Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(29): e2121095119, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35858334

RESUMEN

The coordination of swallowing with breathing, in particular inspiration, is essential for homeostasis in most organisms. While much has been learned about the neuronal network critical for inspiration in mammals, the pre-Bötzinger complex (preBötC), little is known about how this network interacts with swallowing. Here we activate within the preBötC excitatory neurons (defined as Vglut2 and Sst neurons) and inhibitory neurons (defined as Vgat neurons) and inhibit and activate neurons defined by the transcription factor Dbx1 to gain an understanding of the coordination between the preBötC and swallow behavior. We found that stimulating inhibitory preBötC neurons did not mimic the premature shutdown of inspiratory activity caused by water swallows, suggesting that swallow-induced suppression of inspiratory activity is not directly mediated by the inhibitory neurons in the preBötC. By contrast, stimulation of preBötC Dbx1 neurons delayed laryngeal closure of the swallow sequence. Inhibition of Dbx1 neurons increased laryngeal closure duration and stimulation of Sst neurons pushed swallow occurrence to later in the respiratory cycle, suggesting that excitatory neurons from the preBötC connect to the laryngeal motoneurons and contribute to the timing of swallowing. Interestingly, the delayed swallow sequence was also caused by chronic intermittent hypoxia (CIH), a model for sleep apnea, which is 1) known to destabilize inspiratory activity and 2) associated with dysphagia. This delay was not present when inhibiting Dbx1 neurons. We propose that a stable preBötC is essential for normal swallow pattern generation and disruption may contribute to the dysphagia seen in obstructive sleep apnea.


Asunto(s)
Deglución , Optogenética , Respiración , Centro Respiratorio , Animales , Deglución/fisiología , Trastornos de Deglución/fisiopatología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Interneuronas/fisiología , Laringe , Ratones , Ratones Transgénicos , Neuronas Motoras/fisiología , Centro Respiratorio/fisiología
2.
Physiology (Bethesda) ; 38(1): 0, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-35998250

RESUMEN

Despite centuries of investigation, questions and controversies remain regarding the fundamental genesis and motor pattern of swallow. Two significant topics include inspiratory muscle activity during swallow (Schluckatmung, i.e., "swallow-breath") and anatomical boundaries of the swallow pattern generator. We discuss the long history of reports regarding the presence or absence of Schluckatmung and the possible advantages of and neural basis for such activity, leading to current theories and novel experimental directions.


Asunto(s)
Deglución , Sistema Respiratorio , Humanos , Deglución/fisiología
3.
Lung ; 202(2): 179-187, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38538927

RESUMEN

PURPOSE: Postoperative pneumonia remains a common complication of surgery, despite increased attention. The purpose of our study was to determine the effects of routine surgery and post-surgical opioid administration on airway protection risk. METHODS: Eight healthy adult cats were evaluated to determine changes in airway protection status and for evidence of dysphagia in two experiments. (1) In four female cats, airway protection status was tracked following routine abdominal surgery (spay surgery) plus low-dose opioid administration (buprenorphine 0.015 mg/kg, IM, q8-12 h; n = 5). (2) Using a cross-over design, four naive cats (2 male, 2 female) were treated with moderate-dose (0.02 mg/kg) or high-dose (0.04 mg/kg) buprenorphine (IM, q8-12 h; n = 5). RESULTS: Airway protection was significantly affected in both experiments, but the most severe deficits occurred post-surgically as 75% of the animals exhibited silent aspiration. CONCLUSION: Oropharyngeal swallow is impaired by the partial mu-opioid receptor agonist buprenorphine, most remarkably in the postoperative setting. These findings have implications for the prevention and management of aspiration pneumonia in vulnerable populations.


Asunto(s)
Analgésicos Opioides , Enfermedades de los Gatos , Trastornos de Deglución , Neumonía , Animales , Gatos , Femenino , Masculino , Analgésicos Opioides/efectos adversos , Buprenorfina/efectos adversos , Enfermedades de los Gatos/inducido químicamente , Trastornos de Deglución/etiología , Trastornos de Deglución/veterinaria , Neumonía/inducido químicamente , Neumonía/complicaciones , Neumonía/veterinaria , Estudios Cruzados
4.
BMC Biol ; 21(1): 83, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-37061721

RESUMEN

Breathing is a singularly robust behavior, yet this motor pattern is continuously modulated at slow and fast timescales to maintain blood-gas homeostasis, while intercalating orofacial behaviors. This functional multiplexing goes beyond the rhythmogenic function that is typically ascribed to medullary respiration-modulated networks and may explain lack of progress in identifying the mechanism and constituents of the respiratory rhythm generator. By recording optically along the ventral respiratory column in medulla, we found convergent evidence that rhythmogenic function is distributed over a dispersed and heterogeneous network that is synchronized by electrotonic coupling across a neuronal syncytium. First, high-speed recordings revealed that inspiratory onset occurred synchronously along the column and did not emanate from a rhythmogenic core. Second, following synaptic isolation, synchronized stationary rhythmic activity was detected along the column. This activity was attenuated following gap junction blockade and was silenced by tetrodotoxin. The layering of syncytial and synaptic coupling complicates identification of rhythmogenic mechanism, while enabling functional multiplexing.


Asunto(s)
Bulbo Raquídeo , Neuronas , Ratones , Animales , Bulbo Raquídeo/fisiología , Neuronas/fisiología , Respiración
5.
J Neurophysiol ; 127(1): 267-278, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34879205

RESUMEN

Brainstem respiratory neuronal network significantly contributes to cough motor pattern generation. Neuronal populations in the pre-Bötzinger complex (PreBötC) represent a substantial component for respiratory rhythmogenesis. We studied the role of PreBötC neuronal excitation and inhibition on mechanically induced tracheobronchial cough in 15 spontaneously breathing, pentobarbital anesthetized adult cats (35 mg/kg, iv initially). Neuronal excitation by unilateral microinjection of glutamate analog d,l-homocysteic acid resulted in mild reduction of cough abdominal electromyogram (EMG) amplitudes and very limited temporal changes of cough compared with effects on breathing (very high respiratory rate, high amplitude inspiratory bursts with a short inspiratory phase, and tonic inspiratory motor component). Mean arterial blood pressure temporarily decreased. Blocking glutamate-related neuronal excitation by bilateral microinjections of nonspecific glutamate receptor antagonist kynurenic acid reduced cough inspiratory and expiratory EMG amplitude and shortened most cough temporal characteristics similarly to breathing temporal characteristics. Respiratory rate decreased and blood pressure temporarily increased. Limiting active neuronal inhibition by unilateral and bilateral microinjections of GABAA receptor antagonist gabazine resulted in lower cough number, reduced expiratory cough efforts, and prolongation of cough temporal features and breathing phases (with lower respiratory rate). The PreBötC is important for cough motor pattern generation. Excitatory glutamatergic neurotransmission in the PreBötC is involved in control of cough intensity and patterning. GABAA receptor-related inhibition in the PreBötC strongly affects breathing and coughing phase durations in the same manner, as well as cough expiratory efforts. In conclusion, differences in effects on cough and breathing are consistent with separate control of these behaviors.NEW & NOTEWORTHY This study is the first to explore the role of the inspiratory rhythm and pattern generator, the pre-Bötzinger complex (PreBötC), in cough motor pattern formation. In the PreBötC, excitatory glutamatergic neurotransmission affects cough intensity and patterning but not rhythm, and GABAA receptor-related inhibition affects coughing and breathing phase durations similarly to each other. Our data show that the PreBötC is important for cough motor pattern generation, but cough rhythmogenesis appears to be controlled elsewhere.


Asunto(s)
Generadores de Patrones Centrales , Tos , Antagonistas de Aminoácidos Excitadores/farmacología , Antagonistas de Receptores de GABA-A/farmacología , Ácido Glutámico/farmacología , Inhalación , Bulbo Raquídeo , Reflejo , Frecuencia Respiratoria , Músculos Abdominales/efectos de los fármacos , Músculos Abdominales/fisiopatología , Animales , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Gatos , Generadores de Patrones Centrales/efectos de los fármacos , Generadores de Patrones Centrales/metabolismo , Generadores de Patrones Centrales/fisiopatología , Tos/tratamiento farmacológico , Tos/metabolismo , Tos/fisiopatología , Electromiografía , Antagonistas de Aminoácidos Excitadores/administración & dosificación , Femenino , Antagonistas de Receptores de GABA-A/administración & dosificación , Ácido Glutámico/administración & dosificación , Ácido Glutámico/análisis , Homocisteína/análogos & derivados , Homocisteína/farmacología , Inhalación/efectos de los fármacos , Inhalación/fisiología , Ácido Quinurénico/farmacología , Masculino , Bulbo Raquídeo/efectos de los fármacos , Bulbo Raquídeo/metabolismo , Bulbo Raquídeo/fisiopatología , Piridazinas/farmacología , Reflejo/efectos de los fármacos , Reflejo/fisiología , Frecuencia Respiratoria/efectos de los fármacos , Frecuencia Respiratoria/fisiología
6.
J Neurophysiol ; 128(2): 405-417, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35830612

RESUMEN

Laryngeal function is vital to airway protection. Although swallow is mediated by the brainstem, the mechanism underlying the increased risk of dysphagia after cervical spinal cord injury (SCI) is unknown. We hypothesized that: 1) loss of descending phrenic drive affects swallow and breathing differently, and 2) loss of ascending spinal afferent information alters swallow regulation. We recorded electromyograms (EMGs) from upper airway and chest wall muscles in freely breathing pentobarbital-anesthetized cats and rats. Laryngeal abductor activity during inspiration increased about twofold following C2 lateral hemisection. Ipsilateral to the injury, the crural diaphragm EMG amplitude was reduced during breathing (62 ± 25% change postinjury), but no animal had complete termination of activity; 75% of animals had increased contralateral diaphragm recruitment, but this did not reach significance. During swallow, laryngeal adductor and pharyngeal constrictor muscles increased activity, and diaphragm activity was bilaterally suppressed. This was unexpected because of the ipsilateral-specific response during breathing. Swallow-breathing coordination was disrupted by injury, and more swallows occurred during early expiration. Finally, to determine if the chest wall is a major source of feedback for laryngeal regulation, we performed T1 total transections in rats. As in the C2 lateral hemisection, inspiratory laryngeal recruitment was the first feature noted after injury. In contrast to the C2 lateral hemisection, diaphragmatic drive increased after T1 transection. Overall, we found that SCI alters laryngeal drive during swallow and breathing, and alters swallow-related diaphragm activity. Our results show behavior-specific effects, suggesting that swallow is affected more than breathing is by SCI, and emphasizing the need for additional studies on the effect of ascending afferents from the spinal cord on laryngeal function.NEW & NOTEWORTHY This is the first manuscript to determine the impact of cSCI on laryngeal and swallow function, and to describe a possible mechanism for dysphagia and altered airway protection after injury.


Asunto(s)
Médula Cervical , Trastornos de Deglución , Traumatismos de la Médula Espinal , Animales , Trastornos de Deglución/etiología , Diafragma/fisiología , Nervio Frénico , Ratas , Ratas Sprague-Dawley , Médula Espinal/fisiología , Traumatismos de la Médula Espinal/complicaciones
7.
J Neurophysiol ; 125(4): 993-1005, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33566745

RESUMEN

Swallow is a primitive behavior regulated by medullary networks, responsible for movement of food/liquid from the oral cavity to the esophagus. To investigate how functionally heterogeneous networks along the medullary intermediate reticular formation (IRt) and ventral respiratory column (VRC) control swallow, we electrically stimulated the nucleus tractus solitarius to induce fictive swallow between inspiratory bursts, with concurrent optical recordings using a synthetic Ca2+ indicator in the neonatal sagittally sectioned rat hindbrain (SSRH) preparation. Simultaneous recordings from hypoglossal nerve rootlet (XIIn) and ventral cervical spinal root C1-C2 enabled identification of the system-level correlates of 1) swallow (identified as activation of the XIIn but not the cervical root) and 2) Breuer-Hering expiratory reflex (BHE; lengthened expiration in response to stimuli during expiration). Optical recording revealed reconfiguration of respiration-modulated networks in the ventrolateral medulla during swallow and the BHE reflex. Recordings identified novel spatially compact networks in the IRt near the facial nucleus (VIIn) that were active during fictive swallow, suggesting that the swallow network is not restricted to the caudal medulla. These findings also establish the utility of using this in vitro preparation to investigate how functionally heterogeneous medullary networks interact and reconfigure to enable a repertoire of orofacial behaviors.NEW & NOTEWORTHY For the first time, medullary networks that control breathing and swallow are recorded optically. Episodic swallows are induced via electrical stimulation along the dorsal medulla, in and near the NTS, during spontaneously occurring fictive respiration. These findings establish that networks regulating both orofacial behaviors and breathing are accessible for optical recording at the surface of the sagittally sectioned rodent hindbrain preparation.


Asunto(s)
Generadores de Patrones Centrales/fisiología , Deglución/fisiología , Respiración , Formación Reticular/fisiología , Rombencéfalo/fisiología , Animales , Animales Recién Nacidos , Estimulación Eléctrica , Bulbo Raquídeo/fisiología , Imagen Óptica , Ratas , Ratas Sprague-Dawley
8.
Dysphagia ; 35(5): 814-824, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-31897608

RESUMEN

Muscle injury is a frequent side effect of radiation treatment for head and neck cancer. To understand the pathophysiology of injury-related dysfunction, we investigated the effects of a single muscle injury to the mylohyoid on oropharyngeal swallowing function in the rat. The mylohyoid protects the airway from food/liquid via hyolaryngeal elevation and plays an active role during both oral and pharyngeal swallowing. We hypothesized (1) that fibrosis to the mylohyoid alters swallowing bolus flow and licking patterns and (2) that injury to the mylohyoid changes normal activity of submental, laryngeal, and pharyngeal muscles during swallowing. A chilled cryoprobe was applied to the rat mylohyoid muscle to create a localized injury. One and two weeks after injury, swallowing bolus transit was assessed via videofluoroscopy and licking behavior via an electrical lick sensor. The motor activity of five swallow-related muscles was analyzed immediately after injury using electromyography (EMG). Comparisons were made pre- and post-injury. Fibrosis was confirmed in the mylohyoid at 2 weeks after injury by measuring collagen content. One week after injury, bolus size decreased, swallowing rate reduced, and licking patterns were altered. Immediately post-injury, there was a significant depression in mylohyoid and thyropharyngeus EMG amplitudes during swallowing. Our results demonstrated that injury to the mylohyoid is sufficient to cause changes in deglutition. These disruptions in oral and pharyngeal swallowing were detected prior to long-term fibrotic changes, including delays in tongue movement, alterations in bolus flow, and changes in sensorimotor function. Therefore, injuring a single important swallowing muscle can have dramatic clinical effects.


Asunto(s)
Deglución , Músculos del Cuello , Animales , Electromiografía , Orofaringe , Músculos Faríngeos , Faringe , Ratas
9.
Lung ; 197(1): 1-8, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30361764

RESUMEN

PURPOSE: While factors leading to hypoventilation have been well studied in Pompe disease, cough effectiveness and airway clearance practices are less understood. We aimed to identify significant factors that influence peak cough flow (PCF) in Pompe, and to detect whether pulmonary hygiene practices were reflective of reduced PCF. METHODS: This is a prospective observational study of 20 subjects with Pompe disease (infantile-onset: 7, juvenile-onset: 6, adult-onset: 14). Subjects performed spirometry, maximal respiratory pressures, and cough (voluntary: n = 24, spontaneous: n = 3). Subjects or their parents reported airway clearance and secretion management practices. Relationships between disease variables, pulmonary function, and cough parameters as well as group differences in cough parameters were evaluated. RESULTS: Subjects with infantile-onset disease had significantly lower PCF (p < 0.05) and tended to require more external ventilatory support (p = 0.07). In juvenile- and adult-onset disease, PCF differed according to external ventilatory requirement [daytime: 83.6 L/min (95% CI 41.2-126.0); nighttime: 224.6 L/min (95% CI 139.1-310.2); none: 340.2 L/min (95% CI 193.3-487.6), p < 0.005]. Cough inspiratory volume also differed significantly by ventilatory requirement [daytime: 5.5 mL/kg (95% CI 3.0-8.0); nighttime: 16.0 mL/kg (95% CI 11.8-20.2); none: 26.8 mL/kg (95% CI 11.9-41.7), p < 0.001]. However, routine airway clearance or secretion management practices were only consistently reported among patients with infantile-onset disease (infantile: 86%, juvenile: 0%, adult: 14%, p < 0.005). CONCLUSIONS: Cough weakness was detected in the majority of patients with Pompe disease and was influenced by both inspiratory and expiratory muscle function. Patients at risk for problems or with ineffective PCF should be urged to complete routine pulmonary hygiene.


Asunto(s)
Tos/fisiopatología , Enfermedad del Almacenamiento de Glucógeno Tipo II/terapia , Pulmón/fisiopatología , Depuración Mucociliar , Respiración , Músculos Respiratorios/fisiopatología , Terapia Respiratoria/métodos , Adolescente , Adulto , Edad de Inicio , Anciano , Niño , Preescolar , Femenino , Enfermedad del Almacenamiento de Glucógeno Tipo II/diagnóstico , Enfermedad del Almacenamiento de Glucógeno Tipo II/fisiopatología , Humanos , Lactante , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Respiración Artificial , Resultado del Tratamiento , Adulto Joven
10.
Lung ; 197(2): 235-240, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30680516

RESUMEN

Anatomical connections are reported between the cerebellum and brainstem nuclei involved in swallow such as the nucleus tractus solitarius, nucleus ambiguus, and Kölliker-fuse nuclei. Despite these connections, a functional role of the cerebellum during swallow has not been elucidated. Therefore, we examined the effects of cerebellectomy on swallow muscle recruitment and swallow-breathing coordination in anesthetized freely breathing cats. Electromyograms were recorded from upper airway, pharyngeal, laryngeal, diaphragm, and chest wall muscles before and after complete cerebellectomy. Removal of the cerebellum reduced the excitability of swallow (i.e., swallow number), and muscle recruitment of the geniohyoid, thyroarytenoid, parasternal (chestwall), and diaphragm muscles, but did not disrupt swallow-breathing coordination. Additionally, diaphragm and parasternal muscle activity during swallow is reduced after cerebellectomy, while no changes were observed during breathing. These findings suggest the cerebellum modulates muscle excitability during recruitment, but not pattern or coordination of swallow with breathing.


Asunto(s)
Tronco Encefálico/fisiología , Cerebelo/fisiología , Deglución , Diafragma/inervación , Inhalación , Sistema Respiratorio/inervación , Animales , Gatos , Cerebelo/cirugía , Masculino , Modelos Animales , Vías Nerviosas/fisiología , Factores de Tiempo
12.
Lung ; 196(5): 601-608, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29926179

RESUMEN

PURPOSE: Airway protective behaviors, like cough and swallow, deteriorate in many populations suffering from neurologic disorders. While coordination of these behaviors has been investigated in an animal model, it has not been tested in humans. METHODS: We used a novel protocol, adapted from previous work in the cat, to assess cough and swallow independently and their coordination strategies in seven healthy males (26 ± 6 years). Surface electromyograms of the submental complex and external oblique complex, spirometry, and thoracic and abdominal wall kinematics, were used to evaluate the timing of swallow, cough, and breathing as well as lung volume (LV) during these behaviors. RESULTS: Unlike the cat, there was significant variability in the cough-swallow phase preference; however, there was a targeted LV range in which swallow occurred. CONCLUSION: These results give insight into the differences between the cat and human models in airway protective strategies related to the coordination of cough and swallow behaviors, allowing for better understanding of dystussia and dysphagia.


Asunto(s)
Pared Abdominal/fisiología , Tos , Deglución , Pulmón/fisiología , Aspiración Respiratoria/prevención & control , Mecánica Respiratoria , Pared Torácica/fisiología , Adulto , Animales , Fenómenos Biomecánicos , Gatos , Electromiografía , Voluntarios Sanos , Humanos , Masculino , Aspiración Respiratoria/etiología , Aspiración Respiratoria/fisiopatología , Especificidad de la Especie , Espirometría , Factores de Tiempo , Adulto Joven
13.
J Neurophysiol ; 117(6): 2179-2187, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28250153

RESUMEN

The importance of neurons in the nucleus of the solitary tract (NTS) in the production of coughing was tested by microinjections of the nonspecific glutamate receptor antagonist kynurenic acid (kyn; 100 mM in artificial cerebrospinal fluid) in 15 adult spontaneously breathing anesthetized cats. Repetitive coughing was elicited by mechanical stimulation of the intrathoracic airway. Electromyograms (EMG) were recorded from inspiratory parasternal and expiratory transversus abdominis (ABD) muscles. Bilateral microinjections of kyn into the NTS rostral to obex [55 ± 4 nl total in 2 locations (n = 6) or 110 ± 4 nl total in 4 locations (n = 5)], primarily the ventrolateral subnucleus, reduced cough number and expiratory cough efforts (amplitudes of ABD EMG and maxima of esophageal pressure) compared with control. These microinjections also markedly prolonged the inspiratory phase, all cough-related EMG activation, and the total cough cycle duration as well as some other cough-related time intervals. In response to microinjections of kyn into the NTS rostral to the obex respiratory rate decreased, and there were increases in the durations of the inspiratory and postinspiratory phases and mean blood pressure. However, bilateral microinjections of kyn into the NTS caudal to obex as well as control vehicle microinjections in the NTS location rostral to obex had no effect on coughing or cardiorespiratory variables. These results are consistent with the existence of a critical component of the cough rhythmogenic circuit located in the rostral ventral and lateral NTS. Neuronal structures of the rostral NTS are significantly involved specifically in the regulation of cough magnitude and phase timing.NEW & NOTEWORTHY The nucleus of the solitary tract contains significant neuronal structures responsible for control of 1) cough excitability, 2) motor drive during cough, 3) cough phase timing, and 4) cough rhythmicity. Significant elimination of neurons in the solitary tract nucleus results in cough apraxia (incomplete and/or disordered cough pattern). The mechanism of the cough impairment is different from that for the concomitant changes in breathing.


Asunto(s)
Tos/fisiopatología , Núcleo Solitario/fisiopatología , Músculos Abdominales/efectos de los fármacos , Músculos Abdominales/fisiopatología , Animales , Presión Sanguínea/efectos de los fármacos , Presión Sanguínea/fisiología , Gatos , Relación Dosis-Respuesta a Droga , Electromiografía , Antagonistas de Aminoácidos Excitadores/farmacología , Femenino , Ácido Quinurénico/farmacología , Masculino , Microinyecciones , Periodicidad , Estimulación Física , Respiración/efectos de los fármacos , Músculos Respiratorios/efectos de los fármacos , Músculos Respiratorios/fisiopatología , Núcleo Solitario/efectos de los fármacos , Factores de Tiempo
14.
Dysphagia ; 31(3): 339-51, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27098922

RESUMEN

Oncologic treatments, such as curative radiotherapy and chemoradiation, for head and neck cancer can cause long-term swallowing impairments (dysphagia) that negatively impact quality of life. Radiation-induced dysphagia comprised a broad spectrum of structural, mechanical, and neurologic deficits. An understanding of the biomolecular effects of radiation on the time course of wound healing and underlying morphological tissue responses that precede radiation damage will improve options available for dysphagia treatment. The goal of this review is to discuss the pathophysiology of radiation-induced injury and elucidate areas that need further exploration.


Asunto(s)
Quimioradioterapia/efectos adversos , Trastornos de Deglución/fisiopatología , Neoplasias de Cabeza y Cuello/terapia , Traumatismos por Radiación/fisiopatología , Trastornos de Deglución/etiología , Humanos , Traumatismos por Radiación/etiología
15.
Pulm Pharmacol Ther ; 35: 105-10, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26549786

RESUMEN

The dorsal medulla encompassing the nucleus of the tractus solitarius (NTS) and surrounding reticular formation (RF) has an important role in processing sensory information from the upper and lower airways for the generation and control of airway protective behaviors. These behaviors, such as cough and swallow, historically have been studied in isolation. However, recent information indicates that these and other airway protective behaviors are coordinated to minimize risk of aspiration. The dorsal medullary neural circuits that include the NTS are responsible for rhythmogenesis for repetitive swallowing, but previous models have assigned a role for this portion of the network for coughing that is restricted to monosynaptic sensory processing. We propose a more complex NTS/RF circuit that controls expression of swallowing and coughing and the coordination of these behaviors. The proposed circuit is supported by recordings of activity patterns of selected neural elements in vivo and simulations of a computational model of the brainstem circuit for breathing, coughing, and swallowing. This circuit includes separate rhythmic sub-circuits for all three behaviors. The revised NTS/RF circuit can account for the mode of action of antitussive drugs on the cough motor pattern, as well as the unique coordination of cough and swallow by a meta-behavioral control system for airway protection.


Asunto(s)
Tos/fisiopatología , Bulbo Raquídeo/crecimiento & desarrollo , Bulbo Raquídeo/fisiología , Neurogénesis/fisiología , Sistema Respiratorio , Animales , Deglución , Humanos , Bulbo Raquídeo/fisiopatología , Vías Nerviosas/fisiopatología
16.
Lung ; 193(1): 129-33, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25331536

RESUMEN

Swallow occurs predominantly in the expiratory phase (E) of breathing. This phase preference is thought to contribute to airway protection by limiting the passage of material through the pharyngeal airway with little or no inspiratory (I) airflow. This phase preference is attributed to central interactions between the swallow and breathing pattern generators. We speculated that changes in peripheral mechanical factors would influence the respiratory phase preference for swallow initiation. We induced swallowing in anesthetized spontaneously breathing cats by injection of water into the oropharynx. In animals with intact abdomens, 83 % of swallows were initiated during E, 7 % during I, 7 % during E-I phase transition, and 3 % during I-E transition. In animals with open anterior midline laparotomy, only 38 % of swallows were initiated during E, 33 % during I, 17 % during the E-I transition, and 12 % during I-E. The results support an important role for feedback from somatic and/or visceral thoraco-abdominal mechanoreceptors for swallow-breathing coordination after laparotomy.


Asunto(s)
Deglución , Diafragma/inervación , Esófago/inervación , Laparotomía , Mecanorreceptores/fisiología , Mecanotransducción Celular , Respiración , Sistema Respiratorio/inervación , Animales , Gatos , Espiración , Inhalación , Masculino , Factores de Tiempo
17.
Lung ; 192(1): 27-31, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24297325

RESUMEN

Cough and swallow are highly coordinated reflex behaviors whose common purpose is to protect the airway. The pharynx is the common tube for air and food/liquid movement from the mouth into the thorax, has been largely overlooked, and is potentially seen as just a passive space. The thyropharyngeus muscle responds to cough inducing stimuli to prepare a transient holding area for material that has been removed from the subglottic airway. The cricopharyngeus muscle participates with the larynx to ensure regulation of pressure when a bolus/air is moving from the upper airway through to the thorax (i.e., inspiration or swallow) or the reverse (i.e., expiration reflex or vomiting). These vital mechanisms have not been evaluated in clinical conditions but could be impaired in many neurodegenerative diseases, leading to aspiration pneumonia. These newly described airway protective mechanisms need further study, especially in healthy and pathologic human populations.


Asunto(s)
Tos/fisiopatología , Deglución , Faringe/inervación , Neumonía por Aspiración/prevención & control , Animales , Humanos , Nervios Laríngeos/fisiopatología , Laringe/fisiopatología , Neumonía por Aspiración/fisiopatología , Reflejo , Tráquea/inervación
18.
J Appl Physiol (1985) ; 136(4): 821-843, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38385184

RESUMEN

Opioids are well-known to cause respiratory depression, but despite clinical evidence of dysphagia, the effects of opioids on swallow excitability and motor pattern are unknown. We tested the effects of the clinically relevant opioid buprenorphine on pharyngeal swallow and respiratory drive in male and female rats. We also evaluated the utility of 5-HT1A agonists (8-OH-DPAT and buspirone) to improve swallowing and breathing following buprenorphine administration. Experiments were performed on 44 freely breathing Sprague-Dawley rats anesthetized with sodium pentobarbital. Bipolar fine wire electrodes were inserted into the mylohyoid, thyroarytenoid, posterior cricoarytenoid, thyropharyngeus, and diaphragm muscles to measure electromyographic (EMG) activity of swallowing and breathing. We evaluated the hypotheses that swallowing varies by stimulus, opioids depress swallowing and breathing, and that 5-HT1A agonists improve these depressions. Our results largely confirmed the following hypotheses: 1) swallow-related EMG activity was larger during swallows elicited by esophageal distension plus oral water infusion than by either stimulus alone. 2) Buprenorphine depressed swallow in both sexes, but females were more susceptible to total swallow suppression. 3) Female animals were also more vulnerable to opioid-induced respiratory depression. 4) 8-OH-DPAT rescued breathing following buprenorphine-induced respiratory arrest, and pretreatment with the partial 5-HT1A agonist buspirone prevented buprenorphine-induced respiratory arrest in female animals. 5) 8-OH-DPAT enhanced mylohyoid and thyropharyngeus EMG amplitude during swallow but did not restore excitability of the swallow pattern generator following total suppression by buprenorphine. Our results highlight sex-specific and behavior-specific effects of buprenorphine and provide preclinical evidence of a 5HT1A agonist for the treatment of respiratory depression and dysphagia.NEW & NOTEWORTHY This is the first study, to our knowledge, to evaluate sex-specific effects of opioid administration on pharyngeal swallow. We expand on a small but growing number of studies that report a lower threshold for opioid-induced respiratory depression in females compared with males, and we are the first to produce this effect with the partial µ-opioid-receptor agonist buprenorphine. This is the first demonstration, to our knowledge, that activation of 5-HT1A receptors can improve swallow and breathing outcomes following systemic buprenorphine administration.


Asunto(s)
Buprenorfina , Trastornos de Deglución , Insuficiencia Respiratoria , Ratas , Femenino , Masculino , Animales , Analgésicos Opioides/farmacología , Serotonina , 8-Hidroxi-2-(di-n-propilamino)tetralin/farmacología , 8-Hidroxi-2-(di-n-propilamino)tetralin/uso terapéutico , Buspirona/efectos adversos , Ratas Sprague-Dawley , Insuficiencia Respiratoria/inducido químicamente , Insuficiencia Respiratoria/tratamiento farmacológico , Buprenorfina/efectos adversos
19.
Front Neurol ; 15: 1390524, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39045426

RESUMEN

Introduction: Aspiration pneumonia, a leading cause of mortality, poses an urgent challenge in contemporary society. Neuromuscular electrical stimulation (NMES) has been commonly used in dysphagia rehabilitation. However, given that NMES at motor threshold targets only specific muscles, it carries a potential risk of further compromising functions related to swallowing, respiration, and airway protection. Considering that the swallow motor pattern is orchestrated by the entire swallow pattern generator (the neural mechanism governing a sequence of swallow actions), a rehabilitation approach that centrally facilitates the entire circuit through sensory nerve stimulation is desirable. In this context, we propose a novel stimulation method using surface electrodes placed on the back to promote swallowing. Methods: The efficacy of the proposed method in promoting swallowing was evaluated by electrically stimulating sensory nerves in the back or neck. Probabilistic stimulus was applied to either the back or neck of male and female rats. Swallows were evoked by an oral water stimulus, and electromyographic (EMG) activity of the mylohyoid, thyroarytenoid, and thyropharyngeus muscles served as the primary outcome measure. Results: Gaussian frequency stimulation applied to the skin surface of the thoracic back elicited significant increases in EMG amplitude of all three swallow-related muscles. Neck stimulation elicited a significant increase in EMG amplitude of the thyroarytenoid during swallow, but not the mylohyoid or thyropharyngeus muscles. Discussion: While the targeted thoracic spinal segments T9-T10 have been investigated for enhancing respiration, the promotion of swallowing through back stimulation has not been previously studied. Furthermore, this study introduces a new probabilistic stimulus based on Gaussian distribution. Probabilistic stimuli have been reported to excel in nerve stimulation in previous research. The results demonstrate that back stimulation effectively facilitated swallow more than neck stimulation and suggest potential applications for swallowing rehabilitation.

20.
Front Neurol ; 15: 1356603, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38938779

RESUMEN

Systemic administration of opioids has been associated with aspiration and swallow dysfunction in humans. We speculated that systemic administration of codeine would induce dysfunctional swallowing and that this effect would have a peripheral component. Experiments were conducted in spontaneously breathing, anesthetized cats. The animals were tracheotomized and electromyogram (EMG) electrodes were placed in upper airway and chest wall respiratory muscles for recording swallow related motor activity. The animals were allocated into three groups: vagal intact (VI), cervical vagotomy (CVx), and supra-nodose ganglion vagotomy (SNGx). A dose response to intravenous codeine was performed in each animal. Swallowing was elicited by injection of 3 mL of water into the oropharynx. The number of swallows after vehicle was significantly higher in the VI group than in SNGx. Codeine had no significant effect on the number of swallows induced by water in any of the groups. However, the magnitudes of water swallow-related EMGs of the thyropharyngeus muscle were significantly increased in the VI and CVx groups by 2-4 fold in a dose-related manner. In the CVx group, the geniohyoid muscle EMG during water swallows was significantly increased. There was a significant dose-related increase in spontaneous swallowing in each group from codeine. The spontaneous swallow number at the 10 mg/kg dose of codeine was significantly larger in the CVx group than that in the SNGx group. During water-evoked swallows, intravenous codeine increased upper airway motor drive in a dose-related manner, consistent with dysregulation. The data support the existence of both central and peripheral actions of codeine on spontaneous swallowing. At the highest dose of codeine, the reduced spontaneous swallow number in the SNGx group relative to CVx is consistent with a peripheral excitatory action of codeine either on pharyngeal/laryngeal receptors or in the nodose ganglion itself. The higher number of swallows in the CVx group than the VI group supports disinhibition of this behavior by elimination of inhibitory vagal sensory afferents.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA