Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Cell ; 157(5): 1175-88, 2014 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-24813849

RESUMEN

Upon ligand binding, RIPK1 is recruited to tumor necrosis factor receptor superfamily (TNFRSF) and Toll-like receptor (TLR) complexes promoting prosurvival and inflammatory signaling. RIPK1 also directly regulates caspase-8-mediated apoptosis or, if caspase-8 activity is blocked, RIPK3-MLKL-dependent necroptosis. We show that C57BL/6 Ripk1(-/-) mice die at birth of systemic inflammation that was not transferable by the hematopoietic compartment. However, Ripk1(-/-) progenitors failed to engraft lethally irradiated hosts properly. Blocking TNF reversed this defect in emergency hematopoiesis but, surprisingly, Tnfr1 deficiency did not prevent inflammation in Ripk1(-/-) neonates. Deletion of Ripk3 or Mlkl, but not Casp8, prevented extracellular release of the necroptotic DAMP, IL-33, and reduced Myd88-dependent inflammation. Reduced inflammation in the Ripk1(-/-)Ripk3(-/-), Ripk1(-/-)Mlkl(-/-), and Ripk1(-/-)Myd88(-/-) mice prevented neonatal lethality, but only Ripk1(-/-)Ripk3(-/-)Casp8(-/-) mice survived past weaning. These results reveal a key function for RIPK1 in inhibiting necroptosis and, thereby, a role in limiting, not only promoting, inflammation.


Asunto(s)
Genes Letales , Hematopoyesis , Inflamación/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Animales , Animales Recién Nacidos , Caspasa 8/metabolismo , Muerte Celular , Hígado/metabolismo , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Factores de Necrosis Tumoral/metabolismo
2.
Trends Immunol ; 44(12): 971-985, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37995659

RESUMEN

Macrophages represent a key component of the tumor microenvironment (TME) and are largely associated with poor prognosis. Therapeutic targeting of macrophages has historically focused on inhibiting their recruitment or reprogramming their phenotype from a protumor (M2-like) to an antitumor (M1-like) one. Unfortunately, this approach has not provided clinical breakthroughs that have changed practice. Emerging studies utilizing single-cell RNA-sequencing (scRNA-seq) and spatial transcriptomics have improved our understanding of the ontogeny, phenotype, and functional plasticity of macrophages. Overlaying the wealth of current information regarding macrophage molecular subtypes and functions has also identified novel therapeutic vulnerabilities that might drive better control of tumor-associated macrophages (TAMs). Here, we discuss the functional profiling of macrophages and provide an update of novel macrophage-targeted therapies in development.


Asunto(s)
Neoplasias , Humanos , Neoplasias/terapia , Neoplasias/patología , Macrófagos/patología , Fenotipo , Microambiente Tumoral
3.
J Gastroenterol Hepatol ; 31(7): 1257-72, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26809278

RESUMEN

Gastric cancer is the third leading cause of cancer-related mortality worldwide. This is in part due to the asymptomatic nature of the disease, which often results in late-stage diagnosis, at which point there are limited treatment options. Even when treated successfully, gastric cancer patients have a high risk of tumor recurrence and acquired drug resistance. It is vital to gain a better understanding of the molecular mechanisms underlying gastric cancer pathogenesis to facilitate the design of new-targeted therapies that may improve patient survival. A number of chemically and genetically engineered mouse models of gastric cancer have provided significant insight into the contribution of genetic and environmental factors to disease onset and progression. This review outlines the strengths and limitations of current mouse models of gastric cancer and their relevance to the pre-clinical development of new therapeutics.


Asunto(s)
Modelos Animales de Enfermedad , Ratones Endogámicos , Ratones Transgénicos , Neoplasias Gástricas/etiología , Animales , Gastrinas , Infecciones por Helicobacter , Helicobacter felis , Helicobacter pylori , Metilnitrosourea , Terapia Molecular Dirigida , Neoplasias Gástricas/clasificación , Neoplasias Gástricas/genética , Neoplasias Gástricas/terapia
4.
Cell Rep ; 43(8): 114616, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39128004

RESUMEN

Although aberrant activation of the KRAS and PI3K pathway alongside TP53 mutations account for frequent aberrations in human gastric cancers, neither the sequence nor the individual contributions of these mutations have been clarified. Here, we establish an allelic series of mice to afford conditional expression in the glandular epithelium of KrasG12D;Pik3caH1047R or Trp53R172H and/or ablation of Pten or Trp53. We find that KrasG12D;Pik3caH1047R is sufficient to induce adenomas and that lesions progress to carcinoma when also harboring Pten deletions. An additional challenge with either Trp53 loss- or gain-of-function alleles further accelerated tumor progression and triggered metastatic disease. While tumor-intrinsic STAT3 signaling in response to gp130 family cytokines remained as a gatekeeper for all stages of tumor development, metastatic progression required a mutant Trp53-induced interleukin (IL)-11 to IL-6 dependency switch. Consistent with the poorer survival of patients with high IL-6 expression, we identify IL-6/STAT3 signaling as a therapeutic vulnerability for TP53-mutant gastric cancer.


Asunto(s)
Progresión de la Enfermedad , Interleucina-6 , Factor de Transcripción STAT3 , Neoplasias Gástricas , Proteína p53 Supresora de Tumor , Animales , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Neoplasias Gástricas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Interleucina-6/metabolismo , Interleucina-6/genética , Ratones , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Mutación/genética , Fosfohidrolasa PTEN/metabolismo , Fosfohidrolasa PTEN/genética , Humanos , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Interleucina-11/metabolismo , Interleucina-11/genética
5.
Cell Death Dis ; 15(4): 255, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600086

RESUMEN

Excessive STAT3 signalling via gp130, the shared receptor subunit for IL-6 and IL-11, contributes to disease progression and poor survival outcomes in patients with colorectal cancer. Here, we provide evidence that bazedoxifene inhibits tumour growth via direct interaction with the gp130 receptor to suppress IL-6 and IL-11-mediated STAT3 signalling. Additionally, bazedoxifene combined with chemotherapy synergistically reduced cell proliferation and induced apoptosis in patient-derived colon cancer organoids. We elucidated that the primary mechanism of anti-tumour activity conferred by bazedoxifene treatment occurs via pro-apoptotic responses in tumour cells. Co-treatment with bazedoxifene and the SMAC-mimetics, LCL161 or Birinapant, that target the IAP family of proteins, demonstrated increased apoptosis and reduced proliferation in colorectal cancer cells. Our findings provide evidence that bazedoxifene treatment could be combined with SMAC-mimetics and chemotherapy to enhance tumour cell apoptosis in colorectal cancer, where gp130 receptor signalling promotes tumour growth and progression.


Asunto(s)
Neoplasias del Colon , Indoles , Interleucina-11 , Humanos , Interleucina-11/uso terapéutico , Línea Celular Tumoral , Interleucina-6/metabolismo , Receptor gp130 de Citocinas/metabolismo , Neoplasias del Colon/tratamiento farmacológico , Apoptosis
6.
Life Sci Alliance ; 7(2)2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37957015

RESUMEN

Deregulation of the Hippo pathway is a driver for cancer progression and treatment resistance. In the context of gastric cancer, YAP1 is a biomarker for poor patient prognosis. Although genomic tumor profiling provides information of Hippo pathway activation, the present study demonstrates that inhibition of Yap1 activity has anti-tumor effects in gastric tumors driven by oncogenic mutations and inflammatory cytokines. We show that Yap1 is a key regulator of cell metabolism, proliferation, and immune responses in normal and neoplastic gastric epithelium. We propose that the Hippo pathway is targetable across gastric cancer subtypes and its therapeutic benefits are likely to be mediated by both cancer cell-intrinsic and -extrinsic mechanisms.


Asunto(s)
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patología , Microambiente Tumoral , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Vía de Señalización Hippo , Factor de Transcripción STAT3/metabolismo
7.
Oncogene ; 42(22): 1786-1801, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37120696

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignant disease with a 5-year survival rate of <10%. Aberrant activation or elevated expression of the tyrosine kinase c-SRC (SRC) is frequently observed in PDAC and is associated with a poor prognosis. Preclinical studies have revealed a multifaceted role for SRC activation in PDAC, including promoting chronic inflammation, tumor cell proliferation and survival, cancer cell stemness, desmoplasia, hypoxia, angiogenesis, invasion, metastasis, and drug resistance. Strategies to inhibit SRC signaling include suppressing its catalytic activity, inhibiting protein stability, or by interfering with signaling components of the SRC signaling pathway including suppressing protein interactions of SRC. In this review, we discuss the molecular and immunological mechanisms by which aberrant SRC activity promotes PDAC tumorigenesis. We also provide a comprehensive update of SRC inhibitors in the clinic, and discuss the clinical challenges associated with targeting SRC in pancreatic cancer.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Línea Celular Tumoral , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Transducción de Señal , Carcinoma Ductal Pancreático/genética , Proliferación Celular , Movimiento Celular , Regulación Neoplásica de la Expresión Génica , Neoplasias Pancreáticas
8.
STAR Protoc ; 4(1): 102110, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36853665

RESUMEN

Tumor-derived organoids are valuable for testing anti-cancer drugs in vitro, but existing lysis-based protocols for viability measurement are laborious and restricted at a single time point. Here, we provide a lysis-free protocol for longitudinal and rapid assessment of mouse gastric tumor organoid viability and growth. We describe organoid plating, viability assessment via luminescence measurement, quantification of organoid growth by microscopy imaging, and treatment of organoids with test compounds to evaluate the effects on viability and growth at various time points.


Asunto(s)
Antineoplásicos , Neoplasias Gástricas , Animales , Ratones , Microscopía , Luminiscencia , Antineoplásicos/farmacología , Organoides/patología
9.
STAR Protoc ; 4(1): 102021, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36638017

RESUMEN

Here, we provide a protocol for an intrasplenic injection model to establish pancreatic tumors in the mouse liver. We describe the steps to inject tumor cells into mouse spleen and to perform a splenectomy, followed by animal recovery and end point analysis of tumors in the liver. This model allows rapid and reproducible tumor growth in a clinically relevant metastatic site, providing a platform to evaluate the efficacy of anti-cancer drugs. This technique can be expanded to other cancer cell lines. For complete details on the use and execution of this protocol, please refer to Poh et al. (2022).1.


Asunto(s)
Neoplasias Hepáticas , Neoplasias Pancreáticas , Ratones , Animales , Trasplante de Neoplasias , Neoplasias Pancreáticas/patología , Neoplasias Hepáticas/patología , Neoplasias Pancreáticas
10.
Nat Commun ; 14(1): 6872, 2023 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-37898600

RESUMEN

Although gastric cancer is a leading cause of cancer-related deaths, systemic treatment strategies remain scarce. Here, we report the pro-tumorigenic properties of the crosstalk between intestinal tuft cells and type 2 innate lymphoid cells (ILC2) that is evolutionarily optimized for epithelial remodeling in response to helminth infection. We demonstrate that tuft cell-derived interleukin 25 (IL25) drives ILC2 activation, inducing the release of IL13 and promoting epithelial tuft cell hyperplasia. While the resulting tuft cell - ILC2 feed-forward circuit promotes gastric metaplasia and tumor formation, genetic depletion of tuft cells or ILC2s, or therapeutic targeting of IL13 or IL25 alleviates these pathologies in mice. In gastric cancer patients, tuft cell and ILC2 gene signatures predict worsening survival in intestinal-type gastric cancer where ~40% of the corresponding cancers show enriched co-existence of tuft cells and ILC2s. Our findings suggest a role for ILC2 and tuft cells, along with their associated cytokine IL13 and IL25 as gatekeepers and enablers of metaplastic transformation and gastric tumorigenesis, thereby providing an opportunity to therapeutically inhibit early-stage gastric cancer through repurposing antibody-mediated therapies.


Asunto(s)
Inmunidad Innata , Neoplasias Gástricas , Humanos , Ratones , Animales , Interleucina-13/metabolismo , Neoplasias Gástricas/patología , Linfocitos/metabolismo , Hiperplasia/metabolismo , Metaplasia/metabolismo
11.
Cell Rep ; 41(2): 111479, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36223746

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with a low 5-year survival rate and is associated with poor response to therapy. Elevated expression of the myeloid-specific hematopoietic cell kinase (HCK) is observed in PDAC and correlates with reduced patient survival. To determine whether aberrant HCK signaling in myeloid cells is involved in PDAC growth and metastasis, we established orthotopic and intrasplenic PDAC tumors in wild-type and HCK knockout mice. Genetic ablation of HCK impaired PDAC growth and metastasis by inducing an immune-stimulatory endotype in myeloid cells, which in turn reduced the desmoplastic microenvironment and enhanced cytotoxic effector cell infiltration. Consequently, genetic ablation or therapeutic inhibition of HCK minimized metastatic spread, enhanced the efficacy of chemotherapy, and overcame resistance to anti-PD1, anti-CTLA4, or stimulatory anti-CD40 immunotherapy. Our results provide strong rationale for HCK to be developed as a therapeutic target to improve the response of PDAC to chemo- and immunotherapy.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Proteínas Proto-Oncogénicas c-hck , Animales , Carcinoma Ductal Pancreático/genética , Ratones , Células Mieloides/metabolismo , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas c-hck/genética , Microambiente Tumoral , Neoplasias Pancreáticas
12.
Cells ; 11(24)2022 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-36552868

RESUMEN

Aberrant expression of the oncoprotein c-Myc (Myc) is frequently observed in solid tumors and is associated with reduced overall survival. In addition to well-recognized cancer cell-intrinsic roles of Myc, studies have also suggested tumor-promoting roles for Myc in cells of the tumor microenvironment, including macrophages and other myeloid cells. Here, we benchmark Myc inactivation in tumor cells against the contribution of its expression in myeloid cells of murine hosts that harbor endogenous or allograft tumors. Surprisingly, we observe that LysMCre-mediated Myc ablation in host macrophages does not attenuate tumor growth regardless of immunogenicity, the cellular origin of the tumor, the site it develops, or the stage along the tumor progression cascade. Likewise, we find no evidence for Myc ablation to revert or antagonize the polarization of alternatively activated immunosuppressive macrophages. Thus, we surmise that systemic targeting of Myc activity may confer therapeutic benefits primarily through limiting Myc activity in tumor cells rather than reinvigorating the anti-tumor activity of macrophages.


Asunto(s)
Macrófagos , Neoplasias , Ratones , Animales , Macrófagos/metabolismo , Neoplasias/metabolismo , Células Mieloides/metabolismo , Microambiente Tumoral
13.
Sci Adv ; 8(25): eabl7882, 2022 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-35731867

RESUMEN

Although immunotherapy has revolutionized cancer treatment, many immunogenic tumors remain refractory to treatment. This can be largely attributed to an immunologically "cold" tumor microenvironment characterized by an accumulation of immunosuppressive myeloid cells and exclusion of activated T cells. Here, we demonstrate that genetic ablation or therapeutic inhibition of the myeloid-specific hematopoietic cell kinase (HCK) enables activity of antagonistic anti-programmed cell death protein 1 (anti-PD1), anti-CTLA4, or agonistic anti-CD40 immunotherapies in otherwise refractory tumors and augments response in treatment-susceptible tumors. Mechanistically, HCK ablation reprograms tumor-associated macrophages and dendritic cells toward an inflammatory endotype and enhances CD8+ T cell recruitment and activation when combined with immunotherapy in mice. Meanwhile, therapeutic inhibition of HCK in humanized mice engrafted with patient-derived xenografts counteracts tumor immunosuppression, improves T cell recruitment, and impairs tumor growth. Collectively, our results suggest that therapeutic targeting of HCK activity enhances response to immunotherapy by simultaneously stimulating immune cell activation and inhibiting the immunosuppressive tumor microenvironment.

14.
Cancers (Basel) ; 13(12)2021 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-34201127

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignant disease with a 5-year survival rate of less than 10%. Macrophages are one of the earliest infiltrating cells in the pancreatic tumor microenvironment, and are associated with an increased risk of disease progression, recurrence, metastasis, and shorter overall survival. Pre-clinical studies have demonstrated an unequivocal role of macrophages in PDAC by contributing to chronic inflammation, cancer cell stemness, desmoplasia, immune suppression, angiogenesis, invasion, metastasis, and drug resistance. Several macrophage-targeting therapies have also been investigated in pre-clinical models, and include macrophage depletion, inhibiting macrophage recruitment, and macrophage reprogramming. However, the effectiveness of these drugs in pre-clinical models has not always translated into clinical trials. In this review, we discuss the molecular mechanisms that underpin macrophage heterogeneity within the pancreatic tumor microenvironment, and examine the contribution of macrophages at various stages of PDAC progression. We also provide a comprehensive update of macrophage-targeting therapies that are currently undergoing clinical evaluation, and discuss clinical challenges associated with these treatment modalities in human PDAC patients.

15.
Cancers (Basel) ; 13(24)2021 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-34944848

RESUMEN

Non-small cell lung cancer (NSCLC) is the most common type of lung cancer and accounts for 85% of lung cancer cases. Aberrant activation of the Signal Transducer and Activator of Transcription 3 (STAT3) is frequently observed in NSCLC and is associated with a poor prognosis. Pre-clinical studies have revealed an unequivocal role for tumor cell-intrinsic and extrinsic STAT3 signaling in NSCLC by promoting angiogenesis, cell survival, cancer cell stemness, drug resistance, and evasion of anti-tumor immunity. Several STAT3-targeting strategies have also been investigated in pre-clinical models, and include preventing upstream receptor/ligand interactions, promoting the degradation of STAT3 mRNA, and interfering with STAT3 DNA binding. In this review, we discuss the molecular and immunological mechanisms by which persistent STAT3 activation promotes NSCLC development, and the utility of STAT3 as a prognostic and predictive biomarker in NSCLC. We also provide a comprehensive update of STAT3-targeting therapies that are currently undergoing clinical evaluation, and discuss the challenges associated with these treatment modalities in human patients.

16.
Cell Death Discov ; 7(1): 122, 2021 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-34050131

RESUMEN

Malignant pleural mesothelioma (MPM) is an aggressive cancer with treatment limited to Cisplatin and Pemetrexed chemotherapy. Recently, we showed that drugs targeting the BCL-2-regulated apoptosis pathway could kill MPM cell lines in vitro, and control tumor growth in vivo. These studies showed BCL-XL was the dominant pro-survival BCL-2 family member correlating with its high-level expression in cells and patient tumor samples. In this study we show another inhibitor, AZD4320 that targets BCL-XL (and BCL-2), can also potently kill MPM tumor cells in vitro (EC50 values in the 200 nM range) and this effect is enhanced by co-inhibition of MCL-1 using AZD5991. Moreover, we show that a novel nanoparticle, AZD0466, where AZD4320 is chemically conjugated to a PEGylated poly-lysine dendrimer, was as effective as standard-of-care chemotherapy, Cisplatin, at inhibiting tumor growth in mouse xenograft studies, and this effect was enhanced when both drugs were combined. Critically, the degree of thrombocytopenia, an on-target toxicity associated with BCL-XL inhibition, was significantly reduced throughout the treatment period compared to other BCL-XL-targeting BH3-mimetics. These pre-clinical findings provide a rationale for the future clinical evaluation for novel BH3-mimetic formulations in MPM, and indeed, other solid tumor types dependent on BCL-XL.

17.
Cancer Immunol Res ; 8(4): 428-435, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31992566

RESUMEN

Persistent activation of the latent transcription factor STAT3 is observed in gastric tumor epithelial and immune cells and is associated with a poor patient prognosis. Although targeting STAT3-activating upstream kinases offers therapeutically viable targets with limited specificity, direct inhibition of STAT3 remains challenging. Here we provide functional evidence that myeloid-specific hematopoietic cell kinase (HCK) activity can drive STAT3-dependent epithelial tumor growth in mice and is associated with alternative macrophage activation alongside matrix remodeling and tumor cell invasion. Accordingly, genetic reduction of HCK expression in bone marrow-derived cells or systemic pharmacologic inhibition of HCK activity suppresses alternative macrophage polarization and epithelial STAT3 activation, and impairs tumor growth. These data validate HCK as a molecular target for the treatment of human solid tumors harboring excessive STAT3 activity.


Asunto(s)
Proteínas Proto-Oncogénicas c-hck/antagonistas & inhibidores , Pirimidinas/farmacología , Pirroles/farmacología , Factor de Transcripción STAT3/metabolismo , Neoplasias Gástricas/tratamiento farmacológico , Animales , Femenino , Humanos , Activación de Macrófagos/efectos de los fármacos , Masculino , Ratones , Ratones Transgénicos , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-hck/metabolismo , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patología , Tasa de Supervivencia
18.
Cell Death Discov ; 6(1): 114, 2020 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-33298868

RESUMEN

Despite having one of the lowest survival rates of all cancers, there have been no new approved treatments for malignant pleural mesothelioma (MPM) in over a decade. Standard-of-care treatment relies on Cisplatin plus Pemetrexed chemotherapy. Here, we tested a suite of BH3-mimetic drugs targeting BCL-2 pro-survival proteins of the intrinsic apoptotic pathway. We found BCL-XL is the dominant pro-survival protein in a panel of cell lines in vitro, though potent, synergistic cell killing occurred with MCL-1 co-targeting. This correlates with high-level expression of BCL-XL and MCL-1 in cell lines and a large cohort of patient tumour samples. BCL-XL inhibition combined with Cisplatin also enhanced cell killing. In vivo BCL-XL inhibition was as effective as Cisplatin, and the combination enhanced tumour growth control and survival. Genetic ablation of MCL-1 also enhanced the effects of BCL-XL inhibitors, in vivo. Combined, these data provide a compelling rationale for the clinical investigation of BH3-mimetics targeting BCL-XL in MPM.

19.
Cell Death Differ ; 27(2): 742-757, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31296963

RESUMEN

Gastrointestinal epithelial cells provide a selective barrier that segregates the host immune system from luminal microorganisms, thereby contributing directly to the regulation of homeostasis. We have shown that from early embryonic development Bcl-G, a Bcl-2 protein family member with unknown function, was highly expressed in gastrointestinal epithelial cells. While Bcl-G was dispensable for normal growth and development in mice, the loss of Bcl-G resulted in accelerated progression of colitis-associated cancer. A label-free quantitative proteomics approach revealed that Bcl-G may contribute to the stability of a mucin network, which when disrupted, is linked to colon tumorigenesis. Consistent with this, we observed a significant reduction in Bcl-G expression in human colorectal tumors. Our study identifies an unappreciated role for Bcl-G in colon cancer.


Asunto(s)
Neoplasias Colorrectales/metabolismo , Inflamación/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Animales , Colitis/metabolismo , Colitis/patología , Neoplasias Colorrectales/patología , Humanos , Inflamación/patología , Ratones , Ratones Noqueados , Proteínas Proto-Oncogénicas c-bcl-2/deficiencia , Proteínas Proto-Oncogénicas c-bcl-2/genética
20.
Nat Commun ; 10(1): 2735, 2019 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-31227713

RESUMEN

The contribution of mast cells in the microenvironment of solid malignancies remains controversial. Here we functionally assess the impact of tumor-adjacent, submucosal mast cell accumulation in murine and human intestinal-type gastric cancer. We find that genetic ablation or therapeutic inactivation of mast cells suppresses accumulation of tumor-associated macrophages, reduces tumor cell proliferation and angiogenesis, and diminishes tumor burden. Mast cells are activated by interleukin (IL)-33, an alarmin produced by the tumor epithelium in response to the inflammatory cytokine IL-11, which is required for the growth of gastric cancers in mice. Accordingly, ablation of the cognate IL-33 receptor St2 limits tumor growth, and reduces mast cell-dependent production and release of the macrophage-attracting factors Csf2, Ccl3, and Il6. Conversely, genetic or therapeutic macrophage depletion reduces tumor burden without affecting mast cell abundance. Therefore, tumor-derived IL-33 sustains a mast cell and macrophage-dependent signaling cascade that is amenable for the treatment of gastric cancer.


Asunto(s)
Interleucina-33/inmunología , Macrófagos/inmunología , Mastocitos/inmunología , Neoplasias Gástricas/inmunología , Aminopiridinas/administración & dosificación , Animales , Degranulación de la Célula/efectos de los fármacos , Degranulación de la Célula/inmunología , Cromolin Sódico/administración & dosificación , Modelos Animales de Enfermedad , Epitelio/inmunología , Epitelio/patología , Femenino , Mucosa Gástrica/citología , Mucosa Gástrica/inmunología , Mucosa Gástrica/patología , Humanos , Proteína 1 Similar al Receptor de Interleucina-1/inmunología , Proteína 1 Similar al Receptor de Interleucina-1/metabolismo , Interleucina-33/metabolismo , Masculino , Ratones , Ratones Transgénicos , Pirroles/administración & dosificación , Transducción de Señal/efectos de los fármacos , Transducción de Señal/inmunología , Neoplasias Gástricas/genética , Neoplasias Gástricas/mortalidad , Neoplasias Gástricas/patología , Análisis de Matrices Tisulares , Microambiente Tumoral/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA