Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 154(2): 311-324, 2013 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-23830207

RESUMEN

Tumor cells metastasize to distant organs through genetic and epigenetic alterations, including changes in microRNA (miR) expression. Here we find miR-22 triggers epithelial-mesenchymal transition (EMT), enhances invasiveness and promotes metastasis in mouse xenografts. In a conditional mammary gland-specific transgenic (TG) mouse model, we show that miR-22 enhances mammary gland side-branching, expands the stem cell compartment, and promotes tumor development. Critically, miR-22 promotes aggressive metastatic disease in MMTV-miR-22 TG mice, as well as compound MMTV-neu or -PyVT-miR-22 TG mice. We demonstrate that miR-22 exerts its metastatic potential by silencing antimetastatic miR-200 through direct targeting of the TET (Ten eleven translocation) family of methylcytosine dioxygenases, thereby inhibiting demethylation of the mir-200 promoter. Finally, we show that miR-22 overexpression correlates with poor clinical outcomes and silencing of the TET-miR-200 axis in patients. Taken together, our findings implicate miR-22 as a crucial epigenetic modifier and promoter of EMT and breast cancer stemness toward metastasis.


Asunto(s)
Neoplasias de la Mama/patología , Ensamble y Desensamble de Cromatina , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , MicroARNs/metabolismo , Metástasis de la Neoplasia , Células Madre Neoplásicas/metabolismo , 5-Metilcitosina/análogos & derivados , Animales , Neoplasias de la Mama/metabolismo , Citosina/análogos & derivados , Citosina/metabolismo , Humanos , Ratones , Ratones Transgénicos , Trasplante de Neoplasias , Proteínas Proto-Oncogénicas/metabolismo , Interferencia de ARN , Trasplante Heterólogo
2.
Cell ; 146(3): 353-8, 2011 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-21802130

RESUMEN

Here, we present a unifying hypothesis about how messenger RNAs, transcribed pseudogenes, and long noncoding RNAs "talk" to each other using microRNA response elements (MREs) as letters of a new language. We propose that this "competing endogenous RNA" (ceRNA) activity forms a large-scale regulatory network across the transcriptome, greatly expanding the functional genetic information in the human genome and playing important roles in pathological conditions, such as cancer.


Asunto(s)
Perfilación de la Expresión Génica , ARN/genética , ARN/metabolismo , Animales , Regulación de la Expresión Génica , Humanos , MicroARNs/genética , Neoplasias/genética , Neoplasias/metabolismo , Seudogenes , ARN Mensajero/genética , ARN no Traducido/genética
3.
Cell ; 147(2): 344-57, 2011 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-22000013

RESUMEN

Here, we demonstrate that protein-coding RNA transcripts can crosstalk by competing for common microRNAs, with microRNA response elements as the foundation of this interaction. We have termed such RNA transcripts as competing endogenous RNAs (ceRNAs). We tested this hypothesis in the context of PTEN, a key tumor suppressor whose abundance determines critical outcomes in tumorigenesis. By a combined computational and experimental approach, we identified and validated endogenous protein-coding transcripts that regulate PTEN, antagonize PI3K/AKT signaling, and possess growth- and tumor-suppressive properties. Notably, we also show that these genes display concordant expression patterns with PTEN and copy number loss in cancers. Our study presents a road map for the prediction and validation of ceRNA activity and networks and thus imparts a trans-regulatory function to protein-coding mRNAs.


Asunto(s)
Regulación de la Expresión Génica , Fosfohidrolasa PTEN/genética , ARN Mensajero/metabolismo , ARN no Traducido/metabolismo , Secuencias Reguladoras de Ácido Ribonucleico , Animales , Humanos , Ratones , MicroARNs/metabolismo , Fosfohidrolasa PTEN/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , ARN Mensajero/genética , ARN no Traducido/genética
4.
J Biol Chem ; 298(9): 102353, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35944584

RESUMEN

Despite recent advances in the development of BRAF kinase inhibitors (BRAFi) for BRAF-mutant melanomas, development of resistance remains a major clinical problem. In addition to genetic alterations associated with intrinsic resistance, several adaptive response mechanisms are known to be rapidly activated to allow cell survival in response to treatment, limiting efficacy. A better understanding of the mechanisms driving resistance is urgently needed to improve the success of BRAF-targeted therapies and to make therapeutic intervention more durable. In this study, we identify the mitogen-activated protein kinase (MAPK) p38 as a novel mediator of the adaptive response of melanoma cells to BRAF-targeted therapy. Our findings demonstrate that BRAFi leads to an early increase in p38 activation, which promotes phosphorylation of the transcription factor SOX2 at Ser251, enhancing SOX2 stability, nuclear localization, and transcriptional activity. Furthermore, functional studies show that SOX2 depletion increases sensitivity of melanoma cells to BRAFi, whereas overexpression of a phosphomimetic SOX2-S251E mutant is sufficient to drive resistance and desensitize melanoma cells to BRAFi in vitro and in a zebrafish xenograft model. We also found that SOX2 phosphorylation at Ser251 confers resistance to BRAFi by binding to the promoter and increasing transcriptional activation of the ATP-binding cassette drug efflux transporter ABCG2. In summary, we unveil a p38/SOX2-mediated mechanism of adaptive response to BRAFi, which provides prosurvival signals to melanoma cells against the cytotoxic effects of BRAFi prior to acquiring resistance.


Asunto(s)
Melanoma , Proteínas Proto-Oncogénicas B-raf , Adenosina Trifosfato/metabolismo , Animales , Línea Celular Tumoral , Resistencia a Antineoplásicos , Humanos , Sistema de Señalización de MAP Quinasas , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/metabolismo , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas B-raf/metabolismo , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Pez Cebra/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
5.
Pharmacogenomics J ; 19(5): 455-464, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-30686821

RESUMEN

Biomarkers able to improve the cost/benefit ratio are urgently needed for metastatic colorectal cancer patients that are eligible to receive regorafenib. Here, we measured plasma levels of ten circulating microRNAs (c-miRNAs) and we investigated their early changes during treatment, as well as possible correlation with clinical outcome. Ten literature-selected c-miRNAs were quantified by qRT-PCR on plasma samples collected at baseline (d1) and after 15 days of treatment (d15). C-miRNAs showing significant changes were further analyzed to establish correlations with outcome. A decision tree-based approach was employed to define a c-miRNA signature able to predict the outcome. Results achieved in an exploratory cohort were tested in a validation group. In the exploratory cohort (n = 34), the levels of c-miR-21 (p = 0.06), c-miR-141 (p = 0.04), and c-miR-601 (p = 0.01) increased at d15 compared with d1. A c-miRNA signature involving c-miR-21, c-miR-221, and c-miR-760 predicted response to treatment (p < 0.0001) and was significantly associated to PFS (HR = 10.68; 95% CI 3.2-35.65; p < 0.0001). In the validation cohort (n = 36), the increase in c-miR-21 (p = 0.02) and c-miR-601 (p = 0.02) levels at d15 was confirmed, but the associations with outcome were not. Our data indicate that early changes of c-miRNA levels might be influenced by regorafenib treatment. However, further studies are needed to establish the predictive power of such modifications.


Asunto(s)
MicroARN Circulante/sangre , Neoplasias Colorrectales/tratamiento farmacológico , Compuestos de Fenilurea/uso terapéutico , Piridinas/uso terapéutico , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/mortalidad , Neoplasias Colorrectales/patología , Femenino , Humanos , Masculino , MicroARNs/sangre , Persona de Mediana Edad , Metástasis de la Neoplasia
6.
RNA Biol ; 16(7): 865-878, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30929607

RESUMEN

Here we present miR-CATCHv2.0, an implemented experimental method that allows the identification of the microRNA species directly bound to an RNA of interest. After cross-linking of microRNA::RNA::Ago2 complexes using formaldehyde, the RNA is fragmented using sonication and then subjected to affinity purification using two sets of biotinylated tiling probes (ODD and EVEN). Finally, enriched microRNA species are retrieved by means of small RNA sequencing coupled with an ad hoc analytical workflow. In BRAFV600E mutant A375 melanoma cells, miR-CATCHv2.0 allowed us to identify 20 microRNAs that target X1, the most abundant isoform of BRAF mRNA. These microRNAs fall into different functional classes, according to the effect that they exert (decrease/increase in BRAFV600E mRNA and protein levels) and to the mechanism they use to achieve it (destabilization/stabilization of X1 mRNA or decrease/increase in its translation). microRNA-induced variations in BRAFV600E protein levels are most of the times coupled to consistent variations in pMEK levels, in melanoma cell proliferation in vitro and in sensitivity to the BRAF inhibitor vemurafenib in a xenograft model in zebrafish. However, microRNAs exist that uncouple the degree of activation of the ERK pathway from the levels of BRAFV600E protein. Our study proposes miR-CATCHv2.0 as an effective tool for the identification of direct microRNA-target interactions and, by using such a tool, unveils the complexity of the post-transcriptional regulation to which BRAFV600E and the ERK pathway are subjected in melanoma cells.


Asunto(s)
MicroARNs/metabolismo , Proteínas Proto-Oncogénicas B-raf/genética , Programas Informáticos , Humanos , MicroARNs/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estabilidad del ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reproducibilidad de los Resultados
7.
Mol Cancer ; 16(1): 85, 2017 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-28454577

RESUMEN

BACKGROUND: The BRAF protein kinase is widely studied as a cancer driver and therapeutic target. However, the regulation of its expression is not completely understood. RESULTS: Taking advantage of the RNA-seq data of more than 4800 patients belonging to 9 different cancer types, we show that BRAF mRNA exists as a pool of 3 isoforms (reference BRAF, BRAF-X1, and BRAF-X2) that differ in the last part of their coding sequences, as well as in the length (BRAF-ref: 76 nt; BRAF-X1 and BRAF-X2: up to 7 kb) and in the sequence of their 3'UTRs. The expression levels of BRAF-ref and BRAF-X1/X2 are inversely correlated, while the most prevalent among the three isoforms varies from cancer type to cancer type. In melanoma cells, the X1 isoform is expressed at the highest level in both therapy-naïve cells and cells with acquired resistance to vemurafenib driven by BRAF gene amplification or expression of the Δ[3-10] splicing variant. In addition to the BRAF-ref protein, the BRAF-X1 protein (the full length as well as the Δ[3-10] variant) is also translated. The expression levels of the BRAF-ref and BRAF-X1 proteins are similar, and together they account for BRAF functional activities. In contrast, the endogenous BRAF-X2 protein is hard to detect because the C-terminal domain is selectively recognized by the ubiquitin-proteasome pathway and targeted for degradation. CONCLUSIONS: By shedding light on the repertoire of BRAF mRNA and protein variants, and on the complex regulation of their expression, our work paves the way to a deeper understanding of a crucially important player in human cancer and to a more informed development of new therapeutic strategies.


Asunto(s)
Melanoma/genética , Neoplasias/genética , Isoformas de Proteínas/genética , Proteínas Proto-Oncogénicas B-raf/genética , Empalme Alternativo/genética , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Exones/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Indoles/administración & dosificación , Melanoma/tratamiento farmacológico , Melanoma/patología , Neoplasias/tratamiento farmacológico , Neoplasias/patología , ARN Mensajero/genética , Sulfonamidas/administración & dosificación , Vemurafenib
8.
Methods ; 77-78: 41-50, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25644446

RESUMEN

In multiple human cancer types, a close link exists between the expression levels of Phosphatase and Tensin Homolog deleted on chromosome 10 (PTEN) and its oncosuppressive activities. Therefore, an in depth understanding of the molecular mechanisms by which PTEN expression is modulated is crucial in order to achieve a comprehensive knowledge of its biological roles. In recent years, the competition between PTEN mRNA and other RNAs for shared microRNA molecules has emerged as one such mechanism and has brought into focus the coding-independent activities of PTEN and other mRNAs. In this review article, we examine the competing endogenous RNA (ceRNA) partners of PTEN that have been identified so far. We also discuss how PTEN-centered ceRNA networks can contribute to a deeper understanding of PTEN function and tumorigenesis.


Asunto(s)
Redes Reguladoras de Genes/genética , MicroARNs/genética , Neoplasias/genética , Fosfohidrolasa PTEN/genética , ARN Mensajero/genética , Proteínas Supresoras de Tumor/genética , Animales , Humanos , MicroARNs/biosíntesis , Neoplasias/diagnóstico , Neoplasias/metabolismo , Fosfohidrolasa PTEN/biosíntesis , ARN Mensajero/biosíntesis , Proteínas Supresoras de Tumor/biosíntesis
9.
Nature ; 465(7301): 1033-8, 2010 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-20577206

RESUMEN

The canonical role of messenger RNA (mRNA) is to deliver protein-coding information to sites of protein synthesis. However, given that microRNAs bind to RNAs, we hypothesized that RNAs could possess a regulatory role that relies on their ability to compete for microRNA binding, independently of their protein-coding function. As a model for the protein-coding-independent role of RNAs, we describe the functional relationship between the mRNAs produced by the PTEN tumour suppressor gene and its pseudogene PTENP1 and the critical consequences of this interaction. We find that PTENP1 is biologically active as it can regulate cellular levels of PTEN and exert a growth-suppressive role. We also show that the PTENP1 locus is selectively lost in human cancer. We extended our analysis to other cancer-related genes that possess pseudogenes, such as oncogenic KRAS. We also demonstrate that the transcripts of protein-coding genes such as PTEN are biologically active. These findings attribute a novel biological role to expressed pseudogenes, as they can regulate coding gene expression, and reveal a non-coding function for mRNAs.


Asunto(s)
Regulación Neoplásica de la Expresión Génica/genética , MicroARNs/genética , Neoplasias/genética , Fosfohidrolasa PTEN/genética , Seudogenes/genética , ARN Mensajero/genética , Regiones no Traducidas 3'/genética , Unión Competitiva , Línea Celular , Genes Supresores de Tumor , Humanos , Modelos Genéticos , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas p21(ras) , Proteínas ras/genética
10.
EMBO J ; 30(10): 1990-2007, 2011 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-21468029

RESUMEN

Malignant melanoma is fatal in its metastatic stage. It is therefore essential to unravel the molecular mechanisms that govern disease progression to metastasis. MicroRNAs (miRs) are endogenous non-coding RNAs involved in tumourigenesis. Using a melanoma progression model, we identified a novel pathway controlled by miR-214 that coordinates metastatic capability. Pathway components include TFAP2C, homologue of a well-established melanoma tumour suppressor, the adhesion receptor ITGA3 and multiple surface molecules. Modulation of miR-214 influences in vitro tumour cell movement and survival to anoikis as well as extravasation from blood vessels and lung metastasis formation in vivo. Considering that miR-214 is known to be highly expressed in human melanomas, our data suggest a critical role for this miRNA in disease progression and the establishment of distant metastases.


Asunto(s)
Regulación de la Expresión Génica , Melanoma/patología , Melanoma/secundario , MicroARNs/metabolismo , Metástasis de la Neoplasia/patología , Factor de Transcripción AP-2/biosíntesis , Animales , Movimiento Celular , Proliferación Celular , Supervivencia Celular , Células Cultivadas , Humanos , Integrinas/metabolismo , Pulmón/patología , Neoplasias Pulmonares/patología , Ratones , MicroARNs/genética
11.
3 Biotech ; 14(2): 45, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38261961

RESUMEN

The use of CRISPR/Cas9 system has rapidly grown in the last years. Here, the optimization of gene editing of a single-nucleotide polymorphism in a human non-malignant somatic cell line of thyrocytes (Nthy-Ori) was described highlighting strategies for overcoming the problems concerning the delivery and off-targets. We employed both lentivirus and chemical lipids as delivery agents and two strategies for creating the double-strand breaks (DSB). The former induced a DSB by a classical Cas9 nuclease (standard strategy), while the second one employed a modified Cas9 creating a single-strand break (SSB). The knock-in was carried out using a single-stranded donor oligonucleotide or the HR410-PA donor vector (HR). The desired cells could be obtained by combining the double nickase system with the HR vector transfected chemically. This result could be due to the type of DSB, likely processed mainly by non-homologous end joining when blunt (standard strategy) and by HR when overhanging (double nickase). Our results showed that the double nickase is suitable for knocking-in the immortalized Nthy-Ori cell line, while the standard CRISPR/Cas9 system is suitable for gene knock-out creating in/del mutations. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03878-4.

12.
Cell Biosci ; 13(1): 121, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37393328

RESUMEN

BRAFV600E comes as two main splicing variants. The well-studied ref isoform and the recently discovered X1 isoform are co-expressed in cancer cells and differ in terms of 3'UTR length and sequence, as well as C-term protein sequence. Here, we use a melanoma model in zebrafish to study the role played by each isoform in larval pigmentation, nevi formation, and their progression into melanoma tumours. We show that both BRAFV600E-ref and BRAFV600E-X1 proteins promote larval pigmentation and nevi formation, while melanoma-free survival curves performed in adult fish indicate that BRAFV600E-ref protein is a much stronger melanoma driver that BRAFV600E-X1 protein. Crucially, we also show that the presence of the 3'UTR suppresses the effect of ref protein. Our data highlight the necessity to undertake a systematic study of BRAFV600E isoforms, in order to uncover the full spectrum of their kinase-(in)dependent and coding-(in)dependent functions, hence to develop more informed strategies for therapeutic targeting.

13.
Cancers (Basel) ; 15(3)2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36765859

RESUMEN

BACKGROUND: The ability to increase their degree of pigmentation is an adaptive response that confers pigmentable melanoma cells higher resistance to BRAF inhibitors (BRAFi) compared to non-pigmentable melanoma cells. METHODS: Here, we compared the miRNome and the transcriptome profile of pigmentable 501Mel and SK-Mel-5 melanoma cells vs. non-pigmentable A375 melanoma cells, following treatment with the BRAFi vemurafenib (vem). In depth bioinformatic analyses (clusterProfiler, WGCNA and SWIMmeR) allowed us to identify the miRNAs, mRNAs and biological processes (BPs) that specifically characterize the response of pigmentable melanoma cells to the drug. Such BPs were studied using appropriate assays in vitro and in vivo (xenograft in zebrafish embryos). RESULTS: Upon vem treatment, miR-192-5p, miR-211-5p, miR-374a-5p, miR-486-5p, miR-582-5p, miR-1260a and miR-7977, as well as GPR143, OCA2, RAB27A, RAB32 and TYRP1 mRNAs, are differentially expressed only in pigmentable cells. These miRNAs and mRNAs belong to BPs related to pigmentation, specifically melanosome maturation and trafficking. In fact, an increase in the number of intracellular melanosomes-due to increased maturation and/or trafficking-confers resistance to vem. CONCLUSION: We demonstrated that the ability of pigmentable cells to increase the number of intracellular melanosomes fully accounts for their higher resistance to vem compared to non-pigmentable cells. In addition, we identified a network of miRNAs and mRNAs that are involved in melanosome maturation and/or trafficking. Finally, we provide the rationale for testing BRAFi in combination with inhibitors of these biological processes, so that pigmentable melanoma cells can be turned into more sensitive non-pigmentable cells.

14.
Eur J Med Chem ; 256: 115446, 2023 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-37182332

RESUMEN

BRAF represents one of the most frequently mutated protein kinase genes and BRAFV600E mutation may be found in many types of cancer, including hairy cell leukemia (HCL), anaplastic thyroid cancer (ATC), colorectal cancer and melanoma. Herein, a fluorescent probe, based on the structure of the highly specific BRAFV600E inhibitor Vemurafenib (Vem, 1) and featuring the NIR fluorophore cyanine-5 (Cy5), was straightforwardly synthesized and characterized (Vem-L-Cy5, 3), showing promising spectroscopic properties. Biological validation in BRAFV600E-mutated cancer cells evidenced the ability of 3 to penetrate inside the cells, specifically binding to its elective target BRAFV600E with high affinity, and inhibiting MEK phosphorylation and cell growth with a potency comparable to that of native Vem 1. Taken together, these data highlight Vem-L-Cy5 3 as a useful tool to probe BRAFV600E mutation in cancer cells, and suitable to acquire precious insights for future developments of more informed BRAF inhibitors-centered therapeutic strategies.


Asunto(s)
Melanoma , Proteínas Proto-Oncogénicas B-raf , Humanos , Vemurafenib/farmacología , Proteínas Proto-Oncogénicas B-raf/genética , Melanoma/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Mutación , Línea Celular Tumoral
15.
J Hematol Oncol ; 16(1): 33, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-37013641

RESUMEN

In human cells BRAF oncogene is invariably expressed as a mix of two coding transcripts: BRAF-ref and BRAF-X1. These two mRNA isoforms, remarkably different in the sequence and length of their 3'UTRs, are potentially involved in distinct post-transcriptional regulatory circuits. Herein, we identify PARP1 among the mRNA Binding Proteins that specifically target the X1 3'UTR in melanoma cells. Mechanistically, PARP1 Zinc Finger domain down-regulates BRAF expression at the translational level. As a consequence, it exerts a negative impact on MAPK pathway, and sensitizes melanoma cells to BRAF and MEK inhibitors, both in vitro and in vivo. In summary, our study unveils PARP1 as a negative regulator of the highly oncogenic MAPK pathway in melanoma, through the modulation of BRAF-X1 expression.


Asunto(s)
Melanoma , Proteínas Proto-Oncogénicas B-raf , Humanos , Vemurafenib , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Indoles/farmacología , Sulfonamidas/farmacología , Melanoma/genética , Melanoma/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Línea Celular Tumoral , Sistema de Señalización de MAP Quinasas , Poli(ADP-Ribosa) Polimerasa-1/genética
16.
Cancers (Basel) ; 14(24)2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36551740

RESUMEN

MiR-22 was first identified as a proto-oncogenic microRNA (miRNA) due to its ability to post-transcriptionally suppress the expression of the potent PTEN (Phosphatase And Tensin Homolog) tumor suppressor gene. miR-22 tumorigenic role in cancer was subsequently supported by its ability to positively trigger lipogenesis, anabolic metabolism, and epithelial-mesenchymal transition (EMT) towards the metastatic spread. However, during the following years, the picture was complicated by the identification of targets that support a tumor-suppressive role in certain tissues or cell types. Indeed, many papers have been published where in vitro cellular assays and in vivo immunodeficient or immunosuppressed xenograft models are used. However, here we show that all the studies performed in vivo, in immunocompetent transgenic and knock-out animal models, unanimously support a proto-oncogenic role for miR-22. Since miR-22 is actively secreted from and readily exchanged between normal and tumoral cells, a functional immune dimension at play could well represent the divider that allows reconciling these contradictory findings. In addition to a critical review of this vast literature, here we provide further proof of the oncogenic role of miR-22 through the analysis of its genomic locus vis a vis the genetic landscape of human cancer.

17.
Methods Mol Biol ; 2324: 265-284, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34165721

RESUMEN

Pseudogenes have been considered as nonfunctional copies of their parental genes for a long time. Indeed, they have been often defined "junk DNA" or "transcriptional noise." However, with the identification of their involvement in several biological processes, the necessity of their study is inevitably growing up. The manipulation of pseudogene expression is complicated by their high homology with parental genes and by the fact that most of them work at the transcriptional level as noncoding RNAs. With the advent of CRISPR/Cas technology, these problems can be overcome. Particularly, as we describe in this chapter, it is possible: To perform genome editing, obtaining the complete elimination of the pseudogene genomic sequence (knock-out), preventing pseudogene transcription, introducing specific mutations in the pseudogene sequence, or introducing a specific sequence (knock-in). To positively or negatively manipulate pseudogene transcription. To target pseudogene RNA and negatively regulate its expression. To edit pseudogene DNA and RNA and alter a specific sequence. Moreover, CRISPR/Cas technology can be used as an RNA Binding Protein system for molecular biology techniques (such as RNA immunoprecipitation and pull-down), as well as for transcript tracking and live imaging.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica/métodos , Seudogenes , Proteína 9 Asociada a CRISPR/genética , ADN/metabolismo , Predicción , Regulación de la Expresión Génica , Marcación de Gen/métodos , Humanos , Técnicas de Diagnóstico Molecular , Mutación , Dominios Proteicos , ARN/genética , ARN Mensajero/antagonistas & inhibidores , ARN Mensajero/aislamiento & purificación , Especificidad por Sustrato , Transcripción Genética
18.
J Vis Exp ; (175)2021 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-34570105

RESUMEN

Tyr::CreER+,BrafCA/+,Ptenlox/lox genetically engineered mice (Braf/Pten mice) are widely used as an in vivo model of metastatic melanoma. Once a primary tumor has been induced by tamoxifen treatment, an increase in metastatic burden is observed within 4-6 weeks after induction. This paper shows how Ultra-High-Frequency UltraSound (UHFUS) imaging can be exploited to monitor the increase in metastatic involvement of the inguinal lymph nodes by measuring the increase in their volume. The UHFUS system is used to scan anesthetized mice with a UHFUS linear probe (22-55 MHz, axial resolution 40 µm). B-mode images from the inguinal lymph nodes (both left and right sides) are acquired in a short-axis view, positioning the animals in dorsal recumbency. Ultrasound records are acquired using a 44 µm step size on a motorized mechanical arm. Afterward, two-dimensional (2D) B-mode acquisitions are imported into the software platform for ultrasound image post-processing, and inguinal lymph nodes are identified and segmented semi-automatically in the acquired cross-sectional 2D images. Finally, a total reconstruction of the three-dimensional (3D) volume is automatically obtained along with the rendering of the lymph node volume, which is also expressed as an absolute measurement. This non-invasive in vivo technique is very well tolerated and allows the scheduling of multiple imaging sessions on the same experimental animal over 2 weeks. It is, therefore, ideal to assess the impact of pharmacological treatment on metastatic disease.


Asunto(s)
Ganglios Linfáticos , Melanoma , Animales , Estudios Transversales , Ganglios Linfáticos/diagnóstico por imagen , Melanoma/diagnóstico por imagen , Ratones , Ultrasonografía
19.
Methods Mol Biol ; 2348: 205-220, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34160809

RESUMEN

Long noncoding RNAs (lncRNAs) are implicated in several biological processes and it has been observed that their expression is altered in several diseases. The generation of animal models where selective silencing or overexpression of lncRNAs can be attained is crucial for their biological characterization, since it offers the opportunity to analyze their function at the tissue specific or organismal level. CRISPR/Cas technology is a newly developed tool that allows to easily manipulate the mouse genome, in turn allowing to discover lncRNAs functions in an in vivo context. Here, we provide an overview of how CRISPR/Cas technology can be used to generate transgenic mouse models in which lncRNAs can be studied.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Expresión Génica , Silenciador del Gen , ARN Largo no Codificante/genética , Células Madre Adultas/citología , Células Madre Adultas/metabolismo , Animales , Marcación de Gen , Ratones , Ratones Transgénicos , Microinyecciones
20.
Methods Mol Biol ; 2265: 487-512, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33704736

RESUMEN

MicroRNAs (miRNAs) can regulate the expression of potentially every transcript in the cell, and the definition of miRNA-target interactions is crucial to understand their role in all biological processes. However, the identification of the miRNAs that target a specific mRNA remains a challenge. Here, we describe an innovative method called miR-CATCHv2.0 for the high-throughput identification of the miRNA species bound to an RNA of interest. We also describe how this method can overcome the limitations of the current computational and experimental methods available in this field.


Asunto(s)
Biología Computacional , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Melanoma , MicroARNs , ARN Mensajero , Línea Celular Tumoral , Humanos , Melanoma/genética , Melanoma/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA