Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Neuroinflammation ; 21(1): 103, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38643194

RESUMEN

BACKGROUND: Colony stimulating factor 1 receptor (CSF1R) signaling is crucial for the maintenance and function of various myeloid subsets. CSF1R antagonism was previously shown to mitigate clinical severity in experimental autoimmune encephalomyelitis (EAE). The associated mechanisms are still not well delineated. METHODS: To assess the effect of CSF1R signaling, we employed the CSF1R antagonist PLX5622 formulated in chow (PLX5622 diet, PD) and its control chow (control diet, CD). We examined the effect of PD in steady state and EAE by analyzing cells isolated from peripheral immune organs and from the CNS via flow cytometry. We determined CNS infiltration sites and assessed the extent of demyelination using immunohistochemistry of cerebella and spinal cords. Transcripts of genes associated with neuroinflammation were also analyzed in these tissues. RESULTS: In addition to microglial depletion, PD treatment reduced dendritic cells and macrophages in peripheral immune organs, both during steady state and during EAE. Furthermore, CSF1R antagonism modulated numbers and relative frequencies of T effector cells both in the periphery and in the CNS during the early stages of the disease. Classical neurological symptoms were milder in PD compared to CD mice. Interestingly, a subset of PD mice developed atypical EAE symptoms. Unlike previous studies, we observed that the CNS of PD mice was infiltrated by increased numbers of peripheral immune cells compared to that of CD mice. Immunohistochemical analysis showed that CNS infiltrates in PD mice were mainly localized in the cerebellum while in CD mice infiltrates were primarily localized in the spinal cords during the onset of neurological deficits. Accordingly, during the same timepoint, cerebella of PD but not of CD mice had extensive demyelinating lesions, while spinal cords of CD but not of PD mice were heavily demyelinated. CONCLUSIONS: Our findings suggest that CSF1R activity modulates the cellular composition of immune cells both in the periphery and within the CNS, and affects lesion localization during the early EAE stages.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Ratones , Animales , Encefalomielitis Autoinmune Experimental/inducido químicamente , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Compuestos Orgánicos/farmacología , Médula Espinal/patología , Microglía , Receptores del Factor Estimulante de Colonias , Proteínas Tirosina Quinasas Receptoras , Ratones Endogámicos C57BL
2.
Glia ; 71(12): 2832-2849, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37610133

RESUMEN

Canavan disease (CD) is a recessively inherited pediatric leukodystrophy resulting from inactivating mutations to the oligodendroglial enzyme aspartoacylase (ASPA). ASPA is responsible for hydrolyzing the amino acid derivative N-acetyl-L-aspartate (NAA), and without it, brain NAA concentrations increase by 50% or more. Infants and children with CD present with progressive cognitive and motor delays, cytotoxic edema, astroglial vacuolation, and prominent spongiform brain degeneration. ASPA-deficient CD mice (Aspanur7/nur7 ) present similarly with elevated NAA, widespread astroglial dysfunction, ataxia, and Purkinje cell (PC) dendritic atrophy. Bergmann glia (BG), radial astrocytes essential for cerebellar development, are intimately intertwined with PCs, where they regulate synapse stability, functionality, and plasticity. BG damage is common to many neurodegenerative conditions and frequently associated with PC dysfunction and ataxia. Here, we report that, in CD mice, BG exhibit significant morphological alterations, decreased structural associations with PCs, loss of synaptic support proteins, and altered calcium dynamics. We also find that BG dysfunction predates cerebellar vacuolation and PC damage in CD mice. Previously, we developed an antisense oligonucleotide (ASO) therapy targeting Nat8l (N-acetyltransferase-8-like, "Nat8l ASO") that inhibits the production of NAA and reverses ataxia and PC atrophy in CD mice. Here, we show that Nat8l ASO administration in adult CD mice also leads to BG repair. Furthermore, blocking astroglial uptake of NAA is neuroprotective in astroglia-neuron cocultures exposed to elevated NAA. Our findings suggest that restoration of BG structural and functional integrity could be a mechanism for PC regeneration and improved motor function.


Asunto(s)
Enfermedad de Canavan , Enfermedades Neurodegenerativas , Humanos , Niño , Lactante , Ratones , Animales , Enfermedad de Canavan/genética , Enfermedad de Canavan/metabolismo , Enfermedad de Canavan/patología , Calcio , Ataxia/patología , Oligodendroglía/metabolismo , Enfermedades Neurodegenerativas/patología , Ácido Aspártico , Atrofia/complicaciones , Atrofia/patología
3.
Ann Neurol ; 90(5): 845-850, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34498299

RESUMEN

Canavan disease is caused by ASPA mutations that diminish brain aspartoacylase activity, and it is characterized by excessive brain storage of the aspartoacylase substrate, N-acetyl-l-aspartate (NAA), and by astroglial and intramyelinic vacuolation. Astroglia and the arachnoid mater express sodium-dependent dicarboxylate transporter (NaDC3), encoded by SLC13A3, a sodium-coupled transporter for NAA and other dicarboxylates. Constitutive Slc13a3 deletion in aspartoacylase-deficient Canavan disease mice prevents brain NAA overaccumulation, ataxia, and brain vacuolation. ANN NEUROL 2021;90:845-850.


Asunto(s)
Encéfalo/efectos de los fármacos , Enfermedad de Canavan/metabolismo , Transportadores de Ácidos Dicarboxílicos/metabolismo , Simportadores/genética , Animales , Astrocitos/metabolismo , Encéfalo/metabolismo , Transportadores de Ácidos Dicarboxílicos/genética , Modelos Animales de Enfermedad , Ratones Transgénicos , Enfermedades Neurodegenerativas/genética , Simportadores/metabolismo
4.
Neurobiol Dis ; 161: 105556, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34752925

RESUMEN

Multiple sclerosis (MS) is a chronic autoimmune demyelinating disease with high variability of clinical symptoms. In most cases MS appears as a relapsing-remitting disease course that at a later stage transitions into irreversible progressive decline of neurologic function. The mechanisms underlying MS progression remain poorly understood. Experimental autoimmune encephalomyelitis (EAE) is an animal model of MS. Here we demonstrate that mice that develop mild EAE after immunization with myelin oligodendrocyte glycoprotein 35-55 are prone to undergo clinical progression around 30 days after EAE induction. EAE progression was associated with reduction in CD11c+ microglia and dispersed coalescent parenchymal infiltration. We found sex-dependent differences mediated by p38α signaling, a key regulator of inflammation. Selective reduction of CD11c+ microglia in female mice with CD11c-promoter driven p38α knockout correlated with increased rate of EAE progression. In protected animals, we found CD11c+ microglia forming contacts with astrocyte processes at the glia limitans and immune cells retained within perivascular spaces. Together, our study identified pathological hallmarks of chronic EAE progression and suggests that CD11c+ microglia may regulate immune cell parenchymal infiltration in autoimmune demyelination.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Animales , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/patología , Femenino , Ratones , Ratones Endogámicos C57BL , Microglía/patología , Esclerosis Múltiple/patología , Glicoproteína Mielina-Oligodendrócito
5.
Ann Neurol ; 87(3): 480-485, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31925837

RESUMEN

Marked elevation in the brain concentration of N-acetyl-L-aspartate (NAA) is a characteristic feature of Canavan disease, a vacuolar leukodystrophy resulting from deficiency of the oligodendroglial NAA-cleaving enzyme aspartoacylase. We now demonstrate that inhibiting NAA synthesis by intracisternal administration of a locked nucleic acid antisense oligonucleotide to young-adult aspartoacylase-deficient mice reverses their pre-existing ataxia and diminishes cerebellar and thalamic vacuolation and Purkinje cell dendritic atrophy. Ann Neurol 2020;87:480-485.


Asunto(s)
Ácido Aspártico/análogos & derivados , Enfermedad de Canavan/tratamiento farmacológico , Oligonucleótidos Antisentido/uso terapéutico , Acetiltransferasas/antagonistas & inhibidores , Amidohidrolasas/deficiencia , Amidohidrolasas/genética , Animales , Ácido Aspártico/biosíntesis , Ataxia/complicaciones , Ataxia/tratamiento farmacológico , Atrofia/complicaciones , Atrofia/tratamiento farmacológico , Enfermedad de Canavan/complicaciones , Enfermedad de Canavan/patología , Cerebelo/patología , Femenino , Técnicas de Silenciamiento del Gen , Infusiones Intraventriculares , Masculino , Ratones , Mutación , Oligonucleótidos Antisentido/administración & dosificación , Células de Purkinje/patología , Prueba de Desempeño de Rotación con Aceleración Constante , Tálamo/patología , Vacuolas/efectos de los fármacos , Vacuolas/patología
6.
Cell Mol Life Sci ; 77(18): 3597-3609, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31758234

RESUMEN

The bHLH transcription factor Olig2 is required for sequential cell fate determination of both motor neurons and oligodendrocytes and for progenitor proliferation in the central nervous system. However, the role of Olig2 in peripheral sensory neurogenesis remains unknown. We report that Olig2 is transiently expressed in the newly differentiated olfactory sensory neurons (OSNs) and is down-regulated in the mature OSNs in mice from early gestation to adulthood. Genetic fate mapping demonstrates that Olig2-expressing cells solely give rise to OSNs in the peripheral olfactory system. Olig2 depletion does not affect the proliferation of peripheral olfactory progenitors and the fate determination of OSNs, sustentacular cells, and the olfactory ensheathing cells. However, the terminal differentiation and maturation of OSNs are compromised in either Olig2 single or Olig1/Olig2 double knockout mice, associated with significantly diminished expression of multiple OSN maturation and odorant signaling genes, including Omp, Gnal, Adcy3, and Olfr15. We further demonstrate that Olig2 binds to the E-box in the Omp promoter region to regulate its expression. Taken together, our results reveal a distinctly novel function of Olig2 in the periphery nervous system to regulate the terminal differentiation and maturation of olfactory sensory neurons.


Asunto(s)
Diferenciación Celular , Neuronas Receptoras Olfatorias/metabolismo , Factor de Transcripción 2 de los Oligodendrocitos/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/deficiencia , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Linaje de la Célula , Proliferación Celular , Proteína Doblecortina , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/patología , Ratones , Ratones Transgénicos , Proteína Marcadora Olfativa/genética , Mucosa Olfatoria/citología , Mucosa Olfatoria/metabolismo , Factor de Transcripción 2 de los Oligodendrocitos/deficiencia , Factor de Transcripción 2 de los Oligodendrocitos/genética , Regiones Promotoras Genéticas , Factores de Transcripción SOXB1/deficiencia , Factores de Transcripción SOXB1/genética , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
7.
Mol Ther ; 26(3): 793-800, 2018 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-29456021

RESUMEN

Canavan disease, a leukodystrophy caused by loss-of-function ASPA mutations, is characterized by brain dysmyelination, vacuolation, and astrogliosis ("spongiform leukodystrophy"). ASPA encodes aspartoacylase, an oligodendroglial enzyme that cleaves the abundant brain amino acid N-acetyl-L-aspartate (NAA) to L-aspartate and acetate. Aspartoacylase deficiency results in a 50% or greater elevation in brain NAA concentration ([NAAB]). Prior studies showed that homozygous constitutive knockout of Nat8l, the gene encoding the neuronal NAA synthesizing enzyme N-acetyltransferase 8-like, prevents aspartoacylase-deficient mice from developing spongiform leukodystrophy. We now report that brain Nat8l knockdown elicited by intracerebroventricular/intracisternal administration of an adeno-associated viral vector carrying a short hairpin Nat8l inhibitory RNA to neonatal aspartoacylase-deficient AspaNur7/Nur7 mice lowers [NAAB] and suppresses development of spongiform leukodystrophy.


Asunto(s)
Acetiltransferasas/genética , Amidohidrolasas/deficiencia , Enfermedad de Canavan/genética , Enfermedad de Canavan/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/patología , Enfermedad de Canavan/patología , Enfermedad de Canavan/fisiopatología , Dependovirus/genética , Modelos Animales de Enfermedad , Expresión Génica , Técnicas de Silenciamiento del Gen , Vectores Genéticos/administración & dosificación , Vectores Genéticos/genética , Ratones , Ratones Noqueados , Actividad Motora , Neuronas/metabolismo , ARN Mensajero/genética , Transducción Genética
8.
J Neurosci ; 37(2): 413-421, 2017 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-28077719

RESUMEN

Canavan disease is a leukodystrophy caused by aspartoacylase (ASPA) deficiency. The lack of functional ASPA, an enzyme enriched in oligodendroglia that cleaves N-acetyl-l-aspartate (NAA) to acetate and l-aspartic acid, elevates brain NAA and causes "spongiform" vacuolation of superficial brain white matter and neighboring gray matter. In children with Canavan disease, neuroimaging shows early-onset dysmyelination and progressive brain atrophy. Neuron loss has been documented at autopsy in some cases. Prior studies have shown that mice homozygous for the Aspa nonsense mutation Nur7 also develop brain vacuolation. We now report that numbers of cerebral cortical and cerebellar neurons are decreased and that cerebral cortex progressively thins in AspaNur7/Nur7 mice. This neuronal pathology is prevented by constitutive disruption of Nat8l, which encodes the neuronal NAA-synthetic enzyme N-acetyltransferase-8-like. SIGNIFICANCE STATEMENT: This is the first demonstration of cortical and cerebellar neuron depletion and progressive cerebral cortical thinning in an animal model of Canavan disease. Genetic suppression of N-acetyl-l-aspartate (NAA) synthesis, previously shown to block brain vacuolation in aspartoacylase-deficient mice, also prevents neuron loss and cerebral cortical atrophy in these mice. These results suggest that lowering the concentration of NAA in the brains of children with Canavan disease would prevent or slow progression of neurological deficits.


Asunto(s)
Ácido Aspártico/análogos & derivados , Enfermedad de Canavan/metabolismo , Modelos Animales de Enfermedad , Neuronas/metabolismo , Animales , Ácido Aspártico/biosíntesis , Ácido Aspártico/deficiencia , Ácido Aspártico/genética , Enfermedad de Canavan/genética , Enfermedad de Canavan/patología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/patología
9.
Biochem Biophys Res Commun ; 496(4): 1302-1307, 2018 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-29410176

RESUMEN

After traumatic spinal cord injury (SCI), a scar may form with a fibrotic core (fibrotic scar) and surrounding reactive astrocytes (glial scar) at the lesion site. The scar tissue is considered a major obstacle preventing regeneration both as a physical barrier and as a source for secretion of inhibitors of axonal regeneration. Understanding the mechanism of scar formation and how to control it may lead to effective SCI therapies. Using a compression-SCI model on adult transgenic mice, we demonstrate that the canonical Wnt/ß-catenin signaling reporter TOPgal (TCF/Lef1-lacZ) positive cells appeared at the lesion site by 5 days, peaked on 7 days, and diminished by 14 days post injury. Using various representative cell lineage markers, we demonstrate that, these transiently TOPgal positive cells are a group of Fibronectin(+);GFAP(-) fibroblast-like cells in the core scar region. Some of them are proliferative. These results indicate that Wnt/ß-catenin signaling may play a key role in fibrotic scar formation after traumatic spinal cord injury.


Asunto(s)
Cicatriz/metabolismo , Cicatriz/patología , Compresión de la Médula Espinal/metabolismo , Compresión de la Médula Espinal/patología , Médula Espinal/patología , Vía de Señalización Wnt , beta Catenina/metabolismo , Animales , Cicatriz/etiología , Fibrosis , Proteína Ácida Fibrilar de la Glía , Ratones , Ratones Transgénicos , Médula Espinal/metabolismo , Compresión de la Médula Espinal/complicaciones
10.
J Neurochem ; 142(3): 378-391, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28512742

RESUMEN

Differentiation of oligodendroglial progenitor cells (OPCs) into myelinating oligodendrocytes is known to be regulated by the microenvironment where they differentiate. However, current research has not verified whether or not oligodendroglial lineage cells (OLCs) derived from different anatomical regions of the central nervous system (CNS) respond to microenvironmental cues in the same manner. Here, we isolated pure OPCs from rat neonatal forebrain (FB) and spinal cord (SC) and compared their phenotypes in the same in vitro conditions. We found that although FB and SC OLCs responded differently to the same external factors; they were distinct in proliferation response to mitogens, oligodendrocyte phenotype after differentiation, and cytotoxic responses to α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate-type glutamate receptor-mediated excitotoxicity at immature stages of differentiation in a cell-intrinsic manner. Moreover, transcriptome analysis identified genes differentially expressed between these OPC populations, including those encoding transcription factors (TFs), cell surface molecules, and signaling molecules. Particularly, FB and SC OPCs retained the expression of FB- or SC-specific TFs, such as Foxg1 and Hoxc8, respectively, even after serial passaging in vitro. Given the essential role of these TFs in the regional identities of CNS cells along the rostrocaudal axis, our results suggest that CNS region-specific gene regulation by these TFs may cause cell-intrinsic differences in cellular responses between FB and SC OLCs to extracellular molecules. Further understanding of the regional differences among OPC populations will help to improve treatments for demyelination in different CNS regions and to facilitate the development of stem cell-derived OPCs for cell transplantation therapies for demyelination. Cover Image for this issue: doi. 10.1111/jnc.13809.


Asunto(s)
Diferenciación Celular/fisiología , Linaje de la Célula/fisiología , Neuronas/citología , Oligodendroglía/citología , Prosencéfalo/citología , Células Madre/citología , Animales , Células Cultivadas , Enfermedades Desmielinizantes/metabolismo , Regulación de la Expresión Génica/fisiología , Oligodendroglía/metabolismo , Prosencéfalo/metabolismo , Ratas
11.
Development ; 141(1): 148-57, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24284205

RESUMEN

Non-canonical Wnt/planar cell polarity (PCP) signaling plays a primary role in the convergent extension that drives neural tube closure and body axis elongation. PCP signaling gene mutations cause severe neural tube defects (NTDs). However, the role of canonical Wnt/ß-catenin signaling in neural tube closure and NTDs remains poorly understood. This study shows that conditional gene targeting of ß-catenin in the dorsal neural folds of mouse embryos represses the expression of the homeobox-containing genes Pax3 and Cdx2 at the dorsal posterior neuropore (PNP), and subsequently diminishes the expression of the Wnt/ß-catenin signaling target genes T, Tbx6 and Fgf8 at the tail bud, leading to spina bifida aperta, caudal axis bending and tail truncation. We demonstrate that Pax3 and Cdx2 are novel downstream targets of Wnt/ß-catenin signaling. Transgenic activation of Pax3 cDNA can rescue the closure defect in the ß-catenin mutants, suggesting that Pax3 is a key downstream effector of ß-catenin signaling in the PNP closure process. Cdx2 is known to be crucial in posterior axis elongation and in neural tube closure. We found that Cdx2 expression is also repressed in the dorsal PNPs of Pax3-null embryos. However, the ectopically activated Pax3 in the ß-catenin mutants cannot restore Cdx2 mRNA in the dorsal PNP, suggesting that the presence of both ß-catenin and Pax3 is required for regional Cdx2 expression. Thus, ß-catenin signaling is required for caudal neural tube closure and elongation, acting through the transcriptional regulation of key target genes in the PNP.


Asunto(s)
Tipificación del Cuerpo/fisiología , Proteínas de Homeodominio/metabolismo , Tubo Neural/embriología , Factores de Transcripción Paired Box/metabolismo , Factores de Transcripción/metabolismo , beta Catenina/metabolismo , Animales , Tipificación del Cuerpo/genética , Factor de Transcripción CDX2 , Adhesión Celular/genética , Polaridad Celular/fisiología , Factor 8 de Crecimiento de Fibroblastos/biosíntesis , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/biosíntesis , Proteínas de Homeodominio/genética , Factor de Transcripción MSX1/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Tubo Neural/crecimiento & desarrollo , Tubo Neural/metabolismo , Defectos del Tubo Neural/genética , Neurulación , Factor de Transcripción PAX3 , Factores de Transcripción Paired Box/biosíntesis , Factores de Transcripción Paired Box/genética , Disrafia Espinal/genética , Proteínas de Dominio T Box , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética , Transcripción Genética , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Vía de Señalización Wnt/genética , beta Catenina/genética
13.
J Neurosci ; 35(12): 5007-22, 2015 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-25810530

RESUMEN

Genetic or pharmacological activation of canonical Wnt/ß-catenin signaling inhibits oligodendrocyte differentiation. Transcription factor 7-like 2 (TCF7l2), also known as TCF4, is a Wnt effector induced transiently in the oligodendroglial lineage. A well accepted dogma is that TCF7l2 inhibits oligodendrocyte differentiation through activation of Wnt/ß-catenin signaling. We report that TCF7l2 is upregulated transiently in postmitotic, newly differentiated oligodendrocytes. Using in vivo gene conditional ablation, we found surprisingly that TCF7l2 positively regulates neonatal and postnatal mouse oligodendrocyte differentiation during developmental myelination and remyelination in a manner independent of the Wnt/ß-catenin signaling pathway. We also reveal a novel role of TCF7l2 in repressing a bone morphogenetic protein signaling pathway that is known to inhibit oligodendrocyte differentiation. Thus, our study provides novel data justifying therapeutic attempts to enhance, rather than inhibit, TCF7l2 signaling to overcome arrested oligodendroglial differentiation in multiple sclerosis and other demyelinating diseases.


Asunto(s)
Diferenciación Celular/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Oligodendroglía/citología , Oligodendroglía/fisiología , Proteína 2 Similar al Factor de Transcripción 7/fisiología , Vía de Señalización Wnt/fisiología , beta Catenina , Animales , Proteínas Morfogenéticas Óseas/fisiología , Diferenciación Celular/genética , Regulación del Desarrollo de la Expresión Génica/genética , Técnicas de Silenciamiento del Gen , Ratones , Ratones Transgénicos , Vaina de Mielina/genética , Vaina de Mielina/fisiología , Transducción de Señal/genética , Transducción de Señal/fisiología , Proteína 2 Similar al Factor de Transcripción 7/genética , Vía de Señalización Wnt/genética , beta Catenina/metabolismo
14.
J Neurosci ; 35(9): 3756-63, 2015 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-25740506

RESUMEN

Astrocytes are the most abundant cells in the CNS, and have many essential functions, including maintenance of blood-brain barrier integrity, and CNS water, ion, and glutamate homeostasis. Mammalian astrogliogenesis has generally been considered to be completed soon after birth, and to be reactivated in later life only under pathological circumstances. Here, by using genetic fate-mapping, we demonstrate that new corpus callosum astrocytes are continuously generated from nestin(+) subventricular zone (SVZ) neural progenitor cells (NPCs) in normal adult mice. These nestin fate-mapped corpus callosum astrocytes are uniformly postmitotic, express glutamate receptors, and form aquaporin-4(+) perivascular endfeet. The entry of new astrocytes from the SVZ into the corpus callosum appears to be balanced by astroglial apoptosis, because overall numbers of corpus callosum astrocytes remain constant during normal adulthood. Nestin fate-mapped astrocytes also flow anteriorly from the SVZ in association with the rostral migratory stream, but do not penetrate into the deeper layers of the olfactory bulb. Production of new astrocytes from nestin(+) NPCs is absent in the normal adult cortex, striatum, and spinal cord. Our study is the first to demonstrate ongoing SVZ astrogliogenesis in the normal adult mammalian forebrain.


Asunto(s)
Astrocitos/fisiología , Cuerpo Calloso/citología , Cuerpo Calloso/fisiología , Ventrículos Laterales/citología , Ventrículos Laterales/fisiología , Animales , Encéfalo/citología , Encéfalo/crecimiento & desarrollo , Movimiento Celular , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Nestina/fisiología , Células-Madre Neurales/fisiología , Neurogénesis/fisiología , Médula Espinal/citología , Médula Espinal/crecimiento & desarrollo , Proteínas de Transporte Vesicular de Glutamato/metabolismo
15.
BMC Neurosci ; 17: 2, 2016 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-26733225

RESUMEN

BACKGROUND: Periventricular leukomalacia (PVL) is the leading cause of neurological disabilities including motor and cognitive deficits in premature infants. Periventricular leukomalacia is characterized by damage to the white matter in the immature brain, but the mechanisms by which damage to immature white matter results in widespread deficits of cognitive and motor function are unclear. The thalamocortical system is crucial for human consciousness and cognitive functions, and impaired development of the cortico-thalamic projections in the neonatal period is implicated to contribute importantly to abnormalities of cognitive function in children with PVL. RESULTS: In this study, using a mouse model of PVL, we sought to test the hypothesis that PVL-like injury affects the different components of the thalamocortical circuitry that can be defined by vesicular glutamate transporters 1 and 2 (vGluT1 and vGluT2), both of which are required for glutamatergic synaptic transmission in the central nervous system. We combined immunocytochemistry and immuno-electron microscopy to investigate changes in cortico-thalamic synapses which were specifically identified by vGluT1 immunolabeling. We found that a drastic reduction in the density of vGluT1 labeled profiles in the somatosensory thalamus, with a reduction of 72-74 % in ventroposterior (VP) nucleus and a reduction of 42-82 % in thalamic reticular nucleus (RTN) in the ipsilateral side of PVL mice. We further examined these terminals at the electron microscopic level and revealed onefold-twofold decrease in the sizes of vGluT1 labeled corticothalamic terminals in VP and RTN. The present study provides anatomical and ultrastructural evidence to elucidate the cellular mechanisms underlying alteration of thalamic circuitry in a mouse model of PVL, and reveals that PVL-like injury has a direct impact on the corticothalamic projection system. CONCLUSIONS: Our findings provide the first set of evidence showing that the thalamocortical circuitry is affected and vulnerable in PVL mice, supporting a working model in which vGluT1 defined corticothalamic synapses are altered in PVL mice, and vGluT2 defined thalamocortical synapses are associated with such changes, leading to the compromised thalamocortical circuitry in the PVL mice. Our study demonstrates that the thalamocortical circuitry is highly vulnerable to hypoxia-ischemia in the PVL model, thus identifying a novel target site in PVL pathology.


Asunto(s)
Corteza Cerebral/ultraestructura , Modelos Animales de Enfermedad , Hipoxia-Isquemia Encefálica/complicaciones , Leucomalacia Periventricular/patología , Sinapsis/ultraestructura , Tálamo/ultraestructura , Animales , Corteza Cerebral/metabolismo , Leucomalacia Periventricular/etiología , Leucomalacia Periventricular/metabolismo , Ratones , Ratones Endogámicos C57BL , Vías Nerviosas/metabolismo , Vías Nerviosas/ultraestructura , Sinapsis/metabolismo , Tálamo/metabolismo , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo
16.
Ann Neurol ; 77(5): 884-8, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25712859

RESUMEN

Canavan disease is caused by inactivating ASPA (aspartoacylase) mutations that prevent cleavage of N-acetyl-L-aspartate (NAA), resulting in marked elevations in central nervous system (CNS) NAA and progressively worsening leukodystrophy. We now report that ablating NAA synthesis by constitutive genetic disruption of Nat8l (N-acetyltransferase-8 like) permits normal CNS myelination and prevents leukodystrophy in a murine Canavan disease model.


Asunto(s)
Ácido Aspártico/análogos & derivados , Enfermedad de Canavan/metabolismo , Enfermedad de Canavan/prevención & control , Modelos Animales de Enfermedad , Animales , Ácido Aspártico/deficiencia , Ácido Aspártico/genética , Ácido Aspártico/metabolismo , Enfermedad de Canavan/genética , Femenino , Masculino , Ratones , Ratones Noqueados
17.
J Neurosci ; 34(24): 8175-85, 2014 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-24920622

RESUMEN

Current multiple sclerosis (MS) therapies only partially prevent chronically worsening neurological deficits, which are largely attributable to progressive loss of CNS axons. Prior studies of experimental autoimmune encephalomyelitis (EAE) induced in C57BL/6 mice by immunization with myelin oligodendrocyte glycoprotein peptide 35-55 (MOG peptide), a model of MS, documented continued axon loss for months after acute CNS inflammatory infiltrates had subsided, and massive astroglial induction of CCL2 (MCP-1), a chemokine for CCR2(+) monocytes. We now report that conditional deletion of astroglial CCL2 significantly decreases CNS accumulation of classically activated (M1) monocyte-derived macrophages and microglial expression of M1 markers during the initial CNS inflammatory phase of MOG peptide EAE, reduces the acute and long-term severity of clinical deficits and slows the progression of spinal cord axon loss. In addition, lack of astroglial-derived CCL2 results in increased accumulation of Th17 cells within the CNS in these mice, but also in greater confinement of CD4(+) lymphocytes to CNS perivascular spaces. These findings suggest that therapies designed to inhibit astroglial CCL2-driven trafficking of monocyte-derived macrophages to the CNS during acute MS exacerbations have the potential to significantly reduce CNS axon loss and slow progression of neurological deficits.


Asunto(s)
Astrocitos/metabolismo , Axones/patología , Sistema Nervioso Central/patología , Quimiocina CCL2/metabolismo , Encefalomielitis Autoinmune Experimental/patología , Macrófagos/metabolismo , Análisis de Varianza , Animales , Axones/ultraestructura , Proteínas Bacterianas/genética , Sistema Nervioso Central/ultraestructura , Quimiocina CCL2/genética , Citometría de Flujo , Proteína Ácida Fibrilar de la Glía/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Proteínas Luminiscentes/genética , Macrófagos/inmunología , Macrófagos/ultraestructura , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Electrónica de Transmisión , Glicoproteína Mielina-Oligodendrócito/toxicidad , Fragmentos de Péptidos/toxicidad , Proteínas/genética
18.
J Neurosci ; 34(32): 10729-42, 2014 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-25100604

RESUMEN

Motoneuron death after transection of the axons (axotomy) in neonates is believed to share the same mechanistic bases as naturally occurring programmed cell death during development. The c-Jun N-terminal kinase pathway is activated in both forms of motoneuron death, but it remains unknown to what extent these two forms of motoneuron death depend on this pathway and which upstream kinases are involved. We found that numbers of facial motoneurons are doubled in neonatal mice deficient in either ZPK/DLK (zipper protein kinase, also known as dual leucine zipper kinase), a mitogen-activated protein kinase kinase kinase, or in MKK4/MAP2K4, a mitogen-activated protein kinase kinase directly downstream of ZPK/DLK, and that the facial motoneurons in those mutant mice are completely resistant to axotomy-induced death. Conditional deletion of MKK4/MAP2K4 in neurons further suggested that ZPK/DLK and MKK4/MAP2K4-dependent mechanisms underlying axotomy-induced death are motoneuron autonomous. Nevertheless, quantitative analysis of facial motoneurons during embryogenesis revealed that both ZPK/DLK and MKK4/MAP2K4-dependent and -independent mechanisms contribute to developmental elimination of excess motoneurons. In contrast to MKK4/MAP2K4, mice lacking MKK7/MAP2K7, another mitogen-activated protein kinase kinase directly downstream of ZPK/DLK, conditionally in neurons did not have excess facial motoneurons. However, some MKK7/MAP2K7-deficient facial motoneurons were resistant to axotomy-induced death, indicating a synergistic effect of MKK7/MAP2K7 on axotomy-induced death of these facial motoneurons. Together, our study provides compelling evidence for the pivotal roles of the ZPK/DLK and MKK4/MAP2K4-dependent mechanism in axotomy-induced motoneuron death in neonates and also demonstrates that axotomy-induced motoneuron death is not identical to developmental motoneuron death with respect to the involvement of ZPK/DLK, MKK4/MAP2K4 and MKK7/MAP2K7.


Asunto(s)
Sistema Nervioso Central/patología , Traumatismos del Nervio Facial/patología , MAP Quinasa Quinasa 4/metabolismo , Quinasas Quinasa Quinasa PAM/metabolismo , Transducción de Señal/fisiología , Animales , Animales Recién Nacidos , Axotomía/efectos adversos , Proteínas de Unión al Calcio/metabolismo , Muerte Celular/fisiología , Sistema Nervioso Central/crecimiento & desarrollo , Sistema Nervioso Central/metabolismo , Colina O-Acetiltransferasa/metabolismo , Dextranos , Modelos Animales de Enfermedad , Traumatismos del Nervio Facial/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , MAP Quinasa Quinasa 4/genética , Quinasas Quinasa Quinasa PAM/genética , Ratones , Ratones Transgénicos , Proteínas de Microfilamentos/metabolismo , Nestina/genética , Nestina/metabolismo , Fosfopiruvato Hidratasa/metabolismo , Proteínas Proto-Oncogénicas c-jun/metabolismo , Rodaminas , Transducción de Señal/genética
19.
Glia ; 63(10): 1671-93, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25782433

RESUMEN

The straightforward concept that accentuated Wnt signaling via the Wnt-receptor-ß-catenin-TCF/LEF cascade (also termed canonical Wnt signaling or Wnt/ß-catenin signaling) delays or blocks oligodendrocyte differentiation is very appealing. According to this concept, canonical Wnt signaling is responsible for remyelination failure in multiple sclerosis and for persistent hypomyelination in periventricular leukomalacia. This has given rise to the hope that pharmacologically inhibiting this signaling will be of therapeutic potential in these disabling neurological disorders. But current studies suggest that Wnt/ß-catenin signaling plays distinct roles in oligodendrogenesis, oligodendrocyte differentiation, and myelination in a context-dependent manner (central nervous system regions, developmental stages), and that Wnt/ß-catenin signaling interplays with, and is subjected to regulation by, other central nervous system factors and signaling pathways. On this basis, we propose the more nuanced concept that endogenous Wnt/ß-catenin activity is delicately and temporally regulated to ensure the seamless development of oligodendroglial lineage cells in different contexts. In this review, we discuss the role Wnt/ß-catenin signaling in oligodendrocyte development, focusing on the interpretation of disparate results, and highlighting areas where important questions remain to be answered about oligodendroglial lineage Wnt/ß-catenin signaling.


Asunto(s)
Linaje de la Célula/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Oligodendroglía/metabolismo , Proteínas Wnt/metabolismo , Vía de Señalización Wnt/fisiología , Animales , Humanos
20.
Stem Cells ; 32(1): 45-58, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24115331

RESUMEN

The Wnt/ß-catenin pathway is a critical stem cell regulator and plays important roles in neuroepithelial cells during early gestation. However, the role of Wnt/ß-catenin signaling in radial glia, a major neural stem cell population expanded by midgestation, remains poorly understood. This study shows that genetic ablation of ß-catenin with hGFAP-Cre mice inhibits neocortical formation by disrupting radial glial development. Reduced radial glia and intermediate progenitors are found in the ß-catenin-deficient neocortex during late gestation. Increased apoptosis and divergent localization of radial glia in the subventricular zone are also observed in the mutant neocortex. In vivo and in vitro proliferation and neurogenesis as well as oligodendrogenesis by cortical radial glia or by dissociated neural stem cells are significantly defective in the mutants. Neocortical layer patterning is not apparently altered, while astrogliogenesis is ectopically increased in the mutants. At the molecular level, the expression of the transcription factor Pax6 is dramatically diminished in the cortical radial glia and the sphere-forming neural stem cells of ß-catenin-deficient mutants. Chromatin immunoprecipitation and luciferase assays demonstrate that ß-catenin/Tcf complex binds to Pax6 promoter and induces its transcriptional activities. The forced expression of Pax6 through lentiviral transduction partially rescues the defective proliferation and neurogenesis by ß-catenin-deficient neural stem cells. Thus, Pax6 is a novel downstream target of the Wnt/ß-catenin pathway, and ß-catenin/Pax6 signaling plays critical roles in self-renewal and neurogenesis of radial glia/neural stem cells during neocortical development.


Asunto(s)
Proteínas del Ojo/metabolismo , Proteínas de Homeodominio/metabolismo , Neocórtex/citología , Células-Madre Neurales/citología , Neurogénesis/fisiología , Factores de Transcripción Paired Box/metabolismo , Proteínas Represoras/metabolismo , beta Catenina/metabolismo , Animales , Diferenciación Celular/fisiología , Procesos de Crecimiento Celular/fisiología , Ratones , Ratones Transgénicos , Neocórtex/metabolismo , Células-Madre Neurales/metabolismo , Neuroglía/citología , Neuroglía/metabolismo , Factor de Transcripción PAX6 , Transducción de Señal , Transfección , Vía de Señalización Wnt , beta Catenina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA