Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Semin Cell Dev Biol ; 113: 75-87, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-32690375

RESUMEN

DNA damage challenges both genome integrity and its organization with histone proteins into chromatin, with prominent alterations in histone variant dynamics and histone modifications. While these alterations jeopardize epigenome stability, they are also instrumental for an efficient and timely response to DNA damage. Here, we review recent findings illustrating how histone variants and post-translational modifications actively contribute to and control the DNA damage response. We present accumulating evidence that histone protein changes help relieve the chromatin barrier to DNA repair by regulating chromatin compaction and mobility. We also highlight how histone modifications and variants control transcriptional silencing at damage sites, and we describe both pre-existing and DNA damage-induced chromatin features that govern DNA damage signaling and guide DNA repair pathway choice. We discuss how histone dynamics ultimately participate to the restoration of epigenome integrity and present our current knowledge of key molecular players involved in these critical processes.


Asunto(s)
Cromatina/metabolismo , Daño del ADN/genética , Histonas/metabolismo , Humanos
2.
J Neurooncol ; 141(2): 265, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30484110

RESUMEN

There are two errors and one omission in the original article. Author Gottardo's correct name is Nicholas G. Gottardo, author Hulleman's correct affiliation is no. 3 (VUMC, Amsterdam), and the Acknowledgements should include the following sentence: "We would like to thank Dr Angel Montero Carcaboso (Hospital Sant Joan de Deu, Barcelona, Spain) for generously supplying the HSJD-DIPG007 cells."

3.
Oncotarget ; 8(32): 52543-52559, 2017 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-28881750

RESUMEN

Diffuse Instrinsic Pontine Glioma is the most aggressive form of High Grade Gliomas in children. The lack of biological material and the absence of relevant models have hampered the development of new therapeutics. Their extensive infiltration of the brainstem renders any surgical resection impossible and until recently biopsies were considered not informative enough and therefore not recommended. Thus, most models were derived from autopsy material. We aimed to develop relevant in vivo DIPG models that mimic this specific disease and its molecular diversity from tumor material obtained at diagnosis. Eight patient-derived orthotopic xenograft models were obtained after direct stereotactic injection of a mixed cell suspension containing tumor cells and stromal cells in the brainstem or thalamus of nude mice and serially passaged thereafter. In parallel, we developed 6 cell-derived xenograft models after orthotopic injection of tumor-initiating cells cultured from stereotactic biopsies. Cells were modified to express luciferase to enable longitudinal tumor growth monitoring, and fluorescent reporter proteins to trace the tumor cells in the brain. These models do not form a tumor mass, they are invasive, show the H3K27 trimethylation loss in vivo and the tumor type diversity observed in patients in terms of histone H3 mutations and lineage markers. Histological and MRI features at 11.7 Tesla show similarities with treatment naïve human DIPG, and in this respect, both direct and indirect orthotopic xenograft looked alike. These DIPG models will therefore constitute valuable tools for evaluating new therapeutic approaches in this devastating disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA