Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Syst Biol ; 72(4): 820-836, 2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-36961245

RESUMEN

Cross-species introgression can have significant impacts on phylogenomic reconstruction of species divergence events. Here, we used simulations to show how the presence of even a small amount of introgression can bias divergence time estimates when gene flow is ignored in the analysis. Using advances in analytical methods under the multispecies coalescent (MSC) model, we demonstrate that by accounting for incomplete lineage sorting and introgression using large phylogenomic data sets this problem can be avoided. The multispecies-coalescent-with-introgression (MSci) model is capable of accurately estimating both divergence times and ancestral effective population sizes, even when only a single diploid individual per species is sampled. We characterize some general expectations for biases in divergence time estimation under three different scenarios: 1) introgression between sister species, 2) introgression between non-sister species, and 3) introgression from an unsampled (i.e., ghost) outgroup lineage. We also conducted simulations under the isolation-with-migration (IM) model and found that the MSci model assuming episodic gene flow was able to accurately estimate species divergence times despite high levels of continuous gene flow. We estimated divergence times under the MSC and MSci models from two published empirical datasets with previous evidence of introgression, one of 372 target-enrichment loci from baobabs (Adansonia), and another of 1000 transcriptome loci from 14 species of the tomato relative, Jaltomata. The empirical analyses not only confirm our findings from simulations, demonstrating that the MSci model can reliably estimate divergence times but also show that divergence time estimation under the MSC can be robust to the presence of small amounts of introgression in empirical datasets with extensive taxon sampling. [divergence time; gene flow; hybridization; introgression; MSci model; multispecies coalescent].


Asunto(s)
Flujo Génico , Hibridación Genética , Filogenia , Modelos Genéticos
2.
Phytopathology ; 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38772042

RESUMEN

The breeding of disease-resistant soybeans cultivars to manage Phytophthora root and stem rot caused by the pathogen Phytophthora sojae involves combining quantitative disease resistance (QDR) and Rps gene-mediated resistance. To identify and confirm potential mechanisms of QDR towards P. sojae, we conducted a time course study comparing changes in gene expression among Conrad and M92-220 with high QDR to susceptible genotypes, Sloan and 3 mutants derived from fast neutron (FN) irradiation of M92-220. Differentially expressed genes from Conrad and M92-220 indicated several shared defense-related pathways at the transcriptomic level, but also defense pathways unique to each cultivar such as stilbenoid, diarylheptanoid and gingerol biosynthesis, and monobactam biosynthesis. Gene Ontology pathway analysis showed that the susceptible FN mutants lacked enrichment of three terpenoid related-pathways and two cell wall-related pathways at either one or both timepoints, in contrast to M92-220. The susceptible mutants also lacked enrichment of potentially important KEGG pathways at either one or both timepoints, including sesquiterpenoid and triterpenoid biosynthesis, thiamine metabolism, arachidonic acid, stilbenoid, diarylheptanoid and gingerol biosynthesis, and monobactam biosynthesis. Additionally, thirty-one genes which were differentially expressed in M92-220 following P. sojae infection were not expressed in the mutants. These 31 genes have annotations related to unknown proteins, valine, leucine, and isoleucine biosynthesis and protein and lipid metabolic processes. The results of this study confirm previously proposed mechanisms of QDR, provide evidence for potential novel QDR pathways in M92-220, and furthers our understanding of the complex network associated with QDR mechanisms in soybean towards P. sojae.

3.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33990463

RESUMEN

To investigate the origins and stages of vertebrate adaptive radiation, we reconstructed the spatial and temporal histories of adaptive alleles underlying major phenotypic axes of diversification from the genomes of 202 Caribbean pupfishes. On a single Bahamian island, ancient standing variation from disjunct geographic sources was reassembled into new combinations under strong directional selection for adaptation to the novel trophic niches of scale-eating and molluscivory. We found evidence for two longstanding hypotheses of adaptive radiation: hybrid swarm origins and temporal stages of adaptation. Using a combination of population genomics, transcriptomics, and genome-wide association mapping, we demonstrate that this microendemic adaptive radiation of novel trophic specialists on San Salvador Island, Bahamas experienced twice as much adaptive introgression as generalist populations on neighboring islands and that adaptive divergence occurred in stages. First, standing regulatory variation in genes associated with feeding behavior (prlh, cfap20, and rmi1) were swept to fixation by selection, then standing regulatory variation in genes associated with craniofacial and muscular development (itga5, ext1, cyp26b1, and galr2) and finally the only de novo nonsynonymous substitution in an osteogenic transcription factor and oncogene (twist1) swept to fixation most recently. Our results demonstrate how ancient alleles maintained in distinct environmental refugia can be assembled into new adaptive combinations and provide a framework for reconstructing the spatiotemporal landscape of adaptation and speciation.


Asunto(s)
Adaptación Fisiológica/genética , Especiación Genética , Peces Killi/genética , Filogenia , Análisis Espacio-Temporal , Vertebrados/genética , Animales , Bahamas , Región del Caribe , Proteínas de Peces/genética , Perfilación de la Expresión Génica/métodos , Estudio de Asociación del Genoma Completo/métodos , Genómica/métodos , Genotipo , Geografía , Peces Killi/anatomía & histología , Peces Killi/clasificación , Polimorfismo de Nucleótido Simple , Vertebrados/anatomía & histología , Vertebrados/clasificación
4.
Trends Genet ; 36(11): 845-856, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32709458

RESUMEN

Molecular data have been used to date species divergences ever since they were described as documents of evolutionary history in the 1960s. Yet, an inadequate fossil record and discordance between gene trees and species trees are persistently problematic. We examine how, by accommodating gene tree discordance and by scaling branch lengths to absolute time using mutation rate and generation time, multispecies coalescent (MSC) methods can potentially overcome these challenges. We find that time estimates can differ - in some cases, substantially - depending on whether MSC methods or traditional phylogenetic methods that apply concatenation are used, and whether the tree is calibrated with pedigree-based mutation rates or with fossils. We discuss the advantages and shortcomings of both approaches and provide practical guidance for data analysis when using these methods.


Asunto(s)
Evolución Biológica , Fósiles , Mamíferos/clasificación , Mamíferos/genética , Modelos Teóricos , Tasa de Mutación , Filogenia , Animales , Flujo Génico , Modelos Genéticos
5.
Proc Biol Sci ; 289(1980): 20220596, 2022 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-35946151

RESUMEN

Microsatellites have been a workhorse of evolutionary genetic studies for decades and are still commonly in use for estimating signatures of genetic diversity at the population and species level across a multitude of taxa. Yet, the very high mutation rate of these loci is a double-edged sword, conferring great sensitivity at shallow levels of analysis (e.g. paternity analysis) but yielding considerable uncertainty for deeper evolutionary comparisons. For the present study, we used reduced representation genome-wide data (restriction site-associated DNA sequencing (RADseq)) to test for patterns of interspecific hybridization previously characterized using microsatellite data in a contact zone between two closely related mouse lemur species in Madagascar (Microcebus murinus and Microcebus griseorufus). We revisit this system by examining populations in, near, and far from the contact zone, including many of the same individuals that had previously been identified as hybrids with microsatellite data. Surprisingly, we find no evidence for admixed nuclear ancestry. Instead, re-analyses of microsatellite data and simulations suggest that previously inferred hybrids were false positives and that the program NewHybrids can be particularly sensitive to erroneously inferring hybrid ancestry. Combined with results from coalescent-based analyses and evidence for local syntopic co-occurrence, we conclude that the two mouse lemur species are in fact completely reproductively isolated, thus providing a new understanding of the evolutionary rate whereby reproductive isolation can be achieved in a primate.


Asunto(s)
Cheirogaleidae , Lemur , Animales , Evolución Biológica , Cheirogaleidae/genética , Hibridación Genética , Lemur/genética , Madagascar , Repeticiones de Microsatélite , Análisis de Secuencia de ADN
6.
Syst Biol ; 70(2): 203-218, 2021 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-32642760

RESUMEN

Mouse lemurs (Microcebus) are a radiation of morphologically cryptic primates distributed throughout Madagascar for which the number of recognized species has exploded in the past two decades. This taxonomic revision has prompted understandable concern that there has been substantial oversplitting in the mouse lemur clade. Here, we investigate mouse lemur diversity in a region in northeastern Madagascar with high levels of microendemism and predicted habitat loss. We analyzed RADseq data with multispecies coalescent (MSC) species delimitation methods for two pairs of sister lineages that include three named species and an undescribed lineage previously identified to have divergent mtDNA. Marked differences in effective population sizes, levels of gene flow, patterns of isolation-by-distance, and species delimitation results were found among the two pairs of lineages. Whereas all tests support the recognition of the presently undescribed lineage as a separate species, the species-level distinction of two previously described species, M. mittermeieri and M. lehilahytsara is not supported-a result that is particularly striking when using the genealogical discordance index (gdi). Nonsister lineages occur sympatrically in two of the localities sampled for this study, despite an estimated divergence time of less than 1 Ma. This suggests rapid evolution of reproductive isolation in the focal lineages and in the mouse lemur clade generally. The divergence time estimates reported here are based on the MSC calibrated with pedigree-based mutation rates and are considerably more recent than previously published fossil-calibrated relaxed-clock estimates. We discuss the possible explanations for this discrepancy, noting that there are theoretical justifications for preferring the MSC estimates in this case. [Cryptic species; effective population size; microendemism; multispecies coalescent; speciation; species delimitation.].


Asunto(s)
Cheirogaleidae , Especiación Genética , Animales , Cheirogaleidae/clasificación , Cheirogaleidae/genética , ADN Mitocondrial/genética , Ecosistema , Fósiles , Filogenia
7.
Mol Biol Evol ; 37(2): 469-474, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31633794

RESUMEN

Theory predicts that deleterious mutations accumulate more readily in small populations. As a consequence, mutation load is expected to be elevated in species where life-history strategies and geographic or historical contingencies reduce the number of reproducing individuals. Yet, few studies have empirically tested this prediction using genome-wide data in a comparative framework. We collected whole-genome sequencing data for 147 individuals across seven crow species (Corvus spp.). For each species, we estimated the distribution of fitness effects of deleterious mutations and compared it with proxies of the effective population size Ne. Island species with comparatively smaller geographic range sizes had a significantly increased mutation load. These results support the view that small populations have an elevated risk of mutational meltdown, which may contribute to the higher extinction rates observed in island species.


Asunto(s)
Mutación , Passeriformes/genética , Secuenciación Completa del Genoma/veterinaria , Animales , Evolución Molecular , Aptitud Genética , Rasgos de la Historia de Vida , Modelos Genéticos , Passeriformes/clasificación , Filogenia , Densidad de Población , Selección Genética
8.
Heredity (Edinb) ; 127(2): 233-244, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34272504

RESUMEN

Mutations are the raw material on which evolution acts, and knowledge of their frequency and genomic distribution is crucial for understanding how evolution operates at both long and short timescales. At present, the rate and spectrum of de novo mutations have been directly characterized in relatively few lineages. Our study provides the first direct mutation-rate estimate for a strepsirrhine (i.e., the lemurs and lorises), which comprises nearly half of the primate clade. Using high-coverage linked-read sequencing for a focal quartet of gray mouse lemurs (Microcebus murinus), we estimated the mutation rate to be among the highest calculated for a mammal at 1.52 × 10-8 (95% credible interval: 1.28 × 10-8-1.78 × 10-8) mutations/site/generation. Further, we found an unexpectedly low count of paternal mutations, and only a modest overrepresentation of mutations at CpG sites. Despite the surprising nature of these results, we found both the rate and spectrum to be robust to the manipulation of a wide range of computational filtering criteria. We also sequenced a technical replicate to estimate a false-negative and false-positive rate for our data and show that any point estimate of a de novo mutation rate should be considered with a large degree of uncertainty. For validation, we conducted an independent analysis of context-dependent substitution types for gray mouse lemur and five additional primate species for which de novo mutation rates have also been estimated. These comparisons revealed general consistency of the mutation spectrum between the pedigree-based and the substitution-rate analyses for all species compared.


Asunto(s)
Cheirogaleidae , Animales , Cheirogaleidae/genética , Genoma , Ratones , Tasa de Mutación , Linaje , Filogenia
9.
Heredity (Edinb) ; 124(1): 236-251, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31435007

RESUMEN

Madagascar's biodiversity is notoriously threatened by deforestation and climate change. Many of these organisms are rare, cryptic, and severely threatened, making population-level sampling unrealistic. Such is the case with Madagascar's dwarf lemurs (genus Cheirogaleus), the only obligate hibernating primate. We here apply comparative genomic approaches to generate the first genome-wide estimates of genetic diversity within dwarf lemurs. We generate a reference genome for the fat-tailed dwarf lemur, Cheirogaleus medius, and use this resource to facilitate analyses of high-coverage (~30×) genome sequences for wild-caught individuals representing species: C. sp. cf. medius, C. major, C. crossleyi, and C. sibreei. This study represents the largest contribution to date of novel genomic resources for Madagascar's lemurs. We find concordant phylogenetic relationships among the four lineages of Cheirogaleus across most of the genome, and yet detect a number of discordant genomic regions consistent with ancient admixture. We hypothesized that these regions could have resulted from adaptive introgression related to hibernation, indeed finding that genes associated with hibernation are present, though most significantly, that gene ontology categories relating to transcription are over-represented. We estimate levels of heterozygosity and find particularly low levels in an individual sampled from an isolated population of C. medius that we refer to as C. sp. cf. medius. Results are consistent with a recent decline in effective population size, which is evident across species. Our study highlights the power of comparative genomic analysis for identifying species and populations of conservation concern, as well as for illuminating possible mechanisms of adaptive phenotypic evolution.


Asunto(s)
Cheirogaleidae/genética , Evolución Molecular , Variación Genética , Genética de Población , Conservación de los Recursos Naturales , Genómica , Hibernación , Madagascar , Filogenia , Densidad de Población
10.
Mol Biol Evol ; 35(6): 1322-1326, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29669008

RESUMEN

Kimura's neutral theory of molecular evolution has been essential to virtually every advance in evolutionary genetics, and by extension, is foundational to the field of conservation genetics. Conservation genetics utilizes the key concepts of neutral theory to identify species and populations at risk of losing evolutionary potential by detecting patterns of inbreeding depression and low effective population size. In turn, this information can inform the management of organisms and their habitat providing hope for the long-term preservation of both. We expand upon Avise's "inventorial" and "functional" categories of conservation genetics by proposing a third category that is linked to the coalescent and that we refer to as "process-driven." It is here that connections between Kimura's theory and conservation genetics are strongest. Process-driven conservation genetics can be especially applied to large genomic data sets to identify patterns of historical risk, such as population bottlenecks, and accordingly, yield informed intuitions for future outcomes. By examining inventorial, functional, and process-driven conservation genetics in sequence, we assess the progression from theory, to data collection and analysis, and ultimately, to the production of hypotheses that can inform conservation policies.


Asunto(s)
Conservación de los Recursos Naturales , Evolución Molecular , Flujo Genético , Genética de Población
11.
Mol Ecol ; 27(21): 4270-4288, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29972877

RESUMEN

The process of sympatric speciation in nature remains a fundamental unsolved problem. Cameroon crater lake cichlid radiations were long regarded as one of the most compelling examples; however, recent work showed that their origins were more complex than a single colonization event followed by isolation. Here, we performed a detailed investigation of the speciation history of a radiation of Coptodon cichlids from Lake Ejagham, Cameroon, using whole-genome sequencing data. The existence of the Lake Ejagham Coptodon radiation is remarkable as this 0.5 km2 lake offers limited scope for divergence across a shallow depth gradient, disruptive selection is currently weak, and the species are sexually monochromatic. We infer that Lake Ejagham was colonized by Coptodon cichlids soon after its formation 9,000 years ago, yet speciation occurred only in the last 1,000-2,000 years. We show that secondary gene flow from a nearby riverine species has been ongoing, into ancestral as well as extant lineages, and we identify and date river-to-lake admixture blocks. One block contains a cluster of olfactory receptor genes that introgressed near the time of the first speciation event and coincides with a higher overall rate of admixture. Olfactory signalling is a key component of mate choice and species recognition in cichlids. A functional role for this introgression event is consistent with previous findings that sexual isolation appears much stronger than ecological isolation in Ejagham Coptodon. We conclude that speciation in this radiation took place in sympatry, yet may have benefited from ongoing riverine gene flow.


Asunto(s)
Cíclidos/clasificación , Flujo Génico , Especiación Genética , Genética de Población , Receptores Odorantes/genética , Simpatría , Animales , Camerún , Cíclidos/genética , Lagos , Filogenia
12.
Proc Biol Sci ; 283(1834)2016 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-27412275

RESUMEN

The independent evolution of similar traits across multiple taxa provides some of the most compelling evidence of natural selection. Little is known, however, about the genetic basis of these convergent or parallel traits: are they mediated by identical or different mutations in the same genes, or unique mutations in different genes? Using a combination of candidate gene and reduced representation genomic sequencing approaches, we explore the genetic basis of and the evolutionary processes that mediate similar plumage colour shared by isolated populations of the Monarcha castaneiventris flycatcher of the Solomon Islands. A genome-wide association study (GWAS) that explicitly controlled for population structure revealed that mutations in known pigmentation genes are the best predictors of parallel plumage colour. That is, entirely black or melanic birds from one small island share an amino acid substitution in the melanocortin-1 receptor (MC1R), whereas similarly melanic birds from another small island over 100 km away share an amino acid substitution in a predicted binding site of agouti signalling protein (ASIP). A third larger island, which separates the two melanic populations, is inhabited by birds with chestnut bellies that lack the melanic MC1R and ASIP allelic variants. Formal FST outlier tests corroborated the results of the GWAS and suggested that strong, directional selection drives the near fixation of the MC1R and ASIP variants across islands. Our results, therefore, suggest that selection acting on different mutations with large phenotypic effects can drive the evolution of parallel melanism, despite the relatively small population size on islands.


Asunto(s)
Proteína de Señalización Agouti/genética , Plumas/fisiología , Pigmentación/genética , Receptor de Melanocortina Tipo 1/genética , Pájaros Cantores/genética , Sustitución de Aminoácidos , Animales , Estudios de Asociación Genética , Islas , Melanesia , Mutación
13.
Microbiol Spectr ; 12(6): e0006424, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38712940

RESUMEN

Pseudomonas syringae pv. syringae (Pss) is an emerging phytopathogen that causes Pseudomonas leaf spot (PLS) disease in pepper plants. Pss can cause serious economic damage to pepper production, yet very little is known about the virulence factors carried by Pss that cause disease in pepper seedlings. In this study, Pss strains isolated from pepper plants showing PLS symptoms in Ohio between 2013 and 2021 (n = 16) showed varying degrees of virulence (Pss populations and disease symptoms on leaves) on 6-week-old pepper seedlings. In vitro studies assessing growth in nutrient-limited conditions, biofilm production, and motility also showed varying degrees of virulence, but in vitro and in planta variation in virulence between Pss strains did not correlate. Comparative whole-genome sequencing studies identified notable virulence genes including 30 biofilm genes, 87 motility genes, and 106 secretion system genes. Additionally, a total of 27 antimicrobial resistance genes were found. A multivariate correlation analysis and Scoary analysis based on variation in gene content (n = 812 variable genes) and single nucleotide polymorphisms within virulence genes identified no significant correlations with disease severity, likely due to our limited sample size. In summary, our study explored the virulence and antimicrobial gene content of Pss in pepper seedlings as a first step toward understanding the virulence and pathogenicity of Pss in pepper seedlings. Further studies with additional pepper Pss strains will facilitate defining genes in Pss that correlate with its virulence in pepper seedlings, which can facilitate the development of effective measures to control Pss in pepper and other related P. syringae pathovars. IMPORTANCE: Pseudomonas leaf spot (PLS) caused by Pseudomonas syringae pv. syringae (Pss) causes significant losses to the pepper industry. Highly virulent Pss strains under optimal environmental conditions (cool-moderate temperatures, high moisture) can cause severe necrotic lesions on pepper leaves that consequently can decrease pepper yield if the disease persists. Hence, it is important to understand the virulence mechanisms of Pss to be able to effectively control PLS in peppers. In our study, in vitro, in planta, and whole-genome sequence analyses were conducted to better understand the virulence and pathogenicity characteristics of Pss strains in peppers. Our findings fill a knowledge gap regarding potential virulence and pathogenicity characteristics of Pss in peppers, including virulence and antimicrobial gene content. Our study helps pave a path to further identify the role of specific virulence genes in causing disease in peppers, which can have implications in developing strategies to effectively control PLS in peppers.


Asunto(s)
Capsicum , Enfermedades de las Plantas , Hojas de la Planta , Pseudomonas syringae , Factores de Virulencia , Pseudomonas syringae/genética , Pseudomonas syringae/patogenicidad , Capsicum/microbiología , Enfermedades de las Plantas/microbiología , Virulencia/genética , Factores de Virulencia/genética , Hojas de la Planta/microbiología , Secuenciación Completa del Genoma , Biopelículas/crecimiento & desarrollo , Genoma Bacteriano/genética , Genómica
14.
Mol Ecol ; 22(3): 620-34, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22998089

RESUMEN

Transcriptome Shotgun Sequencing (RNA-seq) has been readily embraced by geneticists and molecular ecologists alike. As with all high-throughput technologies, it is critical to understand which analytic strategies are best suited and which parameters may bias the interpretation of the data. Here we use a comprehensive simulation approach to explore how various features of the transcriptome (complexity, degree of polymorphism π, alternative splicing), technological processing (sequencing error ε, library normalization) and bioinformatic workflow (de novo vs. mapping assembly, reference genome quality) impact transcriptome quality and inference of differential gene expression (DE). We find that transcriptome assembly and gene expression profiling (EdgeR vs. BaySeq software) works well even in the absence of a reference genome and is robust across a broad range of parameters. We advise against library normalization and in most situations advocate mapping assemblies to an annotated genome of a divergent sister clade, which generally outperformed de novo assembly (Trans-Abyss, Trinity, Soapdenovo-Trans). Transcriptome complexity (size, paralogs, alternative splicing isoforms) negatively affected the assembly and DE profiling, whereas the effects of sequencing error and polymorphism were almost negligible. Finally, we highlight the challenge of gene name assignment for de novo assemblies, the importance of mapping strategies and raise awareness of challenges associated with the quality of reference genomes. Overall, our results have significant practical and methodological implications and can provide guidance in the design and analysis of RNA-seq experiments, particularly for organisms where genomic background information is lacking.


Asunto(s)
Simulación por Computador , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ARN/métodos , Transcriptoma , Empalme Alternativo , Animales , Biología Computacional/métodos , Pinzones/genética , Humanos , Anotación de Secuencia Molecular , Programas Informáticos
15.
Insects ; 14(1)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36661984

RESUMEN

Aedes japonicus (Diptera: Culicidae), or the Asian rock pool mosquito, is an invasive mosquito in Europe and America. It was first detected outside of Asia in 1990 in Oceania. It has since expanded to North America and Europe in 1998 and 2000, respectively. Even though it is classified as a secondary vector of pathogens, it is competent to several arboviruses and filarial worms, and it is contributing to the transmission of La Crosse virus (LACV) and West Nile virus (WNV). In this study, CDC light, BG-sentinel, and gravid traps were used to collect mosquitoes between June and October 2021, in Wooster, Northeastern Ohio, USA. Morphological identification or/and Sanger sequencing were performed to identify the collected mosquitoes. Our results revealed that (adult) Ae. japonicus mosquitoes were the most abundant mosquito species collected with gravid traps in Wooster in 2021, confirming its establishment in Ohio. Molecular analyses of Ae. japonicus showed 100% nucleotide similarity with Ae. japonicus collected in Iowa (USA) and Canada, suggesting multiple introductions. Its presence may increase the risk of future arbovirus outbreaks in Wooster, Ohio. This study stresses the importance of actively monitoring the density and distribution of all members of the Ae. japonicus complex.

16.
Nutrients ; 15(3)2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36771430

RESUMEN

The intestinal microbial population is recognized for its impact on cancer treatment outcomes. Little research has reported microbiome changes during cancer progression or the interplay of disease progression, dietary sugar/fat intake, and the microbiome through surgery and chemotherapy. In this study, the murine gut microbiome was used as a model system, and changes in microbiome diversity, richness, and evenness over the progression of the cancer and treatment were analyzed. Mice were categorized into four diet cohorts, combinations of either high or low sucrose and high or low omega-3 fatty acids, and two treatment cohorts, saline vehicle or chemotherapy, for a total of eight groups. Fecal samples were collected at specific timepoints to assess changes due to diet implementation, onset of cancer, lumpectomy, and chemotherapy. Akkermansia muciniphila abundance was very high in some samples and negatively correlated with overall Amplicon Sequence Variant (ASV) richness (r(64) = -0.55, p = 3 × 10-8). Throughout the disease progression, ASV richness significantly decreased and was impacted by diet and treatment. Alpha-diversity and differential microbial abundance were significantly affected by disease progression, diet, treatment, and their interactions. These findings help establish a baseline for understanding how cancer progression, dietary macronutrients, and specific treatments impact the murine microbiome, which may influence outcomes.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Neoplasias , Animales , Ratones , Dieta , Verrucomicrobia , Progresión de la Enfermedad , Heces , Neoplasias/terapia
17.
Antibiotics (Basel) ; 12(11)2023 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-37998839

RESUMEN

Salmonella is the leading cause of death associated with foodborne illnesses in the USA. Difficulty in treating human salmonellosis is attributed to the development of antimicrobial resistance and the pathogenicity of Salmonella strains. Therefore, it is important to study the genetic landscape of Salmonella, such as the diversity, plasmids, and presence antimicrobial resistance genes (AMRs) and virulence genes. To this end, we isolated Salmonella from environmental samples from small specialty crop farms (SSCFs) in Northeast Ohio from 2016 to 2021; 80 Salmonella isolates from 29 Salmonella-positive samples were subjected to whole-genome sequencing (WGS). In silico serotyping revealed the presence of 15 serotypes. AMR genes were detected in 15% of the samples, with 75% exhibiting phenotypic and genotypic multidrug resistance (MDR). Plasmid analysis demonstrated the presence of nine different types of plasmids, and 75% of AMR genes were located on plasmids. Interestingly, five Salmonella Newport isolates and one Salmonella Dublin isolate carried the ACSSuT gene cassette on a plasmid, which confers resistance to ampicillin, chloramphenicol, streptomycin, sulfonamide, and tetracycline. Overall, our results show that SSCFs are a potential reservoir of Salmonella with MDR genes. Thus, regular monitoring is needed to prevent the transmission of MDR Salmonella from SSCFs to humans.

18.
Front Microbiol ; 14: 1074548, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37025625

RESUMEN

Introduction: With more public interest in consuming locally grown produce, small specialty crop farms (SSCF) are a viable and growing segment of the food production chain in the United States. Methods: The goal of this study was to investigate the genomic diversity of Campylobacter isolated from dairy manure (n = 69) collected from 10 SSCF in Northeast Ohio between 2018 and 2020. Results: A total of 56 C. jejuni and 13 C. coli isolates were sequenced. Multi-locus sequence typing (MLST) identified 22 sequence types (STs), with ST-922 (18%) and ST-61 (13%) predominant in C. jejuni and ST-829 (62%) and ST-1068 (38%) predominant in C. coli. Interestingly, isolates with similar genomic and gene contents were detected within and between SSCF over time, suggesting that Campylobacter could be transmitted between farms and may persist in a given SSCF over time. Virulence-associated genes (n = 35) involved in the uptake and utilization of potassium and organic compounds (succinate, gluconate, oxoglutarate, and malate) were detected only in the C. jejuni isolates, while 45 genes associated with increased resistance to environmental stresses (capsule production, cell envelope integrity, and iron uptake) were detected only in the C. coli isolates. Campylobacter coli isolates were also sub-divided into two distinct clusters based on the presence of unique prophages (n = 21) or IncQ conjugative plasmid/type-IV secretion system genes (n = 15). Campylobacter coli isolates harbored genes associated with resistance to streptomycin (aadE-Cc; 54%) and quinolone (gyrA-T86I; 77%), while C. jejuni had resistance genes for kanamycin (aph3'-IIIa; 20%). Both species harbored resistance genes associated with ß-lactam (especially, blaOXA-193; up to 100%) and tetracycline (tetO; up to 59%). Discussion/Conclusion: Our study demonstrated that Campylobacter genome plasticity associated with conjugative transfer might provide resistance to certain antimicrobials and viral infections via the acquisition of protein-encoding genes involved in mechanisms such as ribosomal protection and capsule modification.

19.
Evol Lett ; 2(5): 524-540, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30283699

RESUMEN

Genomic data has revealed complex histories of colonization and repeated gene flow previously unrecognized in some of the most celebrated examples of sympatric speciation and radiation. However, much of the evidence for secondary gene flow into these radiations comes from summary statistics calculated from sparse genomic sampling without knowledge of which specific genomic regions introgressed. This tells us little about how gene flow potentially influenced sympatric diversification. Here, we investigated whole genomes of Barombi Mbo crater lake cichlids for fine-scale patterns of introgression with neighboring riverine cichlid populations. We found evidence of secondary gene flow into the radiation scattered across <0.24% of the genome; however, from our analyses, it is not clear if the functional diversity in these regions contributed to the ecological, sexual, and morphological diversity found in the lake. Unlike similar studies, we found no obvious candidate genes for adaptive introgression and we cannot rule out that secondary gene flow was predominantly neutral with respect to the diversification process. We also found evidence for differential assortment of ancestral polymorphisms found in riverine populations between sympatric sister species, suggesting the presence of an ancestral hybrid swarm. Although the history of gene flow and colonization is more complicated than previously assumed, the lack of compelling evidence for secondary gene flow's role in species diversification suggests that we should not yet rule out one of the most celebrated examples of sympatric speciation in nature without a more thorough investigation of the timing and functional role of each introgressed region.

20.
Nat Commun ; 7: 13195, 2016 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-27796282

RESUMEN

Uncovering the genetic basis of species diversification is a central goal in evolutionary biology. Yet, the link between the accumulation of genomic changes during population divergence and the evolutionary forces promoting reproductive isolation is poorly understood. Here, we analysed 124 genomes of crow populations with various degrees of genome-wide differentiation, with parallelism of a sexually selected plumage phenotype, and ongoing hybridization. Overall, heterogeneity in genetic differentiation along the genome was best explained by linked selection exposed on a shared genome architecture. Superimposed on this common background, we identified genomic regions with signatures of selection specific to independent phenotypic contact zones. Candidate pigmentation genes with evidence for divergent selection were only partly shared, suggesting context-dependent selection on a multigenic trait architecture and parallelism by pathway rather than by repeated single-gene effects. This study provides insight into how various forms of selection shape genome-wide patterns of genomic differentiation as populations diverge.


Asunto(s)
Cuervos/genética , Flujo Génico , Genoma , Aislamiento Reproductivo , Animales , Femenino , Especiación Genética , Geografía , Hibridación Genética , Masculino , Hibridación de Ácido Nucleico , Fenotipo , Pigmentación , Polimorfismo de Nucleótido Simple , Dinámica Poblacional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA