Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Cell ; 171(3): 573-587.e14, 2017 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-29033129

RESUMEN

Progenitor cells differentiate into specialized cell types through coordinated expression of lineage-specific genes and modification of complex chromatin configurations. We demonstrate that a histone deacetylase (Hdac3) organizes heterochromatin at the nuclear lamina during cardiac progenitor lineage restriction. Specification of cardiomyocytes is associated with reorganization of peripheral heterochromatin, and independent of deacetylase activity, Hdac3 tethers peripheral heterochromatin containing lineage-relevant genes to the nuclear lamina. Deletion of Hdac3 in cardiac progenitor cells releases genomic regions from the nuclear periphery, leading to precocious cardiac gene expression and differentiation into cardiomyocytes; in contrast, restricting Hdac3 to the nuclear periphery rescues myogenesis in progenitors otherwise lacking Hdac3. Our results suggest that availability of genomic regions for activation by lineage-specific factors is regulated in part through dynamic chromatin-nuclear lamina interactions and that competence of a progenitor cell to respond to differentiation signals may depend upon coordinated movement of responding gene loci away from the nuclear periphery.


Asunto(s)
Cromatina/metabolismo , Regulación del Desarrollo de la Expresión Génica , Histona Desacetilasas/metabolismo , Lámina Nuclear/metabolismo , Células Madre/citología , Animales , Genoma , Ratones , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Células Madre/metabolismo
2.
Nature ; 610(7931): 381-388, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36198800

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged at the end of 2019 and caused the devastating global pandemic of coronavirus disease 2019 (COVID-19), in part because of its ability to effectively suppress host cell responses1-3. In rare cases, viral proteins dampen antiviral responses by mimicking critical regions of human histone proteins4-8, particularly those containing post-translational modifications required for transcriptional regulation9-11. Recent work has demonstrated that SARS-CoV-2 markedly disrupts host cell epigenetic regulation12-14. However, how SARS-CoV-2 controls the host cell epigenome and whether it uses histone mimicry to do so remain unclear. Here we show that the SARS-CoV-2 protein encoded by ORF8 (ORF8) functions as a histone mimic of the ARKS motifs in histone H3 to disrupt host cell epigenetic regulation. ORF8 is associated with chromatin, disrupts regulation of critical histone post-translational modifications and promotes chromatin compaction. Deletion of either the ORF8 gene or the histone mimic site attenuates the ability of SARS-CoV-2 to disrupt host cell chromatin, affects the transcriptional response to infection and attenuates viral genome copy number. These findings demonstrate a new function of ORF8 and a mechanism through which SARS-CoV-2 disrupts host cell epigenetic regulation. Further, this work provides a molecular basis for the finding that SARS-CoV-2 lacking ORF8 is associated with decreased severity of COVID-19.


Asunto(s)
COVID-19 , Epigénesis Genética , Histonas , Interacciones Microbiota-Huesped , Imitación Molecular , SARS-CoV-2 , Proteínas Virales , COVID-19/genética , COVID-19/metabolismo , COVID-19/virología , Cromatina/genética , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , Epigenoma/genética , Histonas/química , Histonas/metabolismo , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidad , Proteínas Virales/química , Proteínas Virales/genética , Proteínas Virales/metabolismo
5.
Nucleic Acids Res ; 49(11): 6181-6195, 2021 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-34023908

RESUMEN

Nuclear architecture influences gene regulation and cell identity by controlling the three-dimensional organization of genes and their distal regulatory sequences, which may be far apart in linear space. The genome is functionally and spatially segregated in the eukaryotic nucleus with transcriptionally active regions in the nuclear interior separated from repressive regions, including those at the nuclear periphery. Here, we describe the identification of a novel type of nuclear peripheral chromatin domain that is enriched for tissue-specific transcriptional enhancers. Like other chromatin at the nuclear periphery, these regions are marked by H3K9me2. But unlike the nuclear peripheral Lamina-Associated Domains (LADs), these novel, enhancer-rich domains have limited Lamin B interaction. We therefore refer to them as H3K9me2-Only Domains (KODs). In mouse embryonic stem cells, KODs are found in Hi-C-defined A compartments and feature relatively accessible chromatin. KODs are characterized by low gene expression and enhancers located in these domains bear the histone marks of an inactive or poised state. These results indicate that KODs organize a subset of inactive, tissue-specific enhancers at the nuclear periphery. We hypothesize that KODs may play a role in facilitating and perhaps constraining the enhancer-promoter interactions underlying spatiotemporal regulation of gene expression programs in differentiation and development.


Asunto(s)
Elementos de Facilitación Genéticos , Código de Histonas , Animales , Línea Celular , Núcleo Celular/genética , Cromatina/metabolismo , Células Madre Embrionarias/metabolismo , Histonas/metabolismo , Lamina Tipo B/metabolismo , Ratones , Especificidad de Órganos , Transcripción Genética
6.
J Cell Sci ; 133(10)2020 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-32317397

RESUMEN

A large fraction of epigenetically silent heterochromatin is anchored to the nuclear periphery via 'tethering proteins' that function to bridge heterochromatin and the nuclear membrane or nuclear lamina. We previously identified a human tethering protein, PRR14, that binds heterochromatin through an N-terminal domain, but the mechanism and regulation of nuclear lamina association remained to be investigated. Here we identify an evolutionarily conserved PRR14 nuclear lamina binding domain (LBD) that is both necessary and sufficient for positioning of PRR14 at the nuclear lamina. We show that PRR14 associates dynamically with the nuclear lamina, and provide evidence that such dynamics are regulated through phosphorylation and dephosphorylation of the LBD. Furthermore, we identify a PP2A phosphatase recognition motif within the evolutionarily conserved C-terminal Tantalus domain of PRR14. Disruption of this motif affects PRR14 localization to the nuclear lamina. The overall findings demonstrate a heterochromatin anchoring mechanism whereby the PRR14 tether simultaneously binds heterochromatin and the nuclear lamina through two separable modular domains. Our findings also describe an optimal PRR14 LBD fragment that could be used for efficient targeting of fusion proteins to the nuclear lamina.


Asunto(s)
Heterocromatina , Lámina Nuclear , Núcleo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Heterocromatina/genética , Heterocromatina/metabolismo , Humanos , Membrana Nuclear/genética , Membrana Nuclear/metabolismo , Lámina Nuclear/genética , Lámina Nuclear/metabolismo , Fosforilación
7.
Dev Biol ; 466(1-2): 90-98, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32712024

RESUMEN

Spatial organization of the genome in the nucleus plays a critical role in development and regulation of transcription. A genomic region that resides at the nuclear periphery is part of the chromatin layer marked with histone H3 lysine 9 dimethyl (H3K9me2), but chromatin reorganization during cell differentiation can cause movement in and out of this nuclear compartment with patterns specific for individual cell fates. Here we describe a CRISPR-based system that allows visualization coupled with forced spatial relocalization of a target genomic locus in live cells. We demonstrate that a specified locus can be tethered to the nuclear periphery through direct binding to a dCas9-Lap2ß fusion protein at the nuclear membrane, or via targeting of a histone methyltransferase (HMT), G9a fused to dCas9, that promotes H3K9me2 labeling and localization to the nuclear periphery. The enzymatic activity of the HMT is sufficient to promote this repositioning, while disruption of the catalytic activity abolishes the localization effect. We further demonstrate that dCas9-G9a-mediated localization to the nuclear periphery is independent of nuclear actin polymerization. Our data suggest a function for epigenetic histone modifying enzymes in spatial chromatin organization and provide a system for tracking and labeling targeted genomic regions in live cells.


Asunto(s)
Diferenciación Celular , Cromatina/metabolismo , Epigénesis Genética , Histona Metiltransferasas/metabolismo , Histonas/metabolismo , Procesamiento Proteico-Postraduccional , Cromatina/genética , Células HEK293 , Histona Metiltransferasas/genética , Histonas/genética , Humanos
8.
Dev Biol ; 440(1): 22-30, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29727635

RESUMEN

The Hippo signaling pathway has been implicated in control of cell and organ size, proliferation, and endothelial-mesenchymal transformation. This pathway impacts upon two partially redundant transcription cofactors, Yap and Taz, that interact with other factors, including members of the Tead family, to affect expression of downstream genes. Yap and Taz have been shown to regulate, in a cell-autonomous manner, myocardial proliferation, myocardial hypertrophy, regenerative potential, and overall size of the heart. Here, we show that Yap and Taz also play an instructive, non-cell-autonomous role in the endocardium of the developing heart to regulate myocardial growth through release of the paracrine factor, neuregulin. Without endocardial Yap and Taz, myocardial growth is impaired causing early post-natal lethality. Thus, the Hippo signaling pathway regulates cell size via both cell-autonomous and non-cell-autonomous mechanisms. Furthermore, these data suggest that Hippo may regulate organ size via a sensing and paracrine function in endothelial cells.


Asunto(s)
Corazón/crecimiento & desarrollo , Miocardio/metabolismo , Proteínas Serina-Treonina Quinasas/fisiología , Aciltransferasas , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/fisiología , Animales , Proteínas de Ciclo Celular , Proteínas de Unión al ADN/metabolismo , Endocardio/crecimiento & desarrollo , Endocardio/metabolismo , Endocardio/fisiología , Fibroblastos , Corazón/embriología , Vía de Señalización Hippo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ratones , Neurregulina-1/metabolismo , Organogénesis , Fosfoproteínas/genética , Fosfoproteínas/fisiología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/fisiología , Proteínas Señalizadoras YAP
9.
J Virol ; 87(4): 2137-50, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23221555

RESUMEN

Integrated retroviral DNA is subject to epigenetic transcriptional silencing at different frequencies. This process is mediated by repressive DNA methylation and histone modifications on viral chromatin. However, the detailed mechanisms by which retroviral silencing is initiated and maintained are not well understood. Using a model system in which avian sarcoma virus (ASV) DNA is epigenetically repressed in mammalian cells, we previously found that a cellular scaffolding protein, Daxx, acts as an antiretroviral factor that promotes epigenetic repression through recruitment of histone deacetylases (HDACs). Here we show that human Daxx protein levels are increased in response to retroviral infection and that Daxx acts at the time of infection to initiate epigenetic repression. Consistent with a rapid and active antiviral epigenetic response, we found that repressive histone marks and long terminal repeat (LTR) DNA methylation could be detected within 12 h to 3 days postinfection, respectively. Daxx was also found to be required for long-term ASV silencing maintenance and full viral DNA methylation, and it was physically associated with both viral DNA and DNA methyltransferases (DNMTs). These findings support a model in which incoming retroviral protein-DNA complexes are detected by Daxx, and the integrated provirus is rapidly chromatinized and repressed by DNA methylation and histone modification as part of an antiviral response. These results uncover a possible direct and active antiviral mechanism by which DNMTs can be recruited to retroviral DNA.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Virus del Sarcoma Aviar/genética , Metilación de ADN , Represión Epigenética , Regulación Viral de la Expresión Génica , Interacciones Huésped-Patógeno , Proteínas Nucleares/metabolismo , Animales , Virus del Sarcoma Aviar/fisiología , Línea Celular , Proteínas Co-Represoras , Silenciador del Gen , Humanos , Chaperonas Moleculares
10.
Sci Adv ; 10(11): eadm9518, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38478612

RESUMEN

Extracellular signals are transmitted through kinase cascades to modulate gene expression, but it remains unclear how epigenetic changes regulate this response. Here, we provide evidence that growth factor-stimulated changes in the transcript levels of many responsive genes are accompanied by increases in histone phosphorylation levels, specifically at histone H3 serine-10 when the adjacent lysine-9 is dimethylated (H3K9me2S10). Imaging and proteomic approaches show that epidermal growth factor (EGF) stimulation results in H3K9me2S10 phosphorylation, which occurs in genomic regions enriched for regulatory enhancers of EGF-responsive genes. We also demonstrate that the EGF-induced increase in H3K9me2S10ph is dependent on the nuclear kinase MSK2, and this subset of EGF-induced genes is dependent on MSK2 for transcription. Together, our work indicates that growth factor-induced changes in chromatin state can mediate the activation of downstream genes.


Asunto(s)
Factor de Crecimiento Epidérmico , Proteómica , Fosforilación , Factor de Crecimiento Epidérmico/farmacología , Factor de Crecimiento Epidérmico/genética , Histonas/genética , Histonas/metabolismo , Expresión Génica
11.
Nat Cardiovasc Res ; 3(3): 317-331, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-39196112

RESUMEN

Human induced pluripotent stem cell (hiPSC) to cardiomyocyte (CM) differentiation has reshaped approaches to studying cardiac development and disease. In this study, we employed a genome-wide CRISPR screen in a hiPSC to CM differentiation system and reveal here that BRD4, a member of the bromodomain and extraterminal (BET) family, regulates CM differentiation. Chemical inhibition of BET proteins in mouse embryonic stem cell (mESC)-derived or hiPSC-derived cardiac progenitor cells (CPCs) results in decreased CM differentiation and persistence of cells expressing progenitor markers. In vivo, BRD4 deletion in second heart field (SHF) CPCs results in embryonic or early postnatal lethality, with mutants demonstrating myocardial hypoplasia and an increase in CPCs. Single-cell transcriptomics identified a subpopulation of SHF CPCs that is sensitive to BRD4 loss and associated with attenuated CM lineage-specific gene programs. These results highlight a previously unrecognized role for BRD4 in CM fate determination during development and a heterogenous requirement for BRD4 among SHF CPCs.


Asunto(s)
Sistemas CRISPR-Cas , Diferenciación Celular , Células Madre Pluripotentes Inducidas , Miocitos Cardíacos , Factores de Transcripción , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/citología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Animales , Diferenciación Celular/genética , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Humanos , Sistemas CRISPR-Cas/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Células Madre Embrionarias de Ratones/citología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Regulación del Desarrollo de la Expresión Génica , Linaje de la Célula/genética , Células Cultivadas , Análisis de la Célula Individual , Proteínas que Contienen Bromodominio
12.
FEBS Lett ; 597(22): 2782-2790, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37339933

RESUMEN

The nuclear envelope plays an essential role in organizing the genome inside of the nucleus. The inner nuclear membrane is coated with a meshwork of filamentous lamin proteins that provide a surface to organize a variety of cellular processes. A subset of nuclear lamina- and membrane-associated proteins functions as anchors to hold transcriptionally silent heterochromatin at the nuclear periphery. While most chromatin tethers are integral membrane proteins, a limited number are lamina-bound. One example is the mammalian proline-rich 14 (PRR14) protein. PRR14 is a recently characterized protein with unique function that is different from other known chromatin tethers. Here, we review our current understanding of PRR14 structure and function in organizing heterochromatin at the nuclear periphery.


Asunto(s)
Cromatina , Heterocromatina , Animales , Cromatina/genética , Cromatina/metabolismo , Heterocromatina/genética , Heterocromatina/metabolismo , Núcleo Celular/metabolismo , Lámina Nuclear/química , Lámina Nuclear/metabolismo , Membrana Nuclear , Mamíferos/genética
13.
Nucleus ; 14(1): 2165602, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-36633363

RESUMEN

The eukaryotic genome is organized in three dimensions within the nucleus. Transcriptionally active chromatin is spatially separated from silent heterochromatin, a large fraction of which is located at the nuclear periphery. However, the mechanisms by which chromatin is localized at the nuclear periphery remain poorly understood. Here we demonstrate that Proline Rich 14 (PRR14) protein organizes H3K9me3-modified heterochromatin at the nuclear lamina. We show that PRR14 dynamically associates with both the nuclear lamina and heterochromatin, and is able to reorganize heterochromatin in the nucleus of interphase cells independent of mitosis. We characterize two functional HP1-binding sites within PRR14 that contribute to its association with heterochromatin. We also demonstrate that PPR14 forms an anchoring surface for heterochromatin at the nuclear lamina where it interacts dynamically with HP1-associated chromatin. Our study proposes a model of dynamic heterochromatin organization at the nuclear lamina via the PRR14 tethering protein.


Asunto(s)
Heterocromatina , Lámina Nuclear , Heterocromatina/metabolismo , Lámina Nuclear/metabolismo , Núcleo Celular/metabolismo , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo
14.
J Biol Chem ; 285(1): 422-33, 2010 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-19880521

RESUMEN

Epigenetic silencing is mediated by families of factors that place, remove, read, and transmit repressive histone and DNA methylation marks on chromatin. How the roles for these functionally diverse factors are specified and integrated is the subject of intense study. To address these questions, HeLa cells harboring epigenetically silent green fluorescent protein reporter genes were interrogated with a small interference RNA library targeting 200 predicted epigenetic regulators, including potential activators, silencers, chromatin remodelers, and ancillary factors. Using this approach, individual, or combinatorial requirements for specific epigenetic silencing factors could be detected by measuring green fluorescent protein reactivation after small interference RNA-based factor knockdown. In our analyses, we identified a specific subset of 15 epigenetic factors that are candidates for participation in a functional epigenetic silencing network in human cells. These factors include histone deacetylase 1, de novo DNA methyltransferase 3A, components of the polycomb PRC1 complex (RING1 and HPH2), and the histone lysine methyltransferases KMT1E and KMT5C. Roles were also detected for two TRIM protein family members, the cohesin component Rad21, and the histone chaperone CHAF1A (CAF-1 p150). Remarkably, combinatorial knockdown of factors was not required for reactivation, indicating little functional redundancy. Consistent with this interpretation, knockdown of either KMT1E or CHAF1A resulted in a loss of multiple histone-repressive marks and concomitant gain of activation marks on the promoter during reactivation. These results reveal how functionally diverse factors may cooperate to maintain gene silencing during normal development or in disease. Furthermore, the findings suggest an avenue for discovery of new targets for epigenetic therapies.


Asunto(s)
Silenciador del Gen , Proteínas Nucleares/metabolismo , Azacitidina/farmacología , Separación Celular , Factor 1 de Ensamblaje de la Cromatina/metabolismo , Células Clonales , Citomegalovirus/genética , ADN Metiltransferasa 3A , Técnicas de Silenciamiento del Gen , Silenciador del Gen/efectos de los fármacos , Genes Reporteros , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Ensayos Analíticos de Alto Rendimiento , Histonas/metabolismo , Humanos , Modelos Genéticos , Regiones Promotoras Genéticas/genética , Procesamiento Proteico-Postraduccional/efectos de los fármacos , ARN Interferente Pequeño/metabolismo , Proteínas Represoras/metabolismo , Reproducibilidad de los Resultados , Fase S/efectos de los fármacos , Factores de Transcripción
15.
Sci Adv ; 7(39): eabj3035, 2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34559565

RESUMEN

The nuclear architecture of rod photoreceptor cells in nocturnal mammals is unlike that of other animal cells. Murine rod cells have an "inverted" chromatin organization with euchromatin at the nuclear periphery and heterochromatin packed in the center of the nucleus. In conventional nuclear architecture, euchromatin is mostly in the interior, and heterochromatin is largely at the nuclear periphery. We demonstrate that inverted nuclear architecture is achieved through global relabeling of the rod cell epigenome. During rod cell maturation, H3K9me2-labeled nuclear peripheral heterochromatin is relabeled with H3K9me3 and repositioned to the nuclear center, while transcriptionally active euchromatin is labeled with H3K9me2 and positioned at the nuclear periphery. Global chromatin relabeling is correlated with spatial rearrangement, suggesting a critical role for histone modifications, specifically H3K9 methylation, in nuclear architecture. These results reveal a dramatic example of genome-wide epigenetic relabeling of chromatin that accompanies altered nuclear architecture in a postnatal, postmitotic cell.

16.
Nat Genet ; 53(10): 1480-1492, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34611363

RESUMEN

Higher-order chromatin structure regulates gene expression, and mutations in proteins mediating genome folding underlie developmental disorders known as cohesinopathies. However, the relationship between three-dimensional genome organization and embryonic development remains unclear. Here we define a role for bromodomain-containing protein 4 (BRD4) in genome folding, and leverage it to understand the importance of genome folding in neural crest progenitor differentiation. Brd4 deletion in neural crest results in cohesinopathy-like phenotypes. BRD4 interacts with NIPBL, a cohesin agonist, and BRD4 depletion or loss of the BRD4-NIPBL interaction reduces NIPBL occupancy, suggesting that BRD4 stabilizes NIPBL on chromatin. Chromatin interaction mapping and imaging experiments demonstrate that BRD4 depletion results in compromised genome folding and loop extrusion. Finally, mutation of individual BRD4 amino acids that mediate an interaction with NIPBL impedes neural crest differentiation into smooth muscle. Remarkably, loss of WAPL, a cohesin antagonist, rescues attenuated smooth muscle differentiation resulting from BRD4 loss. Collectively, our data reveal that BRD4 choreographs genome folding and illustrates the relevance of balancing cohesin activity for progenitor differentiation.


Asunto(s)
Diferenciación Celular , Genoma , Cresta Neural/citología , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Animales , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Diferenciación Celular/genética , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Regulación de la Expresión Génica , Células HEK293 , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Integrasas/metabolismo , Ratones , Modelos Biológicos , Células Madre Embrionarias de Ratones/metabolismo , Células Musculares/citología , Cresta Neural/metabolismo , Unión Proteica , Dominios Proteicos , Proteolisis , Factores de Transcripción/química , Transcripción Genética , Cohesinas
17.
Cell Stem Cell ; 28(5): 938-954.e9, 2021 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-33529599

RESUMEN

Pathogenic mutations in LAMIN A/C (LMNA) cause abnormal nuclear structure and laminopathies. These diseases have myriad tissue-specific phenotypes, including dilated cardiomyopathy (DCM), but how LMNA mutations result in tissue-restricted disease phenotypes remains unclear. We introduced LMNA mutations from individuals with DCM into human induced pluripotent stem cells (hiPSCs) and found that hiPSC-derived cardiomyocytes, in contrast to hepatocytes or adipocytes, exhibit aberrant nuclear morphology and specific disruptions in peripheral chromatin. Disrupted regions were enriched for transcriptionally active genes and regions with lower LAMIN B1 contact frequency. The lamina-chromatin interactions disrupted in mutant cardiomyocytes were enriched for genes associated with non-myocyte lineages and correlated with higher expression of those genes. Myocardium from individuals with LMNA variants similarly showed aberrant expression of non-myocyte pathways. We propose that the lamina network safeguards cellular identity and that pathogenic LMNA variants disrupt peripheral chromatin with specific epigenetic and molecular characteristics, causing misexpression of genes normally expressed in other cell types.


Asunto(s)
Cardiomiopatía Dilatada , Células Madre Pluripotentes Inducidas , Cardiomiopatía Dilatada/genética , Cromatina/genética , Humanos , Lamina Tipo A/genética , Mutación/genética , Miocitos Cardíacos
18.
J Virol ; 82(5): 2313-23, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18094192

RESUMEN

Integrated retroviral DNA is subject to epigenetic gene silencing, resulting in loss of expression of viral genes as well as reporter or therapeutic genes transduced by retroviral vectors. Possible mediators of such silencing include the histone deacetylase (HDAC) family of cellular proteins. We previously isolated HeLa cell populations that harbored silent avian sarcoma virus-based green fluorescent protein (GFP) vectors that could be reactivated by treatment with HDAC inhibitors. Here, we developed a small interfering RNA (siRNA)-based approach to identify specific host factors that participate in the maintenance of silencing. Knockdown of HDAC1, the transcriptional repressor Daxx (a binding partner of HDAC1), or heterochromatin protein 1 gamma resulted in robust and specific GFP reporter gene reactivation. Analyses of cell clones and diverse GFP vector constructs revealed that the roles of HDAC1 and Daxx in retroviral silencing are largely independent of the integration site or the promoter controlling the silent GFP reporter gene. Previous findings from our laboratory and those of others have suggested that Daxx and HDAC proteins may act broadly as part of an antiviral response to repress viral gene transcription. Expression of presumptive viral "countermeasure" proteins that are known to inhibit Daxx or HDACs (pp71, IE2, and Gam1) resulted in the reactivation of GFP reporter gene expression. This study has identified individual host factors that maintain retroviral silencing and supports the proposal that these factors participate in an antiviral response. Furthermore, our results indicate that siRNAs can be used as specific reagents to interrupt the maintenance of epigenetic silencing.


Asunto(s)
Epigénesis Genética/fisiología , Silenciador del Gen/fisiología , Proteínas/fisiología , Retroviridae/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/fisiología , Secuencia de Bases , Homólogo de la Proteína Chromobox 5 , Proteínas Cromosómicas no Histona/fisiología , Proteínas Co-Represoras , Cartilla de ADN , Células HeLa , Inhibidores de Histona Desacetilasas , Histona Desacetilasas/genética , Histona Desacetilasas/fisiología , Humanos , Chaperonas Moleculares , Proteínas Nucleares/genética , Proteínas Nucleares/fisiología , Regiones Promotoras Genéticas , ARN Interferente Pequeño , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
19.
Elife ; 82019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31573510

RESUMEN

Cell-type-specific 3D organization of the genome is unrecognizable during mitosis. It remains unclear how essential positional information is transmitted through cell division such that a daughter cell recapitulates the spatial genome organization of the parent. Lamina-associated domains (LADs) are regions of repressive heterochromatin positioned at the nuclear periphery that vary by cell type and contribute to cell-specific gene expression and identity. Here we show that histone 3 lysine 9 dimethylation (H3K9me2) is an evolutionarily conserved, specific mark of nuclear peripheral heterochromatin and that it is retained through mitosis. During mitosis, phosphorylation of histone 3 serine 10 temporarily shields the H3K9me2 mark allowing for dissociation of chromatin from the nuclear lamina. Using high-resolution 3D immuno-oligoFISH, we demonstrate that H3K9me2-enriched genomic regions, which are positioned at the nuclear lamina in interphase cells prior to mitosis, re-associate with the forming nuclear lamina before mitotic exit. The H3K9me2 modification of peripheral heterochromatin ensures that positional information is safeguarded through cell division such that individual LADs are re-established at the nuclear periphery in daughter nuclei. Thus, H3K9me2 acts as a 3D architectural mitotic guidepost. Our data establish a mechanism for epigenetic memory and inheritance of spatial organization of the genome.


Asunto(s)
Heterocromatina/metabolismo , Histonas/metabolismo , Mitosis , Procesamiento Proteico-Postraduccional , Testamentos , Animales , Línea Celular , Humanos , Hibridación Fluorescente in Situ , Metilación , Fosforilación
20.
Genome Med ; 10(1): 36, 2018 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-29776422

RESUMEN

The heart is one of the least regenerative organs in the human body; adult cardiac myocytes divide at extremely low frequency. Therefore, meaningful induction of cardiac regeneration requires in-depth understanding of myocyte cell-cycle control. Recent insights into how myocytes can be coaxed into duplicating in vivo might inform emerging therapeutics.


Asunto(s)
Mamíferos/metabolismo , Miocardio/citología , Animales , Ciclo Celular , Proliferación Celular , Humanos , Regeneración
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA