metabolismo
14.
Pflugers Arch ; 459(4): 593-605, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19946785

RESUMEN

Influenza A virus encodes an integral membrane protein, A/M2, that forms a pH-gated proton channel that is essential for viral replication. The A/M2 channel is a target for the anti-influenza drug amantadine, although the effectiveness of this drug has been diminished by the appearance of naturally occurring point mutations in the channel pore. Thus, there is a great need to discover novel anti-influenza therapeutics, and, since the A/M2 channel is a proven target, approaches are needed to screen for new classes of inhibitors for the A/M2 channel. Prior in-depth studies of the activity and drug sensitivity of A/M2 channels have employed labor-intensive electrophysiology techniques. In this study, we tested the validity of electrophysiological measurements with solid-supported membranes (SSM) as a less labor-intensive alternative technique for the investigation of A/M2 ion channel properties and for drug screening. By comparing the SSM-based measurements of the activity and drug sensitivity of A/M2 wild-type and mutant channels with measurements made with conventional electrophysiology methods, we show that SSM-based electrophysiology is an efficient and reliable tool for functional studies of the A/M2 channel protein and for screening compounds for inhibitory activity against the channel.


Asunto(s)
Electrofisiología , Pruebas de Sensibilidad Microbiana , Proteínas de la Matriz Viral/metabolismo , Amantadina/farmacología , Animales , Antivirales/farmacología , Células CHO , Membrana Celular/metabolismo , Cricetinae , Cricetulus , Farmacorresistencia Viral , Electrofisiología/instrumentación , Electrofisiología/métodos , Humanos , Virus de la Influenza A/genética , Virus de la Influenza A/metabolismo , Pruebas de Sensibilidad Microbiana/instrumentación , Pruebas de Sensibilidad Microbiana/métodos , Reproducibilidad de los Resultados , Replicación Viral/efectos de los fármacos
15.
Structure ; 16(7): 1067-76, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18611380

RESUMEN

We explore the interplay between amino acid sequence, thermodynamic stability, and functional fitness in the M2 proton channel of influenza A virus. Electrophysiological measurements show that drug-resistant mutations have minimal effects on M2's specific activity, and suggest that resistance is achieved by altering a binding site within the pore rather than a less direct allosteric mechanism. In parallel, we measure the effects of these mutations on the free energy of assembling the homotetrameric transmembrane pore from monomeric helices in micelles and bilayers. Although there is no simple correlation between the evolutionary fitness of the mutants and their stability, all variants formed more stable tetramers in bilayers, and the least-fit mutants showed the smallest increase in stability upon moving from a micelle to a bilayer environment. We speculate that the folding landscape of a micelle is rougher than that of a bilayer, and more accommodating of conformational variations in nonoptimized mutants.


Asunto(s)
Farmacorresistencia Viral/genética , Canales Iónicos/química , Protones , Proteínas de la Matriz Viral/química , Amantadina/farmacología , Secuencia de Aminoácidos , Animales , Antivirales/farmacología , Células Cultivadas , Disulfuros/química , Evolución Molecular , Canales Iónicos/genética , Canales Iónicos/metabolismo , Membrana Dobles de Lípidos/química , Micelas , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Técnicas de Placa-Clamp , Fosfolípidos/química , Termodinámica , Proteínas de la Matriz Viral/genética , Proteínas de la Matriz Viral/metabolismo , Xenopus laevis
16.
Biochemistry ; 48(50): 11872-82, 2009 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-19905033

RESUMEN

The A/M2 proton channel of influenza A virus is a target for the anti-influenza drugs amantadine and rimantadine, whose effectiveness was diminished by the appearance of naturally occurring point mutants in the A/M2 channel pore, among which the most common are S31N, V27A, and L26F. We have synthesized and characterized the properties of a series of compounds, originally derived from the A/M2 inhibitor BL-1743. A lead compound emerging from these investigations, spiro[5.5]undecan-3-amine, is an effective inhibitor of wild-type A/M2 channels and L26F and V27A mutant ion channels in vitro and also inhibits replication of recombinant mutant viruses bearing these mutations in plaque reduction assays. Differences in the inhibition kinetics between BL-1743, known to bind inside the A/M2 channel pore, and amantadine were exploited to demonstrate competition between these compounds, consistent with the conclusion that amantadine binds inside the channel pore. Inhibition by all of these compounds was shown to be voltage-independent, suggesting that their charged groups are within the N-terminal half of the pore, prior to the selectivity filter that defines the region over which the transmembrane potential occurs. These findings not only help to define the location and mechanism of binding of M2 channel-blocking drugs but also demonstrate the feasibility of discovering new inhibitors that target this binding site in a number of amantadine-resistant mutants.


Asunto(s)
Amantadina/metabolismo , Antivirales/síntesis química , Antivirales/farmacología , Farmacorresistencia Viral , Virus de la Influenza A/efectos de los fármacos , Canales Iónicos/antagonistas & inhibidores , Mutación Puntual , Proteínas de la Matriz Viral/antagonistas & inhibidores , Amantadina/farmacología , Animales , Antivirales/metabolismo , Unión Competitiva/genética , Línea Celular , Perros , Sistemas de Liberación de Medicamentos , Farmacorresistencia Viral/genética , Imidazoles/farmacología , Virus de la Influenza A/genética , Virus de la Influenza A/metabolismo , Canales Iónicos/genética , Canales Iónicos/metabolismo , Oocitos , Compuestos de Espiro/síntesis química , Compuestos de Espiro/farmacología , Proteínas de la Matriz Viral/genética , Proteínas de la Matriz Viral/metabolismo , Xenopus
17.
J Am Chem Soc ; 131(23): 8066-76, 2009 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-19469531

RESUMEN

Amantadine has been used for decades as an inhibitor of the influenza A virus M2 protein (AM2) in the prophylaxis and treatment of influenza A infections, but its clinical use has been limited by its central nervous system (CNS) side effects as well as emerging drug-resistant strains of the virus. With the goal of searching for new classes of M2 inhibitors, a structure-activity relation study based on 2-[3-azaspiro(5,5)undecanol]-2-imidazoline (BL-1743) was initiated. The first generation BL-1743 series of compounds has been synthesized and tested by two-electrode voltage-clamp (TEV) assays. The most active compound from this library, 3-azaspiro[5,5]undecane hydrochloride (9), showed an IC(50) as low as 0.92 +/- 0.11 microM against AM2, more than an order of magnitude more potent than amantadine (IC(50) = 16 microM). (15)N and (13)C solid-state NMR was employed to determine the effect of compound 9 on the structure and dynamics of the transmembrane domain of AM2 (AM2-TM) in phospholipid bilayers. Compared to amantadine, spiro-piperidine 9 (1) induces a more homogeneous conformation of the peptide, (2) reduces the dynamic disorder of the G34-I35 backbone near the water-filled central cavity of the helical bundle, and (3) influences the dynamics and magnetic environment of more residues within the transmembrane helices. These data suggest that spiro-piperidine 9 binds more extensively with the AM2 channel, thus leading to stronger inhibitory potency.


Asunto(s)
Antivirales/química , Virus de la Influenza A/efectos de los fármacos , Piperidinas/farmacología , Compuestos de Espiro/farmacología , Proteínas de la Matriz Viral/antagonistas & inhibidores , Amantadina/química , Amantadina/farmacología , Animales , Antivirales/farmacología , Humanos , Imidazoles/química , Imidazoles/farmacología , Oocitos , Piperidinas/química , Conformación Proteica/efectos de los fármacos , Compuestos de Espiro/química , Relación Estructura-Actividad , Xenopus
18.
Dev Cell ; 5(1): 175-84, 2003 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12852861

RESUMEN

Successful uncoating of the influenza B virus in endosomes is predicted to require acidification of the interior of the virus particle. We report that a virion component, the BM2 integral membrane protein, when expressed in Xenopus oocytes or in mammalian cells, causes acidification of the cells and possesses ion channel activity consistent with proton conduction. Furthermore, coexpression of BM2 with hemagglutinin (HA) glycoprotein prevents HA from adopting its low-pH-induced conformation during transport to the cell surface, and overexpression of BM2 causes a delay in intracellular transport in the exocytic pathway and causes morphological changes in the Golgi. These data are consistent with BM2 equilibrating the pH gradient between the Golgi and the cytoplasm. The transmembrane domain of BM2 protein and the influenza A virus A/M2 ion channel protein both contain the motif HXXXW, and, for both proteins, the His and Trp residues are important for channel function.


Asunto(s)
Membrana Celular/metabolismo , Virus de la Influenza B/metabolismo , Canales Iónicos/metabolismo , Proteínas de la Matriz Viral , Secuencia de Aminoácidos , Animales , Transporte Biológico , Aparato de Golgi/metabolismo , Células HeLa , Hemaglutininas Virales/química , Hemaglutininas Virales/genética , Hemaglutininas Virales/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Virus de la Influenza A/química , Virus de la Influenza A/genética , Virus de la Influenza A/metabolismo , Canales Iónicos/genética , Cinética , Mutación , Oocitos/química , Oocitos/metabolismo , Conformación Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Protones , Proteínas de la Matriz Viral/química , Proteínas de la Matriz Viral/genética , Proteínas de la Matriz Viral/metabolismo , Xenopus
19.
Biochemistry ; 47(38): 9934-6, 2008 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-18754675

RESUMEN

The M2 protein from influenza A is a pH-activated proton channel that plays an essential role in the viral life cycle and serves as a drug target. Using spin labeling EPR spectroscopy, we studied a 38-residue M2 peptide spanning the transmembrane region and its C-terminal extension. We obtained residue-specific environmental parameters under both high- and low-pH conditions for nine consecutive C-terminal sites. The region forms a membrane surface helix at both high and low pH, although the arrangement of the monomers within the tetramer changes with pH. Both electrophysiology and EPR data point to a critical role for residue Lys 49.


Asunto(s)
Virus de la Influenza A/química , Proteínas de la Matriz Viral/química , Animales , Espectroscopía de Resonancia por Spin del Electrón , Concentración de Iones de Hidrógeno , Lisina/química , Conformación Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Xenopus laevis
20.
J Physiol ; 586(18): 4409-24, 2008 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-18687716

RESUMEN

An electroretinogram (ERG) screen identified a mouse with a normal a-wave but lacking a b-wave, and as such it was designated no b-wave3 (nob3). The nob3 phenotype mapped to chromosome 11 in a region containing the metabotropic glutamate receptor 6 gene (Grm6). Sequence analyses of cDNA identified a splicing error in Grm6, introducing an insertion and an early stop codon into the mRNA of affected mice (designated Grm6(nob3)). Immunohistochemistry of the Grm6(nob3) retina showed that GRM6 was absent. The ERG and visual behaviour abnormalities of Grm6(nob3) mice are similar to Grm6(nob4) animals, and similar deficits were seen in compound heterozygotes (Grm6(nob4/nob3)), indicating that Grm6(nob3) is allelic to Grm6(nob4). Visual responses of Grm6(nob3) retinal ganglion cells (RGCs) to light onset were abnormal. Grm6(nob3) ON RGCs were rarely recorded, but when they were, had ill-defined receptive field (RF) centres and delayed onset latencies. When Grm6(nob3) OFF-centre RGC responses were evoked by full-field stimulation, significantly fewer converted that response to OFF/ON compared to Grm6(nob4) RGCs. Grm6(nob4/nob3) RGC responses verified the conclusion that the two mutants are allelic. We propose that Grm6(nob3) is a new model of human autosomal recessive congenital stationary night blindness. However, an allelic difference between Grm6(nob3) and Grm6(nob4) creates a disparity in inner retinal processing. Because the localization of GRM6 is limited to bipolar cells in the On pathway, the observed difference between RGCs in these mutants is likely to arise from differences in their inputs.


Asunto(s)
Receptores de Glutamato Metabotrópico/genética , Células Ganglionares de la Retina/fisiología , Alelos , Secuencia de Aminoácidos , Animales , Mapeo Cromosómico , Electrorretinografía , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Mutación , Estimulación Luminosa , Receptores de Glutamato Metabotrópico/metabolismo , Retina/anatomía & histología , Retina/metabolismo , Análisis de Secuencia de ADN , Campos Visuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA