Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Acta Neuropathol ; 142(2): 339-360, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34046693

RESUMEN

Ependymomas (EPN) are central nervous system tumors comprising both aggressive and more benign molecular subtypes. However, therapy of the high-risk subtypes posterior fossa group A (PF-A) and supratentorial RELA-fusion positive (ST-RELA) is limited to gross total resection and radiotherapy, as effective systemic treatment concepts are still lacking. We have recently described fibroblast growth factor receptors 1 and 3 (FGFR1/FGFR3) as oncogenic drivers of EPN. However, the underlying molecular mechanisms and their potential as therapeutic targets have not yet been investigated in detail. Making use of transcriptomic data across 467 EPN tissues, we found that FGFR1 and FGFR3 were both widely expressed across all molecular groups. FGFR3 mRNA levels were enriched in ST-RELA showing the highest expression among EPN as well as other brain tumors. We further identified high expression levels of fibroblast growth factor 1 and 2 (FGF1, FGF2) across all EPN subtypes while FGF9 was elevated in ST-EPN. Interrogation of our EPN single-cell RNA-sequencing data revealed that FGFR3 was further enriched in cycling and progenitor-like cell populations. Corroboratively, we found FGFR3 to be predominantly expressed in radial glia cells in both mouse embryonal and human brain datasets. Moreover, we detected alternative splicing of the FGFR1/3-IIIc variant, which is known to enhance ligand affinity and FGFR signaling. Dominant-negative interruption of FGFR1/3 activation in PF-A and ST-RELA cell models demonstrated inhibition of key oncogenic pathways leading to reduced cell growth and stem cell characteristics. To explore the feasibility of therapeutically targeting FGFR, we tested a panel of FGFR inhibitors in 12 patient-derived EPN cell models revealing sensitivity in the low-micromolar to nano-molar range. Finally, we gain the first clinical evidence for the activity of the FGFR inhibitor nintedanib in the treatment of a patient with recurrent ST-RELA. Together, these preclinical and clinical data suggest FGFR inhibition as a novel and feasible approach to combat aggressive EPN.


Asunto(s)
Ependimoma/patología , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/patología , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Animales , Neoplasias del Sistema Nervioso Central/genética , Neoplasias del Sistema Nervioso Central/patología , Ependimoma/genética , Humanos , Ratones , Recurrencia Local de Neoplasia/metabolismo , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/metabolismo , Receptores de Factores de Crecimiento de Fibroblastos/genética
2.
Chem Rev ; 119(2): 1519-1624, 2019 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-30489072

RESUMEN

The immune system deploys a multitude of innate and adaptive mechanisms not only to ward off pathogens but also to prevent malignant transformation ("immune surveillance"). Hence, a clinically apparent tumor already reflects selection for those malignant cell clones capable of evading immune recognition ("immune evasion"). Metal drugs, besides their well-investigated cytotoxic anticancer effects, massively interact with the cancer-immune interface and can reverse important aspects of immune evasion. This topic has recently gained intense attention based on combination approaches with anticancer immunotherapy (e.g., immune checkpoint inhibitors), a strategy recently delivering first exciting results in clinical settings. This review summarizes the promising but still extremely fragmentary knowledge on the interplay of metal drugs with the fidelity of anticancer immune responses but also their role in adverse effects. It highlights that, at least in some cases, metal drugs can induce long-lasting anticancer immune responses. Important steps in this process comprise altered visibility and susceptibility of cancer cells toward innate and adaptive immunity, as well as direct impacts on immune cell populations and the tumor microenvironment. On the basis of the gathered information, we suggest initiating joint multidisciplinary programs to implement comprehensive immune analyses into strategies to develop novel and smart anticancer metal compounds.


Asunto(s)
Antineoplásicos/química , Complejos de Coordinación/química , Metales/química , Neoplasias/terapia , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Complejos de Coordinación/farmacología , Complejos de Coordinación/uso terapéutico , Microbioma Gastrointestinal/efectos de los fármacos , Humanos , Inmunidad Innata/efectos de los fármacos , Inmunoterapia , Linfocitos/efectos de los fármacos , Linfocitos/inmunología , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología
3.
Int J Mol Sci ; 22(22)2021 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-34830407

RESUMEN

Due to its cost-efficiency, high resolution melting (HRM) analysis plays an important role in genotyping of candidate single nucleotide polymorphisms (SNPs). Studies indicate that HRM analysis is not only suitable for genotyping individual SNPs, but also allows genotyping of multiple SNPs in one and the same amplicon, although with limited discrimination power. By targeting the three C>T SNPs rs527559815, rs547832288, and rs16906252, located in the promoter of the O6-methylguanine-DNA methyltransferase (MGMT) gene within a distance of 45 bp, we investigated whether the discrimination power can be increased by coupling HRM analysis with pyrosequencing (PSQ). After optimizing polymerase chain reaction (PCR) conditions, PCR products subjected to HRM analysis could directly be used for PSQ. By analyzing oligodeoxynucleotide controls, representing the 36 theoretically possible variant combinations for diploid human cells (8 triple-homozygous, 12 double-homozygous, 12 double-heterozygous and 4 triple-heterozygous combinations), 34 out of the 36 variant combinations could be genotyped unambiguously by combined analysis of HRM and PSQ data, compared to 22 variant combinations by HRM analysis and 16 variant combinations by PSQ. Our approach was successfully applied to genotype stable cell lines of different origin, primary human tumor cell lines from glioma patients, and breast tissue samples.


Asunto(s)
Metilasas de Modificación del ADN/genética , Enzimas Reparadoras del ADN/genética , Glioma/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Regiones Promotoras Genéticas/genética , Proteínas Supresoras de Tumor/genética , Mama/metabolismo , Mama/patología , Metilación de ADN/genética , Femenino , Congelación , Genotipo , Glioma/metabolismo , Glioma/patología , Humanos , Polimorfismo de Nucleótido Simple/genética
4.
Int J Cancer ; 147(6): 1680-1693, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32064608

RESUMEN

Ponatinib is a small molecule multi-tyrosine kinase inhibitor clinically approved for anticancer therapy. Molecular mechanisms by which cancer cells develop resistance against ponatinib are currently poorly understood. Likewise, intracellular drug dynamics, as well as potential microenvironmental factors affecting the activity of this compound are unknown. Cell/molecular biological and analytical chemistry methods were applied to investigate uptake kinetics/subcellular distribution, the role of lipid droplets (LDs) and lipoid microenvironment compartments in responsiveness of FGFR1-driven lung cancer cells toward ponatinib. Selection of lung cancer cells for acquired ponatinib resistance resulted in elevated intracellular lipid levels. Uncovering intrinsic ponatinib fluorescence enabled dissection of drug uptake/retention kinetics in vitro as well as in mouse tissue cryosections, and revealed selective drug accumulation in LDs of cancer cells. Pharmacological LD upmodulation or downmodulation indicated that the extent of LD formation and consequent ponatinib incorporation negatively correlated with anticancer drug efficacy. Co-culturing with adipocytes decreased ponatinib levels and fostered survival of cancer cells. Ponatinib-selected cancer cells exhibited increased LD levels and enhanced ponatinib deposition into this organelle. Our findings demonstrate intracellular deposition of the clinically approved anticancer compound ponatinib into LDs. Furthermore, increased LD biogenesis was identified as adaptive cancer cell-defense mechanism via direct drug scavenging. Together, this suggests that LDs represent an underestimated organelle influencing intracellular pharmacokinetics and activity of anticancer tyrosine kinase inhibitors. Targeting LD integrity might constitute a strategy to enhance the activity not only of ponatinib, but also other clinically approved, lipophilic anticancer therapeutics.


Asunto(s)
Resistencia a Antineoplásicos , Imidazoles/farmacocinética , Gotas Lipídicas/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacocinética , Piridazinas/farmacocinética , Animales , Línea Celular Tumoral , Proliferación Celular , Humanos , Imidazoles/uso terapéutico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Ratones , Inhibidores de Proteínas Quinasas/uso terapéutico , Piridazinas/uso terapéutico , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/antagonistas & inhibidores , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Transducción de Señal , Microambiente Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Histopathology ; 77(1): 55-66, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32170970

RESUMEN

AIMS: Malignant pleural mesothelioma (MPM) is a rare malignancy with a dismal prognosis. While the epithelioid type is associated with a more favourable outcome, additional factors are needed to further stratify prognosis and to identify patients who can benefit from multimodal treatment. As epithelioid MPM shows remarkable morphological variability, the prognostic role of the five defined morphologies, the impact of the nuclear grading system and the mitosis-necrosis score were investigated in this study. METHODS AND RESULTS: Tumour specimens of 192 patients with epithelioid MPM from five European centres were histologically subtyped. Nuclear grading and mitosis-necrosis score were determined and correlated with clinicopathological parameters and overall survival (OS). Digital slides of 55 independent cases from The Cancer Genome Atlas (TCGA) database were evaluated for external validation. Histological subtypes were collapsed into three groups based on their overlapping survival curves. The tubulopapillary/microcystic group had a significantly longer OS than the solid/trabecular group (732 days versus 397 days, P = 0.0013). Pleomorphic tumours had the shortest OS (173 days). The solid/trabecular variants showed a significant association with high nuclear grade and mitosis-necrosis score. The mitosis-necrosis score was a robust and independent prognostic factor in our patient cohort. The prognostic significance of all three parameters was externally validated in the TCGA cohort. Patients with tubulopapillary or microcystic tumours showed a greater improvement in OS after receiving multimodal therapy than those with solid or trabecular tumours. CONCLUSIONS: Histological subtypes of epithelioid MPM have a prognostic impact, and might help to select patients for intensive multimodal treatment approaches.


Asunto(s)
Mesotelioma Maligno/patología , Neoplasias Pleurales/patología , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pronóstico
6.
Angew Chem Int Ed Engl ; 59(39): 17130-17136, 2020 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-32633820

RESUMEN

AuIII complexes with N-heterocyclic carbene (NHC) ligands have shown remarkable potential as anticancer agents, yet their fate in vivo has not been thoroughly examined and understood. Reported herein is the synthesis of new AuIII -NHC complexes by direct oxidation with radioactive [124 I]I2 as a valuable strategy to monitor the in vivo biodistribution of this class of compounds using positron emission tomography (PET). While in vitro analyses provide direct evidence for the importance of AuIII -to-AuI reduction to achieve full anticancer activity, in vivo studies reveal that a fraction of the AuIII -NHC prodrug is not immediately reduced after administration but able to reach the major organs before metabolic activation.


Asunto(s)
Antineoplásicos/farmacología , Oro/farmacología , Compuestos Heterocíclicos/farmacología , Metano/análogos & derivados , Animales , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Oro/química , Compuestos Heterocíclicos/química , Humanos , Radioisótopos de Yodo , Ligandos , Metano/química , Metano/farmacología , Ratones , Estructura Molecular , Tomografía de Emisión de Positrones , Distribución Tisular , Células Tumorales Cultivadas
7.
Angew Chem Int Ed Engl ; 58(24): 8007-8012, 2019 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-31002438

RESUMEN

Metal-driven self-assembly afforded a multitude of fascinating supramolecular coordination complexes (SCCs) with applications as catalysts, host-guest, and stimuli-responsive systems. However, the interest in the biological applications of SCCs is only starting to emerge and thorough characterization of their behavior in biological milieus is still lacking. Herein, we report on the synthesis and detailed in-cell tracking of a Pt2 L2 metallacycle. We show that our hexagonal supramolecule accumulates in cancer cell nuclei, exerting a distinctive blue fluorescence staining of chromatin resistant to UV photobleaching selectively in nucleolar G4-rich regions. SCC co-localizes with epitopes of the quadruplex-specific antibody BG4 and replaces other well-known G4 stabilizers. Moreover, the photophysical changes accompanying the metallacycle binding to G4s in solution (fluorescence quenching, absorption enhancement) also take place intracellularly, allowing its subcellular interaction tracking.


Asunto(s)
ADN/química , G-Cuádruplex , Compuestos Organoplatinos/química , Línea Celular Tumoral , ADN/metabolismo , Fibroblastos/metabolismo , Humanos , Queratinocitos/metabolismo , Células MCF-7 , Modelos Moleculares , Compuestos Organoplatinos/síntesis química , Compuestos Organoplatinos/farmacocinética , Espectrofotometría Ultravioleta
8.
Carcinogenesis ; 39(4): 534-545, 2018 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-29635378

RESUMEN

Malignant pleural mesothelioma (MPM), an aggressive malignancy affecting pleural surfaces, occurs in three main histological subtypes. The epithelioid and sarcomatoid subtypes are characterized by cuboid and fibroblastoid cells, respectively. The biphasic subtype contains a mixture of both. The sarcomatoid subtype expresses markers of epithelial-mesenchymal transition (EMT) and confers the worst prognosis, but the signals and pathways controlling EMT in MPM are not well understood. We demonstrate that treatment with FGF2 or EGF induced a fibroblastoid morphology in several cell lines from biphasic MPM, accompanied by scattering, decreased cell adhesion and increased invasiveness. This depended on the MAP-kinase pathway but was independent of TGFß or PI3-kinase signaling. In addition to changes in known EMT markers, microarray analysis demonstrated differential expression of MMP1, ESM1, ETV4, PDL1 and BDKR2B in response to both growth factors and in epithelioid versus sarcomatoid MPM. Inhibition of MMP1 prevented FGF2-induced scattering and invasiveness. Moreover, in MPM cells with sarcomatoid morphology, inhibition of FGF/MAP-kinase signaling induced a more epithelioid morphology and gene expression pattern. Our findings suggest a critical role of the MAP-kinase axis in the morphological and behavioral plasticity of mesothelioma.


Asunto(s)
Factor de Crecimiento Epidérmico/metabolismo , Transición Epitelial-Mesenquimal/fisiología , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Neoplasias Pulmonares/patología , Mesotelioma/patología , Neoplasias Pleurales/patología , Línea Celular Tumoral , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Metaloproteinasa 1 de la Matriz/metabolismo , Mesotelioma/metabolismo , Mesotelioma Maligno , Neoplasias Pleurales/metabolismo , Transducción de Señal/fisiología
9.
J Pathol ; 237(2): 203-14, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26011651

RESUMEN

Malignant pleural mesothelioma (MPM) is a devastating malignancy characterized by invasive growth and rapid recurrence. The identification and inhibition of molecular components leading to this migratory and invasive phenotype are thus essential. Accordingly, a genome-wide expression array analysis was performed on MPM cell lines and a set of 139 genes was identified as differentially expressed in cells with high versus low migratory activity. Reduced expression of the novel tumour suppressor integrin α7 (ITGA7) was found in highly motile cells. A significant negative correlation was observed between ITGA7 transcript levels and average displacement of cells. Forced overexpression of ITGA7 in MPM cells with low endogenous ITGA7 expression inhibited cell motility, providing direct evidence for the regulatory role of ITGA7 in MPM cell migration. MPM cells showed decreased ITGA7 expressions at both transcription and protein levels when compared to non-malignant mesothelial cells. The majority of MPM cell cultures displayed hypermethylation of the ITGA7 promoter when compared to mesothelial cultures. A statistically significant negative correlation between ITGA7 methylation and ITGA7 expression was also observed in MPM cells. While normal human pleura samples unambiguously expressed ITGA7, a varying level of expression was found in a panel of 200 human MPM samples. In multivariate analysis, ITGA7 expression was found to be an independent prognostic factor. Although there was no correlation between histological subtypes and ITGA7 expression, importantly, patients with high tumour cell ITGA7 expression had an increased median overall survival compared to the low- or no-expression groups (463 versus 278 days). In conclusion, our data suggest that ITGA7 is an epigenetically regulated tumour suppressor gene and a prognostic factor in human MPM.


Asunto(s)
Antígenos CD/metabolismo , Movimiento Celular , Epigénesis Genética , Cadenas alfa de Integrinas/metabolismo , Neoplasias Pulmonares/metabolismo , Mesotelioma/metabolismo , Neoplasias Pleurales/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Antígenos CD/genética , Línea Celular Tumoral , Metilación de ADN , Regulación hacia Abajo , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica , Estudio de Asociación del Genoma Completo , Humanos , Cadenas alfa de Integrinas/genética , Estimación de Kaplan-Meier , Laminina/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidad , Neoplasias Pulmonares/patología , Mesotelioma/genética , Mesotelioma/mortalidad , Mesotelioma/patología , Mesotelioma Maligno , Análisis Multivariante , Invasividad Neoplásica , Análisis de Secuencia por Matrices de Oligonucleótidos , Neoplasias Pleurales/genética , Neoplasias Pleurales/mortalidad , Neoplasias Pleurales/patología , Pronóstico , Regiones Promotoras Genéticas , Modelos de Riesgos Proporcionales , ARN Mensajero/metabolismo , Factores de Riesgo , Transducción de Señal , Factores de Tiempo , Transfección , Proteínas Supresoras de Tumor/genética
10.
Int J Cancer ; 136(6): 1296-307, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25046141

RESUMEN

Brain metastases occur frequently in melanoma patients with advanced disease whereby the prognosis is dismal. The underlying mechanisms of melanoma brain metastasis development are not well understood. Identification of molecular determinants regulating melanoma brain metastasis would advance the development of prevention and therapy strategies for this disease. Gene expression profiles of cutaneous and brain-metastasizing melanoma variants from three xenograft tumor models established in our laboratory revealed that expression of tight junction component CLDN1 was lower in the brain-metastasizing variants than in cutaneous variants from the same melanoma. The objective of our study was to determine the significance of CLDN1 downregulation/loss in metastatic melanoma and its role in melanoma brain metastasis. An immunohistochemical analysis of human cells of the melanocyte lineage indicated a significant CLDN1 downregulation in metastatic melanomas. Transduction of melanoma brain metastatic cells expressing low levels of CLDN1 with a CLDN1 retrovirus suppressed their metastatic phenotype. CLDN1-overexpressing melanoma cells expressed a lower ability to migrate and adhere to extracellular matrix, reduced tumor aggressiveness in nude mice and, most importantly, eliminated the formation of micrometastases in the brain. In sharp contrast, the ability of the CLDN1-overexpressing cells to form lung micrometastases was not impaired. CLDN1-mediated interactions between these cells and brain endothelial cells constitute the mechanism underlying these results. Taken together, we demonstrated that downregulation or loss of CLDN1 supports the formation of melanoma brain metastasis, and that CLDN1 expression could be a useful prognostic predictor for melanoma patients with a high risk of brain metastasis.


Asunto(s)
Neoplasias Encefálicas/secundario , Claudina-1/fisiología , Melanoma/secundario , Neoplasias Cutáneas/patología , Microambiente Tumoral , Animales , Adhesión Celular , Línea Celular Tumoral , Linaje de la Célula , Movimiento Celular , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Micrometástasis de Neoplasia , Fenotipo
11.
Am J Respir Crit Care Med ; 190(7): 763-72, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-25188816

RESUMEN

RATIONALE: Malignant pleural mesothelioma is an aggressive malignancy characterized by frequent resistance to chemo- and radiotherapy, poor outcome, and limited therapeutic options. Fibroblast growth factors (FGFs) and their receptors are potential targets for cancer therapy, but their significance in mesothelioma has remained largely undefined. OBJECTIVES: To investigate the antimesothelioma potential of FGF receptor 1 (FGFR1) inhibition. METHODS: Expression of FGFs and their receptors was analyzed in mesothelioma cell lines and tissue specimens. Several cell models were used to investigate FGFR1 inhibition in vitro and in combination with cisplatin and irradiation. Mouse intraperitoneal xenotransplant models were used for in vivo validation. MEASUREMENTS AND MAIN RESULTS: FGFR1, FGF2, and FGF18 were overexpressed in mesothelioma. Stimulation with FGF2 led to increased cell proliferation, migration, and transition to a more sarcomatoid phenotype in subsets of mesothelioma cell lines. In contrast, inhibition of FGFR1 by a specific kinase inhibitor or a dominant-negative FGFR1 construct led to significantly decreased proliferation, clonogenicity, migration, spheroid formation, and G1 cell cycle arrest in several mesothelioma cell lines, accompanied by apoptosis induction and decreased mitogen-activated protein kinase pathway activity. Reduced tumor growth, proliferation, mitogenic signaling, and apoptosis induction were observed in vivo. Inhibition of FGFR1 synergistically enhanced the cytotoxic effects of ionizing radiation and cisplatin. CONCLUSIONS: Our data suggest that the malignant phenotype of mesothelioma cells depends on intact FGF signals, which should be considered as therapeutic targets with a promising chemo- and radiosensitizing potential.


Asunto(s)
Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/radioterapia , Mesotelioma/tratamiento farmacológico , Mesotelioma/radioterapia , Inhibidores de Proteínas Quinasas/farmacología , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/antagonistas & inhibidores , Animales , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Apoptosis/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Cisplatino/farmacología , Terapia Combinada/métodos , Modelos Animales de Enfermedad , Humanos , Neoplasias Pulmonares/genética , Mesotelioma/genética , Mesotelioma Maligno , Ratones , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/efectos de los fármacos , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
12.
Carcinogenesis ; 35(10): 2331-8, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25031272

RESUMEN

Recently, we found upregulation of fibroblast growth factor receptor 4 (FGFR4) in a subset of hepatocellular carcinoma (HCC). Here, we provide mechanistic insight into the role of FGFR4-mediated signalling for the aggressive behaviour of HCC cells. To overexpress FGFR4, hepatoma/hepatocarcinoma cells were transfected with a construct coding for FGFR4. For downmodulation of endogenous FGFR4, we used small interfering RNA or adenoviral infection with dominant-negative FGFR4 constructs being either kinase dead (kdFGFR4) or coding for the autoinhibitory soluble domain (solFGFR4). FGFR4 overexpression in non-tumourigenic hepatocarcinoma cells significantly reduced cell-matrix adhesion, enabled cells to grow anchorage-independently in soft agar, to disintegrate the lymph-/blood-endothelial barrier for intra-/extravasation of tumour cells and to form tumours in SCID mice. Transcriptome analysis revealed altered expression of genes involved in cell-matrix interactions. Conversely, in highly tumourigenic cell lines, kdFGFR4 or solFGFR4 lowered the proportion of cells in S phase of the cell cycle, enhanced the G0/G1 and G2/M-phase proportions, reduced anchorage-independent growth in vitro and attenuated disintegration of the lymph-/blood-endothelium and tumour formation in vivo. These findings were confirmed by altered expression profiles of genes being important for late stages of cell division. Deregulated FGFR4 expression appears to be one of the key drivers of the malignant phenotype of HCC cells. Accordingly, blockade of FGFR4-mediated signalling by soluble dominant-negative constructs, like solFGFR4, may be a feasible and promising therapeutic approach to antagonize aggressive behaviour of hepatoma/hepatocarcinoma cells.


Asunto(s)
Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos/metabolismo , Animales , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Adhesión Celular , Línea Celular Tumoral , Proliferación Celular , Técnicas de Silenciamiento del Gen , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Ratones , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos/genética , Transducción de Señal/genética , Ensayos Antitumor por Modelo de Xenoinjerto
13.
PLoS Genet ; 7(4): e1002042, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21533183

RESUMEN

Albeit genetically highly heterogeneous, muscular dystrophies (MDs) share a convergent pathology leading to muscle wasting accompanied by proliferation of fibrous and fatty tissue, suggesting a common MD-pathomechanism. Here we show that mutations in muscular dystrophy genes (Dmd, Dysf, Capn3, Large) lead to the spontaneous formation of skeletal muscle-derived malignant tumors in mice, presenting as mixed rhabdomyo-, fibro-, and liposarcomas. Primary MD-gene defects and strain background strongly influence sarcoma incidence, latency, localization, and gender prevalence. Combined loss of dystrophin and dysferlin, as well as dystrophin and calpain-3, leads to accelerated tumor formation. Irrespective of the primary gene defects, all MD sarcomas share non-random genomic alterations including frequent losses of tumor suppressors (Cdkn2a, Nf1), amplification of oncogenes (Met, Jun), recurrent duplications of whole chromosomes 8 and 15, and DNA damage. Remarkably, these sarcoma-specific genetic lesions are already regularly present in skeletal muscles in aged MD mice even prior to sarcoma development. Accordingly, we show also that skeletal muscle from human muscular dystrophy patients is affected by gross genomic instability, represented by DNA double-strand breaks and age-related accumulation of aneusomies. These novel aspects of molecular pathologies common to muscular dystrophies and tumor biology will potentially influence the strategies to combat these diseases.


Asunto(s)
Aneuploidia , Daño del ADN , Músculo Esquelético/patología , Distrofias Musculares/genética , Sarcoma/genética , Animales , Calpaína/genética , Calpaína/metabolismo , Células Cultivadas , Hibridación Genómica Comparativa , Modelos Animales de Enfermedad , Disferlina , Distrofina/deficiencia , Distrofina/genética , Distrofina/metabolismo , Femenino , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Distrofias Musculares/diagnóstico , Distrofias Musculares/metabolismo , Mutación , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismo
14.
J Med Chem ; 67(8): 6081-6098, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38401050

RESUMEN

In this work, we investigated the anticancer activity of several novel silver(I) 2,2'-bipyridine complexes containing either triphenylphosphane (PPh3) or 1,2-bis(diphenylphosphino)ethane (dppe) ligands. All compounds were characterized by diverse analytical methods including ESI-MS spectrometry; NMR, UV-vis, and FTIR spectroscopies; and elemental analysis. Moreover, several compounds were also studied by X-ray single-crystal diffraction. Subsequently, the compounds were investigated for their anticancer activity against drug-resistant and -sensitive cancer cells. Noteworthily, neither carboplatin and oxaliplatin resistance nor p53 deletion impacted on their anticancer efficacy. MES-OV cells displayed exceptional hypersensitivity to the dppe-containing drugs. This effect was not based on thioredoxin reductase inhibition, enhanced drug uptake, or apoptosis induction. In contrast, dppe silver drugs induced paraptosis, a novel recently described form of programmed cell death. Together with the good tumor specificity of this compound's class, this work suggests that dppe-containing silver complexes could be interesting drug candidates for the treatment of resistant ovarian cancer.


Asunto(s)
2,2'-Dipiridil , Antineoplásicos , Fosfinas , Plata , Humanos , Fosfinas/química , Fosfinas/farmacología , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Plata/química , Plata/farmacología , 2,2'-Dipiridil/química , 2,2'-Dipiridil/farmacología , Línea Celular Tumoral , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Complejos de Coordinación/síntesis química , Apoptosis/efectos de los fármacos , Cristalografía por Rayos X , Ligandos , Muerte Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Relación Estructura-Actividad , Resistencia a Antineoplásicos/efectos de los fármacos
15.
Eur Urol Oncol ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38755094

RESUMEN

Current standard-of-care systemic therapy options for locally advanced and metastatic bladder cancer (BC), which are predominantly based on cisplatin-gemcitabine combinations, are limited by significant treatment failure rates and frailty-based patient ineligibility. We previously addressed the urgent clinical need for better-tolerated BC therapeutic strategies using a drug screening approach, which identified outstanding antineoplastic activity of clofarabine in preclinical models of BC. To further assess clofarabine as a potential BC therapy component, we conducted head-to-head comparisons of responses to clofarabine versus gemcitabine in preclinical in vitro and in vivo models of BC, complemented by in silico analyses. In vitro data suggest a distinct correlation between the two antimetabolites, with higher cytotoxicity of gemcitabine, especially against several nonmalignant cell types, including keratinocytes and endothelial cells. Accordingly, tolerance of clofarabine (oral or intraperitoneal application) was distinctly better than for gemcitabine (intraperitoneal) in patient-derived xenograft models of BC. Clofarabine also exhibited distinctly superior anticancer efficacy, even at dosing regimens optimized for gemcitabine. Neither complete remission nor cure, both of which were observed with clofarabine, were achieved with any tolerable gemcitabine regimen. Taken together, our findings demonstrate that clofarabine has a better therapeutic window than gemcitabine, further emphasizing its potential as a candidate for drug repurposing in BC. PATIENT SUMMARY: We compared the anticancer activity of clofarabine, a drug used for treatment of leukemia but not bladder cancer, and gemcitabine, a drug currently used for chemotherapy against bladder cancer. Using cell cultures and mouse models, we found that clofarabine was better tolerated and more efficacious than gemcitabine, and even cured implanted tumors in mouse models. Our results suggest that clofarabine, alone or in combination schemes, might be superior to gemcitabine for the treatment of bladder cancer.

16.
J Exp Clin Cancer Res ; 42(1): 27, 2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36683050

RESUMEN

BACKGROUND: Pleural mesothelioma (PM) is an aggressive malignancy with poor prognosis. Unlike many other cancers, PM is mostly characterized by inactivation of tumor suppressor genes. Its highly malignant nature in absence of tumor driving oncogene mutations indicates an extrinsic supply of stimulating signals by cells of the tumor microenvironment (TME). Cancer-associated fibroblasts (CAFs) are an abundant cell type of the TME and have been shown to drive the progression of several malignancies. The aim of the current study was to isolate and characterize patient-derived mesothelioma-associated fibroblasts (Meso-CAFs), and evaluate their impact on PM cells. METHODS: Meso-CAFs were isolated from surgical specimens of PM patients and analyzed by array comparative genomic hybridization, next generation sequencing, transcriptomics and proteomics. Human PM cell lines were retrovirally transduced with GFP. The impact of Meso-CAFs on tumor cell growth, migration, as well as the response to small molecule inhibitors, cisplatin and pemetrexed treatment was investigated in 2D and 3D co-culture models by videomicroscopy and automated image analysis. RESULTS: Meso-CAFs show a normal diploid genotype without gene copy number aberrations typical for PM cells. They express CAF markers and lack PM marker expression. Their proteome and secretome profiles clearly differ from normal lung fibroblasts with particularly strong differences in actively secreted proteins. The presence of Meso-CAFs in co-culture resulted in significantly increased proliferation and migration of PM cells. A similar effect on PM cell growth and migration was induced by Meso-CAF-conditioned medium. Inhibition of c-Met with crizotinib, PI3K with LY-2940002 or WNT signaling with WNT-C59 significantly impaired the Meso-CAF-mediated growth stimulation of PM cells in co-culture at concentrations not affecting the PM cells alone. Meso-CAFs did not provide protection of PM cells against cisplatin but showed significant protection against the EGFR inhibitor erlotinib. CONCLUSIONS: Our study provides the first characterization of human patient-derived Meso-CAFs and demonstrates a strong impact of Meso-CAFs on PM cell growth and migration, two key characteristics of PM aggressiveness, indicating a major role of Meso-CAFs in driving PM progression. Moreover, we identify signaling pathways required for Meso-CAF-mediated growth stimulation. These data could be relevant for novel therapeutic strategies against PM.


Asunto(s)
Mesotelioma Maligno , Mesotelioma , Humanos , Cisplatino/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Vía de Señalización Wnt , Hibridación Genómica Comparativa , Mesotelioma/tratamiento farmacológico , Mesotelioma/genética , Mesotelioma/metabolismo , Mesotelioma Maligno/metabolismo , Fibroblastos/metabolismo , Proliferación Celular , Línea Celular Tumoral , Microambiente Tumoral
17.
Pharmaceutics ; 15(2)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36839999

RESUMEN

For a variety of cancer types, platinum compounds are still among the best treatment options. However, their application is limited by side effects and drug resistance. Consequently, multi-targeted platinum(IV) prodrugs that target specific traits of the malignant tissue are interesting new candidates. Recently, cisPt(PhB)2 was synthesized which, upon reduction in the malignant tissue, releases phenylbutyrate (PhB), a metabolically active fatty acid analog, in addition to cisplatin. In this study, we in-depth investigated the anticancer properties of this new complex in cell culture and in mouse allograft experiments. CisPt(PhB)2 showed a distinctly improved anticancer activity compared to cisplatin as well as to PhB alone and was able to overcome various frequently occurring drug resistance mechanisms. Furthermore, we observed that differences in the cellular fatty acid metabolism and mitochondrial activity distinctly impacted the drug's mode of action. Subsequent analyses revealed that "Warburg-like" cells, which are characterized by deficient mitochondrial function and fatty acid catabolism, are less capable of coping with cisPt(PhB)2 leading to rapid induction of a non-apoptotic form of cell death. Summarizing, cisPt(PhB)2 is a new orally applicable platinum(IV) prodrug with promising activity especially against cisplatin-resistant cancer cells with "Warburg-like" properties.

18.
Lung Cancer ; 185: 107360, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37713954

RESUMEN

OBJECTIVES: Pleural mesothelioma (PM) is a rare disease with dismal outcome. Systemic treatment options include chemotherapy and immunotherapy, but biomarkers for treatment personalization are missing. The only FDA-approved diagnostic biomarker is the soluble mesothelin-related protein (SMRP). Krebs von den Lungen-6 (KL-6) is a human mucin 1 (MUC1) glycoprotein, which has shown diagnostic and prognostic value as a biomarker in other malignancies. The present study investigated whether KL-6 can serve as a diagnostic and/or prognostic biomarker in PM. MATERIALS AND METHODS: Using a fully-automated chemiluminescence enzyme immunoassay (CLEIA) for KL-6 and SMRP, pleural effusion samples from 87 consecutive patients with PM and 25 patients with non-malignant pleural disorders were studied. In addition, KL-6 and SMRP levels were determined in corresponding patient sera, and in an independent validation cohort (n = 122). MUC1 mRNA and protein expression, and KL-6 levels in cell line supernatants were investigated in PM primary cell lines in vitro. RESULTS: PM patients had significantly higher KL-6 levels in pleural effusion than non-malignant controls (AUC 0.78, p < 0.0001). Among PM patients, levels were highest in those with epithelioid or biphasic histologies. There was a strong positive correlation between pleural effusion levels of KL-6 and SMRP (p < 0.0001). KL-6 levels in sera similarly associated with diagnosis of PM, however, to a lesser extent (AUC 0.71, p = 0.008). PM patients with high pleural effusion KL-6 levels (≥303 IU/mL) had significantly better overall survival (OS) compared to those with low KL-6 levels (HR 0.51, p = 0.004). Congruently, high tumor cell MUC1 mRNA expression in primary cell lines associated with prolonged corresponding patient OS (HR 0.35, p = 0.004). These findings were confirmed in an independent validation cohort. CONCLUSION: This is the first study demonstrating KL-6 as a potential novel liquid-based diagnostic and prognostic biomarker in PM.

19.
Cells ; 12(15)2023 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-37566084

RESUMEN

Pleural mesothelioma (PM) is an aggressive malignancy that develops in a unique tumor microenvironment (TME). However, cell models for studying the TME in PM are still limited. Here, we have generated and characterized novel human telomerase reverse transcriptase (hTERT)-transduced mesothelial cell and mesothelioma-associated fibroblast (Meso-CAF) models and investigated their impact on PM cell growth. Pleural mesothelial cells and Meso-CAFs were isolated from tissue of pneumothorax and PM patients, respectively. Stable expression of hTERT was induced by retroviral transduction. Primary and hTERT-transduced cells were compared with respect to doubling times, hTERT expression and activity levels, telomere lengths, proteomes, and the impact of conditioned media (CM) on PM cell growth. All transduced derivatives exhibited elevated hTERT expression and activity, and increased mean telomere lengths. Cell morphology remained unchanged, and the proteomes were similar to the corresponding primary cells. Of note, the CM of primary and hTERT-transduced Meso-CAFs stimulated PM cell growth to the same extent, while CM derived from mesothelial cells had no stimulating effect, irrespective of hTERT expression. In conclusion, all new hTERT-transduced cell models closely resemble their primary counterparts and, hence, represent valuable tools to investigate cellular interactions within the TME of PM.


Asunto(s)
Mesotelioma Maligno , Mesotelioma , Neoplasias Pleurales , Telomerasa , Humanos , Proteoma/metabolismo , Telomerasa/metabolismo , Mesotelioma/genética , Fibroblastos/metabolismo , Neoplasias Pleurales/genética , Microambiente Tumoral
20.
Cancer Lett ; 565: 216237, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37211067

RESUMEN

Small-molecule EGFR inhibitors have distinctly improved the overall survival especially in EGFR-mutated lung cancer. However, their use is often limited by severe adverse effects and rapid resistance development. To overcome these limitations, a hypoxia-activatable Co(III)-based prodrug (KP2334) was recently synthesized releasing the new EGFR inhibitor KP2187 in a highly tumor-specific manner only in hypoxic areas of the tumor. However, the chemical modifications in KP2187 necessary for cobalt chelation could potentially interfere with its EGFR-binding ability. Consequently, in this study, the biological activity and EGFR inhibition potential of KP2187 was compared to clinically approved EGFR inhibitors. In general, the activity as well as EGFR binding (shown in docking studies) was very similar to erlotinib and gefitinib (while other EGFR-inhibitory drugs behaved different) indicating no interference of the chelating moiety with the EGFR binding. Moreover, KP2187 significantly inhibited cancer cell proliferation as well as EGFR pathway activation in vitro and in vivo. Finally, KP2187 proved to be highly synergistic with VEGFR inhibitors such as sunitinib. This indicates that KP2187-releasing hypoxia-activated prodrug systems are promising candidates to overcome the clinically observed enhanced toxicity of EGFR-VEGFR inhibitor combination therapies.


Asunto(s)
Antineoplásicos , Neoplasias Pulmonares , Profármacos , Humanos , Profármacos/farmacología , Profármacos/uso terapéutico , Receptores ErbB/metabolismo , Inhibidores de Proteínas Quinasas/uso terapéutico , Clorhidrato de Erlotinib/farmacología , Neoplasias Pulmonares/metabolismo , Proliferación Celular , Hipoxia/metabolismo , Línea Celular Tumoral , Antineoplásicos/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA