Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 295(2): 403-414, 2020 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-31792057

RESUMEN

The Plasmodium falciparum circumsporozoite protein (PfCSP) is a sporozoite surface protein whose role in sporozoite motility and cell invasion has made it the leading candidate for a pre-erythrocytic malaria vaccine. However, production of high yields of soluble recombinant PfCSP, including its extensive NANP and NVDP repeats, has proven problematic. Here, we report on the development and characterization of a secreted, soluble, and stable full-length PfCSP (containing 4 NVDP and 38 NANP repeats) produced in the Lactococcus lactis expression system. The recombinant full-length PfCSP, denoted PfCSP4/38, was produced initially with a histidine tag and purified by a simple two-step procedure. Importantly, the recombinant PfCSP4/38 retained a conformational epitope for antibodies as confirmed by both in vivo and in vitro characterizations. We characterized this complex protein by HPLC, light scattering, MS analysis, differential scanning fluorimetry, CD, SDS-PAGE, and immunoblotting with conformation-dependent and -independent mAbs, which confirmed it to be both pure and soluble. Moreover, we found that the recombinant protein is stable at both frozen and elevated-temperature storage conditions. When we used L. lactis-derived PfCSP4/38 to immunize mice, it elicited high levels of functional antibodies that had the capacity to modify sporozoite motility in vitro We concluded that the reported yield, purity, results of biophysical analyses, and stability of PfCSP4/38 warrant further consideration of using the L. lactis system for the production of circumsporozoite proteins for preclinical and clinical applications in malaria vaccine development.


Asunto(s)
Lactococcus lactis/genética , Vacunas contra la Malaria/química , Plasmodium falciparum/química , Proteínas Protozoarias/química , Animales , Línea Celular , Femenino , Expresión Génica , Humanos , Vacunas contra la Malaria/genética , Vacunas contra la Malaria/farmacología , Malaria Falciparum/prevención & control , Ratones , Plasmodium falciparum/genética , Pliegue de Proteína , Estabilidad Proteica , Proteínas Protozoarias/genética , Proteínas Protozoarias/farmacología , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacología , Solubilidad
2.
Protein Expr Purif ; 160: 56-65, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30978392

RESUMEN

In an effort to control and eventually eliminate malaria, the development of transmission-blocking vaccines has long been sought. However, few antigens have been evaluated in clinical trials, often due to limitations in the expression and purification of the antigen in sufficient yield and quality. Pfs230, a surface antigen of gametocytes, has recently advanced to clinical evaluation as a conjugate vaccine using the Pseudomonas aeruginosa exoprotein A carrier protein. Here we continue to build upon prior work of developing a Pfs230 candidate in the baculovirus system, Pfs230C1 (aa 443-731), through systematic process development efforts to improve yield and purity. Various insect cells including High Five, Sf9 and Super Sf9 were first evaluated for quality and quantity of antigen, along with three insect cell media. In the selection of Sf9 cells, an intact Pfs230C1 was expressed and harvested at 48 h for downstream development. A downstream process, utilizing immobilized metal affinity column (IMAC), followed by ion exchange (IEX) membranes (Mustang S) and finally IEX chromatography (DEAE) yielded a pure Pfs230C1 protein. The complete process was repeated three times at the 20 L scale. To support the eventual chemistry manufacturing and controls (CMC) of Pfs230C1, analytical tools, including monoclonal antibodies, were developed to characterize the identity, integrity, and purity of Pfs230C1. These analytical tools, taken in combination with the optimized process, were implemented with Current Good Manufacturing Practices (cGMP) in mind with the ultimate objective of Phase I clinical trials.


Asunto(s)
Malaria Falciparum/prevención & control , Plasmodium falciparum/inmunología , Proteínas Protozoarias/genética , Proteínas Protozoarias/aislamiento & purificación , Secuencias de Aminoácidos , Animales , Antígenos de Protozoos/química , Antígenos de Protozoos/genética , Antígenos de Protozoos/inmunología , Antígenos de Protozoos/aislamiento & purificación , Baculoviridae/genética , Baculoviridae/metabolismo , Expresión Génica , Humanos , Vacunas contra la Malaria/química , Vacunas contra la Malaria/genética , Vacunas contra la Malaria/inmunología , Vacunas contra la Malaria/aislamiento & purificación , Malaria Falciparum/parasitología , Plasmodium falciparum/química , Plasmodium falciparum/genética , Proteínas Protozoarias/química , Proteínas Protozoarias/inmunología , Spodoptera
3.
Malar J ; 18(1): 356, 2019 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-31703583

RESUMEN

BACKGROUND: Control and elimination of malaria can be accelerated by transmission-blocking interventions such as vaccines. A surface antigen of Plasmodium falciparum gametocytes, Pfs230, is a leading vaccine target antigen, and has recently progressed to experimental clinical trials. To support vaccine product development, an N-terminal Pfs230 antigen was designed to increase yield, as well as to improve antigen quality, integrity, and homogeneity. METHODS: A scalable baculovirus expression system was used to express the Pfs230D1+ construct (aa 552-731), which was subsequently purified and analysed. Pfs230D1+ was designed to avoid glycosylation and protease digestion, thereby potentially increasing homogeneity and stability. The resulting Pfs230D1+ protein was compared to a previous iteration of the Pfs230 N-terminal domain, Pfs230C1 (aa 443-731), through physiochemical characterization and in vivo analysis. The induction of functional antibody responses was confirmed via the standard membrane feeding assay (SMFA). RESULTS: Pfs230D1+ was produced and purified to an overall yield of 23 mg/L culture supernatant, a twofold yield increase over Pfs230C1. The Pfs230D1+ protein migrated as a single band via SDS-PAGE and was detected by anti-Pfs230C1 monoclonal antibodies. Evaluation by SDS-PAGE, chromatography (size-exclusion and reversed phase) and capillary isoelectric focusing demonstrated the molecule had improved homogeneity in terms of size, conformation, and charge. Intact mass spectrometry confirmed its molecular weight and that it was free of glycosylation, a key difference to the prior Pfs230C1 protein. The correct formation of the two intramolecular disulfide bonds was initially inferred by binding of a conformation specific monoclonal antibody and directly confirmed by LC/MS and peptide mapping. When injected into mice the Pfs230D1+ protein elicited antibodies that demonstrated transmission-reducing activity, via SMFA, comparable to Pfs230C1. CONCLUSION: By elimination of an O-glycosylation site, a potential N-glycosylation site, and two proteolytic cleavage sites, an improved N-terminal Pfs230 fragment was produced, termed D1+, which is non-glycosylated, homogeneous, and biologically active. An intact protein at higher yield than that previously observed for the Pfs230C1 fragment was achieved. The results indicate that Pfs230D1+ protein produced in the baculovirus expression system is an attractive antigen for transmission-blocking vaccine development.


Asunto(s)
Antígenos de Protozoos/genética , Expresión Génica/inmunología , Vacunas contra la Malaria/inmunología , Plasmodium falciparum/inmunología , Proteínas Protozoarias/genética , Animales , Antígenos de Protozoos/inmunología , Ratones , Proteínas Protozoarias/inmunología
4.
Mol Cell Proteomics ; 16(5): 911-923, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28232516

RESUMEN

Parts of Southeast Asia have the highest incidence of intrahepatic cholangiocarcinoma (CCA) in the world because of infection by the liver fluke Opisthorchis viverrini (Ov). Ov-associated CCA is the culmination of chronic Ov-infection, with the persistent production of the growth factors and cytokines associated with persistent inflammation, which can endure for years in Ov-infected individuals prior to transitioning to CCA. Isobaric labeling and tandem mass spectrometry of liver tissue from a hamster model of CCA was used to compare protein expression profiles from inflammed tissue (Ovinfected but not cancerous) versus cancerous tissue (Ov-induced CCA). Immunohistochemistry and immunoblotting were used to verify dysregulated proteins in the animal model and in human tissue. We identified 154 dysregulated proteins that marked the transition from Ov-infection to Ov-induced CCA, i.e. proteins dysregulated during carcinogenesis but not Ov-infection. The verification of dysregulated proteins in resected liver tissue from humans with Ov-associated CCA showed the numerous parallels in protein dysregulation between human and animal models of Ov-induced CCA. To identify potential circulating markers for CCA, dysregulated proteins were compared with proteins isolated from exosomes secreted by a human CCA cell line (KKU055) and 27 proteins were identified as dysregulated in CCA and present in exosomes. These data form the basis of potential diagnostic biomarkers for human Ov-associated CCA. The profile of protein dysregulation observed during chronic Ovinfection and then in Ov-induced CCA provides insight into the etiology of an infection-induced inflammation-related cancer.


Asunto(s)
Colangiocarcinoma/etiología , Colangiocarcinoma/parasitología , Proteínas de Neoplasias/metabolismo , Opistorquiasis/complicaciones , Opistorquiasis/parasitología , Opisthorchis/fisiología , Adulto , Anciano , Animales , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Colangiocarcinoma/sangre , Cricetinae , Femenino , Peces , Humanos , Marcaje Isotópico , Hígado/metabolismo , Hígado/patología , Masculino , Persona de Mediana Edad , Proteínas de Neoplasias/sangre , Opistorquiasis/sangre , Reproducibilidad de los Resultados
5.
Anal Biochem ; 542: 20-23, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29162427

RESUMEN

A liquid chromatography tandem-mass spectrometry method was developed to map the eleven disulfide bonds in Pfs25, a malaria transmission-blocking vaccine candidate. The compact and complex nature of Pfs25 has led to difficulties in prior peptide mapping efforts. Here, we report confirmation of proper disulfide pairing of a recombinant Pfs25, by optimizing denaturation and digestion with trypsin/Lys-C. The digested peptides were separated by reversed phase HPLC to obtain the peptide map and elucidate the disulfide linkages. MSE fragmentation confirmed the digested peptides and disulfide bonds. The eleven disulfide bonds and locations matched the predicted Pvs25 crystal structure, a Pfs25 homologue.


Asunto(s)
Disulfuros/inmunología , Vacunas contra la Malaria/inmunología , Malaria/inmunología , Mapeo Peptídico , Proteínas Protozoarias/inmunología , Cromatografía Líquida de Alta Presión , Disulfuros/química , Vacunas contra la Malaria/análisis , Vacunas contra la Malaria/síntesis química , Conformación Proteica , Proteínas Protozoarias/análisis , Proteínas Protozoarias/síntesis química , Proteínas Recombinantes/análisis , Proteínas Recombinantes/síntesis química , Proteínas Recombinantes/inmunología , Espectrometría de Masas en Tándem
6.
Malar J ; 15(1): 405, 2016 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-27515826

RESUMEN

BACKGROUND: Transmission-blocking vaccines (TBVs) have become a focus of strategies to control and eventually eliminate malaria as they target the entry of sexual stage into the Anopheles stephensi mosquito thereby preventing transmission, an essential component of the parasite life cycle. Such vaccines are envisioned as complements to vaccines that target human infection, such as RTS,S as well as drug treatment, and vector control strategies. A number of conserved proteins, including Pfs25, have been identified as promising TBV targets in research or early stage development. Pfs25 is a 25 kDa protein of Plasmodium falciparum expressed on the surface of zygotes and ookinetes. Its complex tertiary structure, including numerous cysteines, has led to difficulties in the expression of a recombinant protein that is homogeneous, with proper conformation, and free of glycosylation, a phenomenon not found in native parasite machinery. METHODS: While the expression and purification of Pfs25 in various systems, has been previously independently reported, here a parallel analysis of Pfs25 is presented to inform on the biochemical features of Pfs25 and their impact on functionality. Three scalable expression systems were used to express, purify, and evaluate Pfs25 both in vitro and in vivo, including the ability of each protein to produce functional antibodies through the standard membrane feeding assay. RESULTS: Through numerous attempts, soluble, monomeric Pfs25 derived from Escherichia coli was not achieved, while Pichia pastoris presented Pfs25 as an inhomogeneous product with glycosylation. In comparison, baculovirus produced a pure, monomeric protein free of glycosylation. The glycosylation present for Pichia produced Pfs25, showed no notable decrease in the ability to elicit transmission reducing antibodies in functional evaluation, while a reduced and alkylated Pfs25 (derived from plant and used as a control) was found to have significantly decreased transmission reducing activity, emphasizing the importance of ensuring correct disulfide stabilized conformation during vaccine design and production. CONCLUSIONS: In this study, the biochemical features of Pfs25, produced from different expression systems, are described along with their impact on the ability of the protein to elicit functional antibodies. Pfs25 expressed using baculovirus and Pichia showed promise as candidates for vaccine development.


Asunto(s)
Transmisión de Enfermedad Infecciosa/prevención & control , Vacunas contra la Malaria/inmunología , Malaria/prevención & control , Proteínas Protozoarias/inmunología , Proteínas Recombinantes/inmunología , Animales , Anticuerpos Antiprotozoarios/sangre , Baculoviridae/genética , Baculoviridae/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Vacunas contra la Malaria/administración & dosificación , Vacunas contra la Malaria/genética , Vacunas contra la Malaria/aislamiento & purificación , Ratones , Pichia/genética , Pichia/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/aislamiento & purificación , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología , Vacunas Sintéticas/aislamiento & purificación
7.
Bioinformatics ; 30(17): 2537-9, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-24794932

RESUMEN

MOTIVATION: BioClojure is an open-source library for the manipulation of biological sequence data written in the language Clojure. BioClojure aims to provide a functional framework for the processing of biological sequence data that provides simple mechanisms for concurrency and lazy evaluation of large datasets. RESULTS: BioClojure provides parsers and accessors for a range of biological sequence formats, including UniProtXML, Genbank XML, FASTA and FASTQ. In addition, it provides wrappers for key analysis programs, including BLAST, SignalP, TMHMM and InterProScan, and parsers for analyzing their output. All interfaces leverage Clojure's functional style and emphasize laziness and composability, so that BioClojure, and user-defined, functions can be chained into simple pipelines that are thread-safe and seamlessly integrate lazy evaluation. AVAILABILITY AND IMPLEMENTATION: BioClojure is distributed under the Lesser GPL, and the source code is freely available from GitHub (https://github.com/s312569/clj-biosequence).


Asunto(s)
Análisis de Secuencia de Proteína/métodos , Programas Informáticos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Lenguajes de Programación
8.
BMC Cancer ; 15: 309, 2015 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-25903557

RESUMEN

BACKGROUND: Intrahepatic cholangiocarcinoma (ICC) is a highly aggressive tumor of the bile duct, and a significant public health problem in East Asia, where it is associated with infection by the parasite Opisthorchis viverrini. ICC is often detected at an advanced stage and with a poor prognosis, making a biomarker for early detection a priority. METHODS: We have comprehensively profiled miRNA expression levels in ICC tumor tissue using small RNA-Seq and validated these profiles using quantitative PCR on matched plasma samples. RESULTS: Distinct miRNA profiles were associated with increasing histological differentiation of ICC tumor tissue. We also observed that histologically normal tissue adjacent to ICC tumor displayed miRNA expression profiles more similar to tumor than liver tissue from healthy donors. In plasma samples, an eight-miRNA signature associated with ICC, regardless of the degree of histological differentiation of its matched tissue, forming the basis of a circulating miRNA-based biomarker for ICC. CONCLUSIONS: The association of unique miRNA profiles with different ICC subtypes suggests the involvement of specific miRNAs during ICC tumor progression. In plasma, an eight-miRNA signature associated with ICC could form the foundation of an accessible (plasma-based) miRNA-based biomarker for the early detection of ICC.


Asunto(s)
Neoplasias de los Conductos Biliares/sangre , Biomarcadores/sangre , Colangiocarcinoma/sangre , MicroARNs/sangre , Animales , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/microbiología , Neoplasias de los Conductos Biliares/patología , Colangiocarcinoma/genética , Colangiocarcinoma/microbiología , Colangiocarcinoma/patología , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , MicroARNs/genética , MicroARNs/aislamiento & purificación , Persona de Mediana Edad , Anotación de Secuencia Molecular , Opisthorchis/patogenicidad , Pronóstico
9.
J Hepatol ; 61(4): 850-8, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25017828

RESUMEN

BACKGROUND & AIMS: Intrahepatic cholangiocarcinoma (ICC) is a significant public health problem in East Asia, where it is strongly associated with chronic infection by the food-borne parasite Opisthorchis viverrini (OV). We report the first comprehensive miRNA expression profiling by microarray of the most common histologic grades and subtypes of ICC: well differentiated, moderately differentiated, and papillary ICC. METHODS: MicroRNA expression profiles from FFPE were compared among the following: ICC tumour tissue (n = 16), non-tumour tissue distally macrodissected from the same ICC tumour block (n = 15), and normal tissue (n = 13) from individuals undergoing gastric bypass surgery. A panel of deregulated miRNAs was validated by qPCR. RESULTS: Each histologic grade and subtype of ICC displayed a distinct miRNA profile, with no cohort of miRNAs emerging as commonly deregulated. Moderately differentiated ICC showed the greatest miRNA deregulation in quantity and magnitude, followed by the papillary subtype, and then well differentiated ICC. Moreover, when ICC tumour tissues were compared to adjacent non-tumour tissue, similar miRNA dysregulation profiles were observed. CONCLUSIONS: We show that common histologic grades and subtypes of ICC have distinct miRNA profiles. As histological grade and subtypes are associated with ICC aggressiveness, these profiles could be used to enhance the early detection and improve the personalised treatment for ICC. These findings also suggest the involvement of specific miRNAs during ICC tumour progression and differentiation. We plan to use these insights to (a) detect these profiles in circulation and (b) conduct functional analyses to decipher the roles of miRNAs in ICC tumour differentiation.


Asunto(s)
Neoplasias de los Conductos Biliares , Conductos Biliares Intrahepáticos , Colangiocarcinoma , MicroARNs/genética , Animales , Neoplasias de los Conductos Biliares/etiología , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/patología , Conductos Biliares Intrahepáticos/patología , Colangiocarcinoma/etiología , Colangiocarcinoma/genética , Colangiocarcinoma/patología , Femenino , Perfilación de la Expresión Génica/métodos , Humanos , Masculino , Persona de Mediana Edad , Clasificación del Tumor , Opistorquiasis/complicaciones , Opistorquiasis/parasitología , Opisthorchis/aislamiento & purificación , Pronóstico
10.
J Transl Med ; 12: 3, 2014 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-24393330

RESUMEN

BACKGROUND: Nasopharyngeal carcinoma (NPC) is a solid tumor of the head and neck. Multimodal therapy is highly effective when NPC is detected early. However, due to the location of the tumor and the absence of clinical signs, early detection is difficult, making a biomarker for the early detection of NPC a priority. The dysregulation of small non-coding RNAs (miRNAs) during carcinogenesis is the focus of much current biomarker research. Herein, we examine several miRNA discovery methods using two sample matrices to identify circulating miRNAs (c-miRNAs) associated with NPC. METHODS: We tested two miRNA discovery workflows on two sample sources for miRNAs associated with NPC. In the first workflow, we assumed that NPC tumor tissue would be enriched for miRNAs, so we compared miRNA expression in FFPE from NPC cases and controls using microarray and RNA-Seq technologies. Candidate miRNAs from both technologies were verified by qPCR in FFPE and sera from an independent NPC sample set. In a second workflow, we directly interrogated NPC case and control sera by RNA-Seq for c-miRNAs associated with NPC, with candidate c-miRNAs verified by qPCR in the sera from the same independent NPC sample set. RESULTS: Both microarray and RNA-Seq narrowed the miRNA signature to 1-5% of the known mature human miRNAs. Moreover, these two methods produced similar results when applied to the same sample type (FFPE), with RNA-Seq additionally indicating "unknown" miRNAs associated with NPC. However, we found different miRNA profiles in NPC sera compared to FFPE using RNA-Seq, with the few overlapping miRNAs found to be significantly up-regulated in FFPE significantly down-regulated in sera (and vice versa). Despite the different miRNA profiles found in FFPE and sera, both profiles strongly associated with NPC, providing two potential sources for biomarker signatures for NPC. CONCLUSIONS: We determined that the direct interrogation of sera by RNA-Seq was the most informative method for identifying a c-miRNA signature associated with NPC. We also showed that there are different miRNA expression profiles associated with NPC for tumor tissue and sera. These results reflect on the methods and meaning of miRNA biomarkers for NPC in tissue and peripheral blood.


Asunto(s)
Perfilación de la Expresión Génica/métodos , MicroARNs/genética , Neoplasias Nasofaríngeas/genética , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/genética , Carcinoma , Estudios de Casos y Controles , Análisis por Conglomerados , ADN Complementario/genética , ADN Complementario/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Herpesvirus Humano 4/genética , Humanos , Malasia , Masculino , MicroARNs/sangre , MicroARNs/metabolismo , Persona de Mediana Edad , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas/sangre , Análisis de Secuencia por Matrices de Oligonucleótidos , Adhesión en Parafina , ARN Neoplásico/genética , ARN Neoplásico/metabolismo , ARN Viral/genética , ARN Viral/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Fijación del Tejido
11.
FASEB J ; 27(11): 4572-84, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23925654

RESUMEN

Opisthorchis viverrini is a fish-borne trematode endemic in East Asia. Following ingestion, the flukes locate to the biliary tre where chronic infection frequently leads to cholangiocarcinoma (CCA). The mechanisms by which O. viverrini infection culminates in CCA remain unknown. An unexplored aspect is its influence on the host microbiome. In the hamster, infection with this pathogen reliably leads to CCA. Genomic DNAs of microbiota from colorectal contents and bile of hamsters and from whole O. viverrini were examined in this model of fluke-induced CCA. Microbial communities were characterized by high-throughput sequencing of variable regions 7-9 of prokaryotic 16S ribosomal DNA. Of ∼1 million sequences, 536,009 with useable reads were assignable to 29,776 operational taxonomy units (OTUs) and, in turn, to 20 phyla and 273 genera of Bacteria or Archaea. Microbial community analyses revealed that fluke infection perturbed the gastrointestinal tract microbiome, increasing Lachnospiraceae, Ruminococcaceae, and Lactobacillaceae, while decreasing Porphyromonadaceae, Erysipelotrichaceae, and Eubacteriaceae (P≤0.05). More than 60 OTUs were detected in the biliary system, which confirmed bacteriobilia and a noteworthy community of microbes associated with the parasites. The fluke-associated microorganisms included potential pathogens from the Enterobacteriaceae and Listeriaceae and others, including Cyanobacteria and Deinococci, usually found in external environments. Given that opisthorchiasis is distinguished from other helminth infections by a robust inflammatory phenotype with conspicuously elevated IL-6, and that inflammation of the biliary system leads to periductal fibrosis, which is a precursor of CCA, the flukes and their microbiota may together drive this distinctive immune response.


Asunto(s)
Sistema Biliar/microbiología , Intestinos/microbiología , Microbiota , Opistorquiasis/microbiología , Animales , Archaea/genética , Archaea/aislamiento & purificación , Bacterias/genética , Bacterias/aislamiento & purificación , Bilis/microbiología , Cricetinae , Genoma Arqueal , Genoma Bacteriano , Secuenciación de Nucleótidos de Alto Rendimiento , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
12.
Methods Mol Biol ; 2762: 109-121, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38315362

RESUMEN

Malaria is a vector-borne disease caused by Plasmodium parasites of which Plasmodium falciparum contributed to an estimated 247 million cases worldwide in 2021 (WHO malaria report 2022). The P. falciparum Circumsporozoite protein (PfCSP) covers the surface of the sporozoite which is critical to cell invasion in the human host. PfCSP is the leading pre-erythrocytic vaccine candidate and forms the basis of the RTS'S (Mosquirix®) malaria vaccine. However, high-yield production of full-length PfCSP with proper folding has been challenging. Here, we describe expression and purification of full-length PfCSP (containing 4 NVDP and 38 NANP repeats) with proper conformation by a simple three-step procedure in the Lactococcus lactis expression system.


Asunto(s)
Lactococcus lactis , Vacunas contra la Malaria , Malaria Falciparum , Malaria , Humanos , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Malaria/prevención & control , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo , Anticuerpos Antiprotozoarios
13.
Vaccine ; 42(8): 1980-1992, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38388238

RESUMEN

Two malaria transmission-blocking vaccine (TBV) candidates, R0.6C and ProC6C, have completed preclinical development including the selection of adjuvants, Alhydrogel® with or without the saponin based adjuvant Matrix-M™. Here, we report on the final drug product (formulation) design of R0.6C and ProC6C and evaluate their safety and biochemical stability in preparation for preclinical and clinical pharmacy handling. The point-of-injection stability studies demonstrated that both the R0.6C and ProC6C antigens are stable on Alhydrogel in the presence or absence of Matrix-M for up to 24 h at room temperature. As this is the first study to combine Alhydrogel and Matrix-M for clinical use, we also evaluated their potential interactions. Matrix-M adsorbs to Alhydrogel, while not displacing the > 95 % adsorbed protein. The R0.6C and ProC6C formulations were found to be safe and well tolerated in repeated dose toxicity studies in rabbits generating high levels of functional antibodies that blocked infection of mosquitoes. Further, the R0.6C and ProC6C drug products were found to be stable for minimally 24 months when stored at 2-8 °C, with studies ongoing through 36 months. Together, this data demonstrates the safety and suitability of the L. lactis expression system as well as supports the clinical testing of the R0.6C and ProC6C malaria vaccine candidates in First-In-Human clinical trials.


Asunto(s)
Vacunas contra la Malaria , Malaria Falciparum , Animales , Conejos , Hidróxido de Aluminio , Anticuerpos Antiprotozoarios , Antígenos de Protozoos , Vacunas contra la Malaria/efectos adversos , Malaria Falciparum/prevención & control , Plasmodium falciparum , Proteínas Protozoarias
14.
J Clin Invest ; 134(7)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38290009

RESUMEN

BACKGROUNDMalaria transmission-blocking vaccines aim to interrupt the transmission of malaria from one person to another.METHODSThe candidates R0.6C and ProC6C share the 6C domain of the Plasmodium falciparum sexual-stage antigen Pfs48/45. R0.6C utilizes the glutamate-rich protein (GLURP) as a carrier, and ProC6C includes a second domain (Pfs230-Pro) and a short 36-amino acid circumsporozoite protein (CSP) sequence. Healthy adults (n = 125) from a malaria-endemic area of Burkina Faso were immunized with 3 intramuscular injections, 4 weeks apart, of 30 µg or 100 µg R0.6C or ProC6C each adsorbed to Alhydrogel (AlOH) adjuvant alone or in combination with Matrix-M (15 µg or 50 µg, respectively). The allocation was random and double-blind for this phase I trial.RESULTSThe vaccines were safe and well tolerated with no vaccine-related serious adverse events. A total of 7 adverse events, mild to moderate in intensity and considered possibly related to the study vaccines, were recorded. Vaccine-specific antibodies were highest in volunteers immunized with 100 µg ProC6C-AlOH with Matrix-M, and 13 of 20 (65%) individuals in the group showed greater than 80% transmission-reducing activity (TRA) when evaluated in the standard membrane feeding assay at 15 mg/mL IgG. In contrast, R0.6C induced sporadic TRA.CONCLUSIONAll formulations were safe and well tolerated in a malaria-endemic area of Africa in healthy adults. The ProC6C-AlOH/Matrix-M vaccine elicited the highest levels of functional antibodies, meriting further investigation.TRIAL REGISTRATIONPan-African Clinical Trials Registry (https://pactr.samrc.ac.za) PACTR202201848463189.FUNDINGThe study was funded by the European and Developing Countries Clinical Trials Partnership (grant RIA2018SV-2311).


Asunto(s)
Vacunas contra la Malaria , Malaria Falciparum , Malaria , Adulto , Humanos , Plasmodium falciparum , Proteínas Protozoarias , Adyuvantes Inmunológicos , Antígenos de Protozoos , Hidróxido de Aluminio , Anticuerpos Antiprotozoarios
15.
Methods Mol Biol ; 2652: 3-20, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37093467

RESUMEN

The Lactococcus lactis, a Gram-positive bacteria, is an ideal expression host for the overproduction of heterologous proteins in a properly folded and functional form. L. lactis has been identified as an efficient cell factory, generally recognized as safe (GRAS), has a long history of safe use in food production, and is known to have probiotic properties. Key desirable features of L. lactis include the following: (1) rapid growth to high cell densities, not requiring aeration which facilitates large-scale fermentation; (2) its Gram-positive nature precludes the presence of contaminating endotoxins; (3) the capacity to secrete stable recombinant protein into the growth medium with few proteases resulting in a properly folded, full-length protein; and (4) the availability of diverse expression vectors facilitating various cloning options. We have previously described production of several recombinant proteins with varying degrees of predicted structural complexities using the L. lactis pH-dependent P170 promoter. The purpose of this chapter is to provide a detailed protocol for facilitating wider application of L. lactis as a reliable platform for expression of heterologous recombinant proteins in soluble form. Here, we present details of the various steps involved such as cloning of the target gene in appropriate expression plasmid vector, determination of the expression levels of the heterologous protein, and initial purification of the expressed soluble recombinant protein of interest.


Asunto(s)
Lactococcus lactis , Lactococcus lactis/genética , Proteínas Recombinantes/metabolismo , Plásmidos , Vectores Genéticos , Clonación Molecular
16.
Vaccine ; 41(4): 938-944, 2023 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-36585278

RESUMEN

Malaria kills around 409,000 people a year, mostly children under the age of five. Malaria transmission-blocking vaccines work to reduce malaria prevalence in a community and have the potential to be part of a multifaceted approach required to eliminate the parasites causing the disease. Pfs25 is a leading malaria transmission-blocking antigen and has been successfully produced in a plant expression system as both a subunit vaccine and as a virus-like particle. This study demonstrates an improved version of the virus-like particle antigen display molecule by eliminating known protease sites from the prior A85 variant. This re-engineered molecule, termed B29, displays three times the number of Pfs25 antigens per virus-like particle compared to the original Pfs25 virus-like particle. An improved purification scheme was also developed, resulting in a substantially higher yield and improved purity. The molecule was evaluated in a mouse model and found to induce improved transmission-blocking activity at lower doses and longer durations than the original molecule.


Asunto(s)
Vacunas contra la Malaria , Malaria Falciparum , Malaria , Animales , Ratones , Plasmodium falciparum , Proteínas Protozoarias , Antígenos de Protozoos , Malaria/prevención & control , Vacunas contra la Malaria/genética , Malaria Falciparum/prevención & control , Anticuerpos Antiprotozoarios
17.
Protein Expr Purif ; 83(2): 145-51, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22503665

RESUMEN

The enzyme Necator americanus glutathione S-transferase 1 (Na-GST-1) belongs to a unique Nu class of GSTs and is a lead candidate antigen in a bivalent human hookworm vaccine. Here we describe the expression of Na-GST-1 in the yeast Pichia pastoris at the 20 L manufacturing scale and its purification process performed by three chromatographic steps, comprised of a Q Sepharose XL anion exchange column, followed by a Butyl Sepharose HP hydrophobic affinity column and a Superdex 75 size-exclusion column. Approximately 1.5 g of recombinant protein was recovered at an overall process yield of 51%, with a purity grade of 98% and the absence of detectable host cell protein. By mass spectrometry the recombinant protein exhibits a mass of 23,676Da, which closely matches the predicted molecular mass of the protein. The expression and purification methods described here are suitable for further scale-up product development and for its use to design formulation processes suitable to generate a vaccine for clinical testing.


Asunto(s)
Antígenos Helmínticos/aislamiento & purificación , Glutatión Transferasa/aislamiento & purificación , Proteínas del Helminto/aislamiento & purificación , Necator americanus/enzimología , Proteínas Recombinantes/aislamiento & purificación , Animales , Antígenos Helmínticos/genética , Antígenos Helmínticos/metabolismo , Cromatografía en Gel , Cromatografía Líquida de Alta Presión , Electroforesis en Gel de Poliacrilamida , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo , Proteínas del Helminto/genética , Proteínas del Helminto/metabolismo , Pichia/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
18.
Am J Trop Med Hyg ; 2022 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-35895389

RESUMEN

In the early 1980s, Richard Carter was among the first researchers to identify the sexual stage-specific Pfs48/45 protein, leading to the identification of target epitopes. Carter predicted its tertiary conformation while involved in a number of studies on naturally acquired sexual stage-specific antibodies. Pfs48/45 is a cysteine-rich surface protein of sexual stages of Plasmodium falciparum that plays a critical role in male gamete fertility. Antibodies against Pfs48/45 prevent parasite development in the mosquito vector, and therefore prevent the spread of malaria in the population. Since the gene was sequenced in the early 1990s, Pfs48/45 has been considered a prime target candidate for a malaria transmission-blocking vaccine. However, major manufacturing challenges-in particular, difficulty realizing satisfactory yields of a properly folded protein for the induction of functional antibodies-delayed clinical development significantly. These challenges were met roughly 20 years later. The first clinical trial with a Pfs48/45 subunit vaccine (R0.6C) was started in the Netherlands in early 2021. The excellent contributions to the long and winding path of Pfs48/45 research by Richard Carter are well recognized and are an integrated part of his seminal contributions to unraveling Plasmodium sexual stage biology.

19.
Front Immunol ; 13: 909060, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35812379

RESUMEN

Malaria transmission blocking vaccines (TBV) aim to induce antibodies that can interrupt Plasmodium falciparum development in the mosquito midgut and thereby prevent onward malaria transmission. A limited number of TBV candidates have been identified and only three (Pfs25, Pfs230 and Pfs48/45) have entered clinical testing. While one of these candidates may emerge as a highly potent TBV candidate, it is premature to determine if they will generate sufficiently potent and sustained responses. It is therefore important to explore novel candidate antigens. We recently analyzed sera from naturally exposed individuals and found that the presence and/or intensity of antibodies against 12 novel putative surface expressed gametocyte antigens was associated with transmission reducing activity. In this study, protein fragments of these novel TBV candidates were designed and heterologously expressed in Drosophila melanogaster S2 cells and Lactococcus lactis. Eleven protein fragments, covering seven TBV candidates, were successfully produced. All tested antigens were recognized by antibodies from individuals living in malaria-endemic areas, indicating that native epitopes are present. All antigens induced antigen-specific antibody responses in mice. Two antigens induced antibodies that recognized a native protein in gametocyte extract, and antibodies elicited by four antigens recognized whole gametocytes. In particular, we found that antigen Pf3D7_0305300, a putative transporter, is abundantly expressed on the surface of gametocytes. However, none of the seven novel TBV candidates expressed here induced an antibody response that reduced parasite development in the mosquito midgut as assessed in the standard membrane feeding assay. Altogether, the antigen fragments used in this study did not prove to be promising transmission blocking vaccine constructs, but led to the identification of two gametocyte surface proteins that may provide new leads for studying gametocyte biology.


Asunto(s)
Culicidae , Vacunas contra la Malaria , Malaria , Animales , Anticuerpos Antiprotozoarios , Antígenos , Drosophila melanogaster , Ratones , Plasmodium falciparum , Proteínas Protozoarias/genética
20.
Vaccines (Basel) ; 10(10)2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36298492

RESUMEN

During development of a subunit vaccine, monitoring integrity of the recombinant protein for process development and quality control is critical. Pfs230 is a leading malaria transmission blocking vaccine candidate and the first to reach a Phase 2 clinical trial. The Pfs230 protein is expressed on the surface of gametes, and plays an important role in male fertility. While the potency of Pfs230 protein can be determined by a standard membrane-feeding assay (SMFA) using antibodies from immunized subjects, the precision of a general in vivo potency study is known to be poor and is also time-consuming. Therefore, using a well-characterized Pfs230 recombinant protein and two human anti-Pfs230 monoclonal antibodies (mAbs), which have functional activity judged by SMFA, a sandwich ELISA-based in vitro potency assay, called the Antigen Integrity Assay (AIA), was developed. Multiple validation parameters of AIA were evaluated to qualify the assay following International Conference on Harmonization (ICH) Q2(R1) guidelines. The AIA is a high throughput assay and demonstrated excellent precision (3.2 and 5.4% coefficients of variance for intra- and inter-assay variability, respectively) and high sensitivity (>12% impurity in a sample can be detected). General methodologies and the approach to assay validation described herein are amenable to any subunit vaccine as long as more than two functional, non-competing mAbs are available. Thus, this study supports future subunit vaccine development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA