RESUMEN
To improve understanding of bull shark Carcharhinus leucas reproductive biology, we analysed reproductive traits from 118 bull sharks caught along Reunion Island coasts (Western Indian Ocean), including 16 gravid females. Specific microsatellite loci were used to investigate the frequency of multiple paternity. Males and females reached maturity at c. 234 cm and 257 cm total length (LT ), respectively, and litter sizes ranged from 5 to 14 embryos. Analysis of the 16 litters collected in various months of the year indicated that parturition occurs between October and December, with a size at birth c. 60-80 cm LT and that the gestation period is probably c. 12 months. Assuming a 1 year resting period and a period of sperm storage (4-5 months) between mating (in June-September) and fertilisation, the reproductive cycle of bull sharks at Reunion Island would be biennial. At least 56.25% of the litters investigated were polyandrous, sired by 2-5 males. Several males that each sired several litters conceived during the same or distinct mating seasons were detected, suggesting both a seasonal aggregation of sharks to mate and some male fidelity to mating site. Altogether, these findings provide valuable information for both shark risk management and conservation of the species in the Western Indian Ocean.
Asunto(s)
Conducta Sexual Animal , Tiburones/fisiología , Animales , Femenino , Océano Índico , Masculino , Repeticiones de Microsatélite , Paternidad , Reproducción , Reunión , Estaciones del Año , Tiburones/genéticaRESUMEN
Population genetics has been increasingly applied to study large sharks over the last decade. Whilst large shark species are often difficult to study with direct methods, improved knowledge is needed for both population management and conservation, especially for species vulnerable to anthropogenic and climatic impacts. The tiger shark, Galeocerdo cuvier, is an apex predator known to play important direct and indirect roles in tropical and subtropical marine ecosystems. While the global and Indo-West Pacific population genetic structure of this species has recently been investigated, questions remain over population structure and demographic history within the western Indian (WIO) and within the western Pacific Oceans (WPO). To address the knowledge gap in tiger shark regional population structures, the genetic diversity of 286 individuals sampled in seven localities was investigated using 27 microsatellite loci and three mitochondrial genes (CR,COI, and cytb). A weak genetic differentiation was observed between the WIO and the WPO, suggesting high genetic connectivity. This result agrees with previous studies and highlights the importance of the pelagic behavior of this species to ensure gene flow. Using approximate Bayesian computation to couple information from both nuclear and mitochondrial markers, evidence of a recent bottleneck in the Holocene (2,000-3,000 years ago) was found, which is the most probable cause for the low genetic diversity observed. A contemporary effective population size as low as 111 [43,369] was estimated during the bottleneck. Together, these results indicate low genetic diversity that may reflect a vulnerable population sensitive to regional pressures. Conservation measures are thus needed to protect a species that is classified as Near Threatened.
RESUMEN
Knowledge of population structure, connectivity, and effective population size remains limited for many marine apex predators, including the bull shark Carcharhinus leucas. This large-bodied coastal shark is distributed worldwide in warm temperate and tropical waters, and uses estuaries and rivers as nurseries. As an apex predator, the bull shark likely plays a vital ecological role within marine food webs, but is at risk due to inshore habitat degradation and various fishing pressures. We investigated the bull shark's global population structure and demographic history by analyzing the genetic diversity of 370 individuals from 11 different locations using 25 microsatellite loci and three mitochondrial genes (CR, nd4, and cytb). Both types of markers revealed clustering between sharks from the Western Atlantic and those from the Western Pacific and the Western Indian Ocean, with no contemporary gene flow. Microsatellite data suggested low differentiation between the Western Indian Ocean and the Western Pacific, but substantial differentiation was found using mitochondrial DNA. Integrating information from both types of markers and using Bayesian computation with a random forest procedure (ABC-RF), this discordance was found to be due to a complete lack of contemporary gene flow. High genetic connectivity was found both within the Western Indian Ocean and within the Western Pacific. In conclusion, these results suggest important structuring of bull shark populations globally with important gene flow occurring along coastlines, highlighting the need for management and conservation plans on regional scales rather than oceanic basin scale.
RESUMEN
Sea cucumbers are increasingly exploited for human consumption and for their curative properties, and many wild populations are now depleted or in danger of extinction. While aquaculture is seen as an alternative to fisheries and as a mean to restore wild populations, more knowledge is needed on their reproductive strategies to render this practice efficient, notably for fissiparous holothurians, which are some of the mobile animals able of asexual reproduction by transverse fission. Little information is available on their population genetic diversity and structure. Here, the clonal structure of populations of the fissiparous sea cucumber Stichopus chloronotus has been investigated using nine microsatellite loci and a random sampling, at different spatial (intra-reef and inter-reef) and temporal (inter-season and inter-year) scales. Our findings highlight the importance of asexual reproduction in maintaining these populations, and the prevalence of the "initial seedling recruitment" strategy (ISR), leading to a high stability of clonal composition over seasons and years. It also seemed that clonal propagation was limited to the reef scale (<10 km) while reefs were connected by sexual dispersal. This is the first time that clonal structure in sea cucumbers has been studied at such a fine scale, with a specific sampling strategy. It provides key findings on the genetic diversity and structure of fissiparous sea cucumbers, which will be useful for the management of wild populations and aquaculture.
RESUMEN
Severe food poisoning events after the consumption of sharks have been reported since the 1940s; however, there has been no clear understanding of their cause. Herein, we report for the first time the presence of ciguatoxins (CTXs) in sharks. The identification by mass spectrometry of CTXs, including two new analogues, in a bull shark (Carcharhinus leucas) that was consumed by humans, causing the poisoning and death of 11 people in Madagascar in 2013 is described. Typical neurotoxic ciguatera symptoms were recorded in patients, and toxicological assays on extracts of the shark demonstrated CTX-like activity. These results confirm this episode as a ciguatera poisoning event and expand the range of pelagic fish species that are involved in ciguatera in the Indian Ocean. Additionally, gambieric acid D, a molecule originally described in CTX-producing microalgae, was identified for the first time in fish. This finding can contribute to a better understanding of trophic relations within food webs. The present work confirms that consumption of sharks from the Indian Ocean should be considered a ciguatera risk, and actions should be taken to evaluate its magnitude and risk in order to manage shark fisheries.
Asunto(s)
Intoxicación por Ciguatera/epidemiología , Intoxicación por Ciguatera/etiología , Ciguatoxinas/análisis , Ciguatoxinas/toxicidad , Tiburones , Animales , Bioensayo , Línea Celular , Supervivencia Celular/efectos de los fármacos , Cromatografía Liquida , Intoxicación por Ciguatera/mortalidad , Brotes de Enfermedades , Humanos , Océano Índico , Madagascar/epidemiología , Espectrometría de Masas , Ratones , Vigilancia en Salud Pública , Alimentos Marinos/toxicidad , Tiburones/metabolismoRESUMEN
The tiger shark Galeocerdo cuvier (Carcharhinidae) is a large elasmobranch suspected to have, as other apex predators, a keystone function in marine ecosystems and is currently considered Near Threatened (Red list IUCN). Knowledge on its ecology, which is crucial to design proper conservation and management plans, is very scarce. Here we describe the isolation of eight polymorphic microsatellite loci using 454 GS-FLX Titanium pyrosequencing of enriched DNA libraries. Their characteristics were tested on a population of tiger shark (n = 101) from Reunion Island (South-Western Indian Ocean). All loci were polymorphic with a number of alleles ranging from two to eight. No null alleles were detected and no linkage disequilibrium was detected after Bonferroni correction. Observed and expected heterozygosities ranged from 0.03 to 0.76 and from 0.03 to 0.77, respectively. No locus deviated from Hardy-Weinberg equilibrium and the global F IS of the population was of 0.04 (NS) . Some of the eight loci developed here successfully cross-amplified in the bull shark Carcharhinus leucas (one locus), the spinner shark Carcharhinus brevipinna (four loci), the sandbar shark Carcharhinus plumbeus (five loci) and the scalloped hammerhead shark Sphyrna lewini (two loci). We also designed primers to amplify and sequence a mitochondrial marker, the control region. We sequenced 862 bp and found a low genetic diversity, with four polymorphic sites, a haplotype diversity of 0.15 and a nucleotide diversity of 2 × 10(-4).