Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 185(11): 1924-1942.e23, 2022 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-35525247

RESUMEN

For many solid malignancies, lymph node (LN) involvement represents a harbinger of distant metastatic disease and, therefore, an important prognostic factor. Beyond its utility as a biomarker, whether and how LN metastasis plays an active role in shaping distant metastasis remains an open question. Here, we develop a syngeneic melanoma mouse model of LN metastasis to investigate how tumors spread to LNs and whether LN colonization influences metastasis to distant tissues. We show that an epigenetically instilled tumor-intrinsic interferon response program confers enhanced LN metastatic potential by enabling the evasion of NK cells and promoting LN colonization. LN metastases resist T cell-mediated cytotoxicity, induce antigen-specific regulatory T cells, and generate tumor-specific immune tolerance that subsequently facilitates distant tumor colonization. These effects extend to human cancers and other murine cancer models, implicating a conserved systemic mechanism by which malignancies spread to distant organs.


Asunto(s)
Ganglios Linfáticos , Melanoma , Animales , Tolerancia Inmunológica , Inmunoterapia , Metástasis Linfática/patología , Melanoma/patología , Ratones
2.
Nature ; 619(7971): 851-859, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37468633

RESUMEN

Lung cancer is the leading cause of cancer deaths worldwide1. Mutations in the tumour suppressor gene TP53 occur in 50% of lung adenocarcinomas (LUADs) and are linked to poor prognosis1-4, but how p53 suppresses LUAD development remains enigmatic. We show here that p53 suppresses LUAD by governing cell state, specifically by promoting alveolar type 1 (AT1) differentiation. Using mice that express oncogenic Kras and null, wild-type or hypermorphic Trp53 alleles in alveolar type 2 (AT2) cells, we observed graded effects of p53 on LUAD initiation and progression. RNA sequencing and ATAC sequencing of LUAD cells uncovered a p53-induced AT1 differentiation programme during tumour suppression in vivo through direct DNA binding, chromatin remodelling and induction of genes characteristic of AT1 cells. Single-cell transcriptomics analyses revealed that during LUAD evolution, p53 promotes AT1 differentiation through action in a transitional cell state analogous to a transient intermediary seen during AT2-to-AT1 cell differentiation in alveolar injury repair. Notably, p53 inactivation results in the inappropriate persistence of these transitional cancer cells accompanied by upregulated growth signalling and divergence from lung lineage identity, characteristics associated with LUAD progression. Analysis of Trp53 wild-type and Trp53-null mice showed that p53 also directs alveolar regeneration after injury by regulating AT2 cell self-renewal and promoting transitional cell differentiation into AT1 cells. Collectively, these findings illuminate mechanisms of p53-mediated LUAD suppression, in which p53 governs alveolar differentiation, and suggest that tumour suppression reflects a fundamental role of p53 in orchestrating tissue repair after injury.


Asunto(s)
Células Epiteliales Alveolares , Diferenciación Celular , Neoplasias Pulmonares , Pulmón , Proteína p53 Supresora de Tumor , Animales , Ratones , Células Epiteliales Alveolares/citología , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/patología , Pulmón/citología , Pulmón/metabolismo , Pulmón/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/prevención & control , Ratones Noqueados , Proteína p53 Supresora de Tumor/deficiencia , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Alelos , Perfilación de la Expresión Génica , Ensamble y Desensamble de Cromatina , ADN/metabolismo , Lesión Pulmonar/genética , Lesión Pulmonar/metabolismo , Lesión Pulmonar/patología , Progresión de la Enfermedad , Linaje de la Célula , Regeneración , Autorrenovación de las Células
3.
Nature ; 619(7970): 572-584, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37468586

RESUMEN

The intestine is a complex organ that promotes digestion, extracts nutrients, participates in immune surveillance, maintains critical symbiotic relationships with microbiota and affects overall health1. The intesting has a length of over nine metres, along which there are differences in structure and function2. The localization of individual cell types, cell type development trajectories and detailed cell transcriptional programs probably drive these differences in function. Here, to better understand these differences, we evaluated the organization of single cells using multiplexed imaging and single-nucleus RNA and open chromatin assays across eight different intestinal sites from nine donors. Through systematic analyses, we find cell compositions that differ substantially across regions of the intestine and demonstrate the complexity of epithelial subtypes, and find that the same cell types are organized into distinct neighbourhoods and communities, highlighting distinct immunological niches that are present in the intestine. We also map gene regulatory differences in these cells that are suggestive of a regulatory differentiation cascade, and associate intestinal disease heritability with specific cell types. These results describe the complexity of the cell composition, regulation and organization for this organ, and serve as an important reference map for understanding human biology and disease.


Asunto(s)
Intestinos , Análisis de la Célula Individual , Humanos , Diferenciación Celular/genética , Cromatina/genética , Células Epiteliales/citología , Células Epiteliales/metabolismo , Regulación de la Expresión Génica , Mucosa Intestinal/citología , Intestinos/citología , Intestinos/inmunología , Análisis de Expresión Génica de una Sola Célula
4.
Nat Methods ; 19(6): 759-769, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35654951

RESUMEN

Advances in multiplexed in situ imaging are revealing important insights in spatial biology. However, cell type identification remains a major challenge in imaging analysis, with most existing methods involving substantial manual assessment and subjective decisions for thousands of cells. We developed an unsupervised machine learning algorithm, CELESTA, which identifies the cell type of each cell, individually, using the cell's marker expression profile and, when needed, its spatial information. We demonstrate the performance of CELESTA on multiplexed immunofluorescence images of colorectal cancer and head and neck squamous cell carcinoma (HNSCC). Using the cell types identified by CELESTA, we identify tissue architecture associated with lymph node metastasis in HNSCC, and validate our findings in an independent cohort. By coupling our spatial analysis with single-cell RNA-sequencing data on proximal sections of the same specimens, we identify cell-cell crosstalk associated with lymph node metastasis, demonstrating the power of CELESTA to facilitate identification of clinically relevant interactions.


Asunto(s)
Neoplasias de Cabeza y Cuello , Estudios de Cohortes , Humanos , Metástasis Linfática , Carcinoma de Células Escamosas de Cabeza y Cuello
5.
Brief Bioinform ; 23(2)2022 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-35192692

RESUMEN

A major topic of debate in developmental biology centers on whether development is continuous, discontinuous, or a mixture of both. Pseudo-time trajectory models, optimal for visualizing cellular progression, model cell transitions as continuous state manifolds and do not explicitly model real-time, complex, heterogeneous systems and are challenging for benchmarking with temporal models. We present a data-driven framework that addresses these limitations with temporal single-cell data collected at discrete time points as inputs and a mixture of dependent minimum spanning trees (MSTs) as outputs, denoted as dynamic spanning forest mixtures (DSFMix). DSFMix uses decision-tree models to select genes that account for variations in multimodality, skewness and time. The genes are subsequently used to build the forest using tree agglomerative hierarchical clustering and dynamic branch cutting. We first motivate the use of forest-based algorithms compared to single-tree approaches for visualizing and characterizing developmental processes. We next benchmark DSFMix to pseudo-time and temporal approaches in terms of feature selection, time correlation, and network similarity. Finally, we demonstrate how DSFMix can be used to visualize, compare and characterize complex relationships during biological processes such as epithelial-mesenchymal transition, spermatogenesis, stem cell pluripotency, early transcriptional response from hormones and immune response to coronavirus disease. Our results indicate that the expression of genes during normal development exhibits a high proportion of non-uniformly distributed profiles that are mostly right-skewed and multimodal; the latter being a characteristic of major steady states during development. Our study also identifies and validates gene signatures driving complex dynamic processes during somatic or germline differentiation.


Asunto(s)
Benchmarking , Modelos Teóricos , Análisis de la Célula Individual/métodos , Algoritmos , Animales , Microambiente Celular , Análisis de Datos , Árboles de Decisión , Perfilación de la Expresión Génica/métodos , Humanos , Espermatogénesis
6.
Ann Intern Med ; 176(3): 320-332, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36745885

RESUMEN

BACKGROUND: In their 2021 lung cancer screening recommendation update, the U.S. Preventive Services Task Force (USPSTF) evaluated strategies that select people based on their personal lung cancer risk (risk model-based strategies), highlighting the need for further research on the benefits and harms of risk model-based screening. OBJECTIVE: To evaluate and compare the cost-effectiveness of risk model-based lung cancer screening strategies versus the USPSTF recommendation and to explore optimal risk thresholds. DESIGN: Comparative modeling analysis. DATA SOURCES: National Lung Screening Trial; Surveillance, Epidemiology, and End Results program; U.S. Smoking History Generator. TARGET POPULATION: 1960 U.S. birth cohort. TIME HORIZON: 45 years. PERSPECTIVE: U.S. health care sector. INTERVENTION: Annual low-dose computed tomography in risk model-based strategies that start screening at age 50 or 55 years, stop screening at age 80 years, with 6-year risk thresholds between 0.5% and 2.2% using the PLCOm2012 model. OUTCOME MEASURES: Incremental cost-effectiveness ratio (ICER) and cost-effectiveness efficiency frontier connecting strategies with the highest health benefit at a given cost. RESULTS OF BASE-CASE ANALYSIS: Risk model-based screening strategies were more cost-effective than the USPSTF recommendation and exclusively comprised the cost-effectiveness efficiency frontier. Among the strategies on the efficiency frontier, those with a 6-year risk threshold of 1.2% or greater were cost-effective with an ICER less than $100 000 per quality-adjusted life-year (QALY). Specifically, the strategy with a 1.2% risk threshold had an ICER of $94 659 (model range, $72 639 to $156 774), yielding more QALYs for less cost than the USPSTF recommendation, while having a similar level of screening coverage (person ever-screened 21.7% vs. USPSTF's 22.6%). RESULTS OF SENSITIVITY ANALYSES: Risk model-based strategies were robustly more cost-effective than the 2021 USPSTF recommendation under varying modeling assumptions. LIMITATION: Risk models were restricted to age, sex, and smoking-related risk predictors. CONCLUSION: Risk model-based screening is more cost-effective than the USPSTF recommendation, thus warranting further consideration. PRIMARY FUNDING SOURCE: National Cancer Institute (NCI).


Asunto(s)
Neoplasias Pulmonares , Humanos , Persona de Mediana Edad , Anciano de 80 o más Años , Neoplasias Pulmonares/diagnóstico por imagen , Análisis de Costo-Efectividad , Detección Precoz del Cáncer/métodos , Análisis Costo-Beneficio , Pulmón , Años de Vida Ajustados por Calidad de Vida , Tamizaje Masivo/métodos
7.
JAMA ; 331(3): 233-241, 2024 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-38227031

RESUMEN

Importance: Breast cancer mortality in the US declined between 1975 and 2019. The association of changes in metastatic breast cancer treatment with improved breast cancer mortality is unclear. Objective: To simulate the relative associations of breast cancer screening, treatment of stage I to III breast cancer, and treatment of metastatic breast cancer with improved breast cancer mortality. Design, Setting, and Participants: Using aggregated observational and clinical trial data on the dissemination and effects of screening and treatment, 4 Cancer Intervention and Surveillance Modeling Network (CISNET) models simulated US breast cancer mortality rates. Death due to breast cancer, overall and by estrogen receptor and ERBB2 (formerly HER2) status, among women aged 30 to 79 years in the US from 1975 to 2019 was simulated. Exposures: Screening mammography, treatment of stage I to III breast cancer, and treatment of metastatic breast cancer. Main Outcomes and Measures: Model-estimated age-adjusted breast cancer mortality rate associated with screening, stage I to III treatment, and metastatic treatment relative to the absence of these exposures was assessed, as was model-estimated median survival after breast cancer metastatic recurrence. Results: The breast cancer mortality rate in the US (age adjusted) was 48/100 000 women in 1975 and 27/100 000 women in 2019. In 2019, the combination of screening, stage I to III treatment, and metastatic treatment was associated with a 58% reduction (model range, 55%-61%) in breast cancer mortality. Of this reduction, 29% (model range, 19%-33%) was associated with treatment of metastatic breast cancer, 47% (model range, 35%-60%) with treatment of stage I to III breast cancer, and 25% (model range, 21%-33%) with mammography screening. Based on simulations, the greatest change in survival after metastatic recurrence occurred between 2000 and 2019, from 1.9 years (model range, 1.0-2.7 years) to 3.2 years (model range, 2.0-4.9 years). Median survival for estrogen receptor (ER)-positive/ERBB2-positive breast cancer improved by 2.5 years (model range, 2.0-3.4 years), whereas median survival for ER-/ERBB2- breast cancer improved by 0.5 years (model range, 0.3-0.8 years). Conclusions and Relevance: According to 4 simulation models, breast cancer screening and treatment in 2019 were associated with a 58% reduction in US breast cancer mortality compared with interventions in 1975. Simulations suggested that treatment for stage I to III breast cancer was associated with approximately 47% of the mortality reduction, whereas treatment for metastatic breast cancer was associated with 29% of the reduction and screening with 25% of the reduction.


Asunto(s)
Neoplasias de la Mama , Adulto , Anciano , Femenino , Humanos , Persona de Mediana Edad , Mama/diagnóstico por imagen , Mama/metabolismo , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/epidemiología , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/terapia , Detección Precoz del Cáncer , Historia del Siglo XX , Historia del Siglo XXI , Mamografía/métodos , Mortalidad/tendencias , Receptores de Estrógenos/metabolismo , Estados Unidos/epidemiología , Receptor ErbB-2/metabolismo
8.
JAMA ; 331(22): 1947-1960, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38687505

RESUMEN

Importance: The effects of breast cancer incidence changes and advances in screening and treatment on outcomes of different screening strategies are not well known. Objective: To estimate outcomes of various mammography screening strategies. Design, Setting, and Population: Comparison of outcomes using 6 Cancer Intervention and Surveillance Modeling Network (CISNET) models and national data on breast cancer incidence, mammography performance, treatment effects, and other-cause mortality in US women without previous cancer diagnoses. Exposures: Thirty-six screening strategies with varying start ages (40, 45, 50 years) and stop ages (74, 79 years) with digital mammography or digital breast tomosynthesis (DBT) annually, biennially, or a combination of intervals. Strategies were evaluated for all women and for Black women, assuming 100% screening adherence and "real-world" treatment. Main Outcomes and Measures: Estimated lifetime benefits (breast cancer deaths averted, percent reduction in breast cancer mortality, life-years gained), harms (false-positive recalls, benign biopsies, overdiagnosis), and number of mammograms per 1000 women. Results: Biennial screening with DBT starting at age 40, 45, or 50 years until age 74 years averted a median of 8.2, 7.5, or 6.7 breast cancer deaths per 1000 women screened, respectively, vs no screening. Biennial DBT screening at age 40 to 74 years (vs no screening) was associated with a 30.0% breast cancer mortality reduction, 1376 false-positive recalls, and 14 overdiagnosed cases per 1000 women screened. Digital mammography screening benefits were similar to those for DBT but had more false-positive recalls. Annual screening increased benefits but resulted in more false-positive recalls and overdiagnosed cases. Benefit-to-harm ratios of continuing screening until age 79 years were similar or superior to stopping at age 74. In all strategies, women with higher-than-average breast cancer risk, higher breast density, and lower comorbidity level experienced greater screening benefits than other groups. Annual screening of Black women from age 40 to 49 years with biennial screening thereafter reduced breast cancer mortality disparities while maintaining similar benefit-to-harm trade-offs as for all women. Conclusions: This modeling analysis suggests that biennial mammography screening starting at age 40 years reduces breast cancer mortality and increases life-years gained per mammogram. More intensive screening for women with greater risk of breast cancer diagnosis or death can maintain similar benefit-to-harm trade-offs and reduce mortality disparities.


Asunto(s)
Neoplasias de la Mama , Detección Precoz del Cáncer , Mamografía , Adulto , Anciano , Femenino , Humanos , Persona de Mediana Edad , Factores de Edad , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/diagnóstico por imagen , Técnicas de Apoyo para la Decisión , Reacciones Falso Positivas , Incidencia , Tamizaje Masivo , Uso Excesivo de los Servicios de Salud , Guías de Práctica Clínica como Asunto , Estados Unidos/epidemiología , Modelos Estadísticos
9.
PLoS Comput Biol ; 17(6): e1009020, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34138842

RESUMEN

Since 2000, the National Cancer Institute's Cancer Intervention and Surveillance Modeling Network (CISNET) modeling teams have developed and applied microsimulation and statistical models of breast cancer. Here, we illustrate the use of collaborative breast cancer multilevel systems modeling in CISNET to demonstrate the flexibility of systems modeling to address important clinical and policy-relevant questions. Challenges and opportunities of future systems modeling are also summarized. The 6 CISNET breast cancer models embody the key features of systems modeling by incorporating numerous data sources and reflecting tumor, person, and health system factors that change over time and interact to affect the burden of breast cancer. Multidisciplinary modeling teams have explored alternative representations of breast cancer to reveal insights into breast cancer natural history, including the role of overdiagnosis and race differences in tumor characteristics. The models have been used to compare strategies for improving the balance of benefits and harms of breast cancer screening based on personal risk factors, including age, breast density, polygenic risk, and history of Down syndrome or a history of childhood cancer. The models have also provided evidence to support the delivery of care by simulating outcomes following clinical decisions about breast cancer treatment and estimating the relative impact of screening and treatment on the United States population. The insights provided by the CISNET breast cancer multilevel modeling efforts have informed policy and clinical guidelines. The 20 years of CISNET modeling experience has highlighted opportunities and challenges to expanding the impact of systems modeling. Moving forward, CISNET research will continue to use systems modeling to address cancer control issues, including modeling structural inequities affecting racial disparities in the burden of breast cancer. Future work will also leverage the lessons from team science, expand resource sharing, and foster the careers of early stage modeling scientists to ensure the sustainability of these efforts.


Asunto(s)
Neoplasias de la Mama/patología , Modelos Estadísticos , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/prevención & control , Detección Precoz del Cáncer , Femenino , Humanos , Mamografía , Medición de Riesgo , Estados Unidos
10.
Cancer ; 127(23): 4432-4446, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34383299

RESUMEN

BACKGROUND: Current lung cancer risk-based screening approaches use a single risk-threshold, disregard life-expectancy, and ignore past screening findings. We address these limitations with a comprehensive analytical framework, the individualized lung cancer screening decision (ENGAGE) tool that aims to optimize lung cancer screening for US ever-smokers under dynamic risk assessment by incorporating life expectancy and past screening findings over time. METHODS: ENGAGE employs a partially observable Markov decision process framework that integrates published risk prediction and disease progression models, to dynamically assess the trade-off between the expected health benefits and harms associated with screening. ENGAGE evaluates lung cancer risk annually and provides real-time screening eligibility that maximizes the expected quality-adjusted life-years (QALYs) of ever-smokers. We compare ENGAGE against the 2013 U.S. Preventive Services Task Force (USPSTF) lung cancer screening guideline and single-threshold risk-based screening paradigms. RESULTS: Compared with the 2013 USPSTF guidelines, ENGAGE expands screening coverage among ever-smokers (ENGAGE: 78%, USPSTF: 61%), while reducing the number of screening examinations per person (ENGAGE:10.43, USPSTF:12.07, P < .001), yields higher effectiveness in terms of increased lung cancer-specific mortality reduction (ENGAGE: 19%, USPSTF: 15%, P < .001) and improves screening efficiency (ENGAGE: 696, USPSTF: 819 screens per death avoided, P < .001). When compared against a single-threshold risk-based screening strategy, ENGAGE increases QALY requiring 30% fewer screens per death avoided (ENGAGE: 696, single-threshold: 889, P < .001), and reduces false positives by 40%. CONCLUSIONS: ENGAGE provides a comprehensive framework for dynamic risk-based assessment of lung cancer screening eligibility by incorporating life expectancy and past screening findings that can serve to guide future policies on the effectiveness and efficiency of screening. LAY SUMMARY: A novel decision-analytical screening framework was developed for lung cancer, the individualized lung cancer screening decision (ENGAGE) tool to provide personalized screening schedules for ever-smokers. ENGAGE captures the dynamic nature of lung cancer risk and incorporates life expectancy into the screening decision-making process. ENGAGE integrates past screening findings and changes in smoking behavior of individuals and provides informed screening decisions that outperform existing screening guidelines and single-threshold risk-based screening approaches. A personalized lung cancer screening program facilitated by a tool such as ENGAGE could enhance the efficiency of lung cancer screening.


Asunto(s)
Detección Precoz del Cáncer , Neoplasias Pulmonares , Humanos , Esperanza de Vida , Tamizaje Masivo , Medición de Riesgo
11.
Proc Natl Acad Sci U S A ; 115(18): E4294-E4303, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29654148

RESUMEN

An individual malignant tumor is composed of a heterogeneous collection of single cells with distinct molecular and phenotypic features, a phenomenon termed intratumoral heterogeneity. Intratumoral heterogeneity poses challenges for cancer treatment, motivating the need for combination therapies. Single-cell technologies are now available to guide effective drug combinations by accounting for intratumoral heterogeneity through the analysis of the signaling perturbations of an individual tumor sample screened by a drug panel. In particular, Mass Cytometry Time-of-Flight (CyTOF) is a high-throughput single-cell technology that enables the simultaneous measurements of multiple ([Formula: see text]40) intracellular and surface markers at the level of single cells for hundreds of thousands of cells in a sample. We developed a computational framework, entitled Drug Nested Effects Models (DRUG-NEM), to analyze CyTOF single-drug perturbation data for the purpose of individualizing drug combinations. DRUG-NEM optimizes drug combinations by choosing the minimum number of drugs that produce the maximal desired intracellular effects based on nested effects modeling. We demonstrate the performance of DRUG-NEM using single-cell drug perturbation data from tumor cell lines and primary leukemia samples.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Biomarcadores de Tumor/metabolismo , Simulación por Computador , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Células HeLa , Humanos
12.
JAMA ; 325(10): 988-997, 2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33687469

RESUMEN

Importance: The US Preventive Services Task Force (USPSTF) is updating its 2013 lung cancer screening guidelines, which recommend annual screening for adults aged 55 through 80 years who have a smoking history of at least 30 pack-years and currently smoke or have quit within the past 15 years. Objective: To inform the USPSTF guidelines by estimating the benefits and harms associated with various low-dose computed tomography (LDCT) screening strategies. Design, Setting, and Participants: Comparative simulation modeling with 4 lung cancer natural history models for individuals from the 1950 and 1960 US birth cohorts who were followed up from aged 45 through 90 years. Exposures: Screening with varying starting ages, stopping ages, and screening frequency. Eligibility criteria based on age, cumulative pack-years, and years since quitting smoking (risk factor-based) or on age and individual lung cancer risk estimation using risk prediction models with varying eligibility thresholds (risk model-based). A total of 1092 LDCT screening strategies were modeled. Full uptake and adherence were assumed for all scenarios. Main Outcomes and Measures: Estimated lung cancer deaths averted and life-years gained (benefits) compared with no screening. Estimated lifetime number of LDCT screenings, false-positive results, biopsies, overdiagnosed cases, and radiation-related lung cancer deaths (harms). Results: Efficient screening programs estimated to yield the most benefits for a given number of screenings were identified. Most of the efficient risk factor-based strategies started screening at aged 50 or 55 years and stopped at aged 80 years. The 2013 USPSTF-recommended criteria were not among the efficient strategies for the 1960 US birth cohort. Annual strategies with a minimum criterion of 20 pack-years of smoking were efficient and, compared with the 2013 USPSTF-recommended criteria, were estimated to increase screening eligibility (20.6%-23.6% vs 14.1% of the population ever eligible), lung cancer deaths averted (469-558 per 100 000 vs 381 per 100 000), and life-years gained (6018-7596 per 100 000 vs 4882 per 100 000). However, these strategies were estimated to result in more false-positive test results (1.9-2.5 per person screened vs 1.9 per person screened with the USPSTF strategy), overdiagnosed lung cancer cases (83-94 per 100 000 vs 69 per 100 000), and radiation-related lung cancer deaths (29.0-42.5 per 100 000 vs 20.6 per 100 000). Risk model-based vs risk factor-based strategies were estimated to be associated with more benefits and fewer radiation-related deaths but more overdiagnosed cases. Conclusions and Relevance: Microsimulation modeling studies suggested that LDCT screening for lung cancer compared with no screening may increase lung cancer deaths averted and life-years gained when optimally targeted and implemented. Screening individuals at aged 50 or 55 years through aged 80 years with 20 pack-years or more of smoking exposure was estimated to result in more benefits than the 2013 USPSTF-recommended criteria and less disparity in screening eligibility by sex and race/ethnicity.


Asunto(s)
Detección Precoz del Cáncer , Neoplasias Pulmonares/diagnóstico por imagen , Guías de Práctica Clínica como Asunto , Tomografía Computarizada por Rayos X , Anciano , Detección Precoz del Cáncer/efectos adversos , Detección Precoz del Cáncer/normas , Humanos , Pulmón/diagnóstico por imagen , Neoplasias Pulmonares/mortalidad , Neoplasias Pulmonares/prevención & control , Persona de Mediana Edad , Modelos Teóricos , Medición de Riesgo , Sensibilidad y Especificidad , Fumar , Cese del Hábito de Fumar , Tomografía Computarizada por Rayos X/efectos adversos , Tomografía Computarizada por Rayos X/métodos
14.
PLoS Comput Biol ; 15(5): e1006743, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31136571

RESUMEN

Drug screening studies typically involve assaying the sensitivity of a range of cancer cell lines across an array of anti-cancer therapeutics. Alongside these sensitivity measurements high dimensional molecular characterizations of the cell lines are typically available, including gene expression, copy number variation and genomic mutations. We propose a sparse multitask regression model which learns discriminative latent characteristics that predict drug sensitivity and are associated with specific molecular features. We use ideas from Bayesian nonparametrics to automatically infer the appropriate number of these latent characteristics. The resulting analysis couples high predictive performance with interpretability since each latent characteristic involves a typically small set of drugs, cell lines and genomic features. Our model uncovers a number of drug-gene sensitivity associations missed by single gene analyses. We functionally validate one such novel association: that increased expression of the cell-cycle regulator C/EBPδ decreases sensitivity to the histone deacetylase (HDAC) inhibitor panobinostat.


Asunto(s)
Predicción/métodos , Neoplasias/genética , Antineoplásicos/farmacología , Teorema de Bayes , Biomarcadores Farmacológicos , Proteína delta de Unión al Potenciador CCAAT/genética , Línea Celular Tumoral , Variaciones en el Número de Copia de ADN , Genoma , Genómica , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Neoplasias/tratamiento farmacológico , Panobinostat/farmacología , Análisis de Regresión , Estadísticas no Paramétricas
15.
Ann Intern Med ; 171(11): 796-804, 2019 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31683314

RESUMEN

Background: Recommendations vary regarding the maximum age at which to stop lung cancer screening: 80 years according to the U.S. Preventive Services Task Force (USPSTF), 77 years according to the Centers for Medicare & Medicaid Services (CMS), and 74 years according to the National Lung Screening Trial (NLST). Objective: To compare the cost-effectiveness of different stopping ages for lung cancer screening. Design: By using shared inputs for smoking behavior, costs, and quality of life, 4 independently developed microsimulation models evaluated the health and cost outcomes of annual lung cancer screening with low-dose computed tomography (LDCT). Data Sources: The NLST; Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial; SEER (Surveillance, Epidemiology, and End Results) program; Nurses' Health Study and Health Professionals Follow-up Study; and U.S. Smoking History Generator. Target Population: Current, former, and never-smokers aged 45 years from the 1960 U.S. birth cohort. Time Horizon: 45 years. Perspective: Health care sector. Intervention: Annual LDCT according to NLST, CMS, and USPSTF criteria. Outcome Measures: Incremental cost-effectiveness ratios (ICERs) with a willingness-to-pay threshold of $100 000 per quality-adjusted life-year (QALY). Results of Base-Case Analysis: The 4 models showed that the NLST, CMS, and USPSTF screening strategies were cost-effective, with ICERs averaging $49 200, $68 600, and $96 700 per QALY, respectively. Increasing the age at which to stop screening resulted in a greater reduction in mortality but also led to higher costs and overdiagnosis rates. Results of Sensitivity Analysis: Probabilistic sensitivity analysis showed that the NLST and CMS strategies had higher probabilities of being cost-effective (98% and 77%, respectively) than the USPSTF strategy (52%). Limitation: Scenarios assumed 100% screening adherence, and models extrapolated beyond clinical trial data. Conclusion: All 3 sets of lung cancer screening criteria represent cost-effective programs. Despite underlying uncertainty, the NLST and CMS screening strategies have high probabilities of being cost-effective. Primary Funding Source: CISNET (Cancer Intervention and Surveillance Modeling Network) Lung Group, National Cancer Institute.


Asunto(s)
Análisis Costo-Beneficio , Detección Precoz del Cáncer/economía , Neoplasias Pulmonares/diagnóstico , Tamizaje Masivo/economía , Modelos Estadísticos , Anciano , Anciano de 80 o más Años , Detección Precoz del Cáncer/métodos , Humanos , Neoplasias Pulmonares/epidemiología , Tamizaje Masivo/métodos , Persona de Mediana Edad , Calidad de Vida , Factores de Riesgo , Sensibilidad y Especificidad , Fumar/efectos adversos , Tomografía Computarizada por Rayos X/economía , Estados Unidos/epidemiología
17.
Radiology ; 286(1): 307-315, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28727543

RESUMEN

Purpose To create a radiogenomic map linking computed tomographic (CT) image features and gene expression profiles generated by RNA sequencing for patients with non-small cell lung cancer (NSCLC). Materials and Methods A cohort of 113 patients with NSCLC diagnosed between April 2008 and September 2014 who had preoperative CT data and tumor tissue available was studied. For each tumor, a thoracic radiologist recorded 87 semantic image features, selected to reflect radiologic characteristics of nodule shape, margin, texture, tumor environment, and overall lung characteristics. Next, total RNA was extracted from the tissue and analyzed with RNA sequencing technology. Ten highly coexpressed gene clusters, termed metagenes, were identified, validated in publicly available gene-expression cohorts, and correlated with prognosis. Next, a radiogenomics map was built that linked semantic image features to metagenes by using the t statistic and the Spearman correlation metric with multiple testing correction. Results RNA sequencing analysis resulted in 10 metagenes that capture a variety of molecular pathways, including the epidermal growth factor (EGF) pathway. A radiogenomic map was created with 32 statistically significant correlations between semantic image features and metagenes. For example, nodule attenuation and margins are associated with the late cell-cycle genes, and a metagene that represents the EGF pathway was significantly correlated with the presence of ground-glass opacity and irregular nodules or nodules with poorly defined margins. Conclusion Radiogenomic analysis of NSCLC showed multiple associations between semantic image features and metagenes that represented canonical molecular pathways, and it can result in noninvasive identification of molecular properties of NSCLC. Online supplemental material is available for this article.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Genómica/métodos , Neoplasias Pulmonares , Imagen Molecular/métodos , Anciano , Anciano de 80 o más Años , Carcinoma de Pulmón de Células no Pequeñas/química , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/radioterapia , Receptores ErbB/genética , Receptores ErbB/metabolismo , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/química , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/radioterapia , Masculino , Metagenoma , Persona de Mediana Edad , ARN Mensajero/análisis , ARN Mensajero/genética , Transducción de Señal
18.
Proc Natl Acad Sci U S A ; 112(10): E1116-25, 2015 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-25713363

RESUMEN

Follicular lymphoma (FL) is incurable with conventional therapies and has a clinical course typified by multiple relapses after therapy. These tumors are genetically characterized by B-cell leukemia/lymphoma 2 (BCL2) translocation and mutation of genes involved in chromatin modification. By analyzing purified tumor cells, we identified additional novel recurrently mutated genes and confirmed mutations of one or more chromatin modifier genes within 96% of FL tumors and two or more in 76% of tumors. We defined the hierarchy of somatic mutations arising during tumor evolution by analyzing the phylogenetic relationship of somatic mutations across the coding genomes of 59 sequentially acquired biopsies from 22 patients. Among all somatically mutated genes, CREBBP mutations were most significantly enriched within the earliest inferable progenitor. These mutations were associated with a signature of decreased antigen presentation characterized by reduced transcript and protein abundance of MHC class II on tumor B cells, in line with the role of CREBBP in promoting class II transactivator (CIITA)-dependent transcriptional activation of these genes. CREBBP mutant B cells stimulated less proliferation of T cells in vitro compared with wild-type B cells from the same tumor. Transcriptional signatures of tumor-infiltrating T cells were indicative of reduced proliferation, and this corresponded to decreased frequencies of tumor-infiltrating CD4 helper T cells and CD8 memory cytotoxic T cells. These observations therefore implicate CREBBP mutation as an early event in FL evolution that contributes to immune evasion via decreased antigen presentation.


Asunto(s)
Células Presentadoras de Antígenos/inmunología , Linfoma Folicular/genética , Mutación , Células Madre Neoplásicas/patología , Proteína de Unión a CREB/genética , Cromatina/metabolismo , Citometría de Flujo , Antígenos de Histocompatibilidad Clase II/genética , Humanos , Linfoma Folicular/inmunología , Reacción en Cadena de la Polimerasa
19.
JAMA ; 319(2): 154-164, 2018 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-29318276

RESUMEN

Importance: Given recent advances in screening mammography and adjuvant therapy (treatment), quantifying their separate and combined effects on US breast cancer mortality reductions by molecular subtype could guide future decisions to reduce disease burden. Objective: To evaluate the contributions associated with screening and treatment to breast cancer mortality reductions by molecular subtype based on estrogen-receptor (ER) and human epidermal growth factor receptor 2 (ERBB2, formerly HER2 or HER2/neu). Design, Setting, and Participants: Six Cancer Intervention and Surveillance Network (CISNET) models simulated US breast cancer mortality from 2000 to 2012 using national data on plain-film and digital mammography patterns and performance, dissemination and efficacy of ER/ERBB2-specific treatment, and competing mortality. Multiple US birth cohorts were simulated. Exposures: Screening mammography and treatment. Main Outcomes and Measures: The models compared age-adjusted, overall, and ER/ERBB2-specific breast cancer mortality rates from 2000 to 2012 for women aged 30 to 79 years relative to the estimated mortality rate in the absence of screening and treatment (baseline rate); mortality reductions were apportioned to screening and treatment. Results: In 2000, the estimated reduction in overall breast cancer mortality rate was 37% (model range, 27%-42%) relative to the estimated baseline rate in 2000 of 64 deaths (model range, 56-73) per 100 000 women: 44% (model range, 35%-60%) of this reduction was associated with screening and 56% (model range, 40%-65%) with treatment. In 2012, the estimated reduction in overall breast cancer mortality rate was 49% (model range, 39%-58%) relative to the estimated baseline rate in 2012 of 63 deaths (model range, 54-73) per 100 000 women: 37% (model range, 26%-51%) of this reduction was associated with screening and 63% (model range, 49%-74%) with treatment. Of the 63% associated with treatment, 31% (model range, 22%-37%) was associated with chemotherapy, 27% (model range, 18%-36%) with hormone therapy, and 4% (model range, 1%-6%) with trastuzumab. The estimated relative contributions associated with screening vs treatment varied by molecular subtype: for ER+/ERBB2-, 36% (model range, 24%-50%) vs 64% (model range, 50%-76%); for ER+/ERBB2+, 31% (model range, 23%-41%) vs 69% (model range, 59%-77%); for ER-/ERBB2+, 40% (model range, 34%-47%) vs 60% (model range, 53%-66%); and for ER-/ERBB2-, 48% (model range, 38%-57%) vs 52% (model range, 44%-62%). Conclusions and Relevance: In this simulation modeling study that projected trends in breast cancer mortality rates among US women, decreases in overall breast cancer mortality from 2000 to 2012 were associated with advances in screening and in adjuvant therapy, although the associations varied by breast cancer molecular subtype.


Asunto(s)
Neoplasias de la Mama/mortalidad , Detección Precoz del Cáncer , Mamografía , Modelos Estadísticos , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/terapia , Femenino , Humanos , Mamografía/métodos , Mortalidad/tendencias , Receptor ErbB-2 , Receptores de Estrógenos , Estados Unidos/epidemiología
20.
Int J Cancer ; 140(11): 2436-2443, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28073150

RESUMEN

The U.S. Preventive Services Task Force (USPSTF) recently updated their national lung screening guidelines and recommended low-dose computed tomography (LDCT) for lung cancer (LC) screening through age 80. However, the risk of overdiagnosis among older populations is a concern. Using four comparative models from the Cancer Intervention and Surveillance Modeling Network, we evaluate the overdiagnosis of the screening program recommended by USPSTF in the U.S. 1950 birth cohort. We estimate the number of LC deaths averted by screening (D) per overdiagnosed case (O), yielding the ratio D/O, to quantify the trade-off between the harms and benefits of LDCT. We analyze 576 hypothetical screening strategies that vary by age, smoking, and screening frequency and evaluate efficient screening strategies that maximize the D/O ratio and other metrics including D and life-years gained (LYG) per overdiagnosed case. The estimated D/O ratio for the USPSTF screening program is 2.85 (model range: 1.5-4.5) in the 1950 birth cohort, implying LDCT can prevent ∼3 LC deaths per overdiagnosed case. This D/O ratio increases by 22% when the program stops screening at an earlier age 75 instead of 80. Efficiency frontier analysis shows that while the most efficient screening strategies that maximize the mortality reduction (D) irrespective of overdiagnosis screen through age 80, screening strategies that stop at age 75 versus 80 produce greater efficiency in increasing life-years gained per overdiagnosed case. Given the risk of overdiagnosis with LC screening, the stopping age of screening merits further consideration when balancing benefits and harms.


Asunto(s)
Neoplasias Pulmonares/diagnóstico , Uso Excesivo de los Servicios de Salud/estadística & datos numéricos , Anciano , Anciano de 80 o más Años , Detección Precoz del Cáncer/métodos , Femenino , Humanos , Masculino , Tamizaje Masivo/métodos , Modelos Teóricos , Medición de Riesgo/métodos , Factores de Tiempo , Tomografía Computarizada por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA