Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Environ Res ; 257: 119394, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38866313

RESUMEN

Cyanobacterial blooms, a natural phenomenon in freshwater ecosystems, have increased in frequency and severity due to climate change and eutrophication. Some cyanobacteria are able to produce harmful substances called cyanotoxins. These metabolites possess different chemical structures and action mechanisms representing a serious concern for human health and the environment. The most studied cyanotoxins belong to the group of microcystins which are potent hepatotoxins. Anabaenopeptins are another class of cyclic peptides produced by certain species of cyanobacteria, including Planktothrix spp. Despite limited knowledge regarding individual effects of anabaenopeptins on freshwater organisms, reports have identified in vivo toxicity in representatives of freshwater zooplankton by cyanobacterial extracts or mixtures containing anabaenopeptins. This study focused on the isolation and toxicity evaluation of the cyanotoxins produced in the 2022 Planktothrix rubescens bloom in Averno lake, Italy. The three main cyclic peptides have been isolated and identified by nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry (MS) and optical analyses as anabaenopeptins A and B, and oscillamide Y. Ecotoxicological tests on the aquatic model organisms Daphnia magna (crustacean), Raphidocelis subcapitata (algae), and Aliivibrio fischeri (bacterium) revealed that anabaenopeptins A and B do not generate significant toxicity at environmentally relevant concentrations, being also found a stimulatory effect on R. subcapitata in the case of anabaenopeptin A. By contrast, oscillamide Y displayed toxicity. Ecological implications based on ECOSAR predictions align with experimental data. Moreover, long-term exposure bioassays on different green unicellular algae species showed that R. subcapitata was not significantly affected, while Scenedesmus obliquus and Chlorella vulgaris exhibited altered growth patterns. These results, together with the already-known background in literature, highlight the complexity of interactions between organisms and the tested compounds, which may be influenced by species-specific sensitivities, physiological differences, and modes of action, possibly affected by parameters like lipophilicity.

2.
Mar Drugs ; 21(7)2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37504915

RESUMEN

In the last decades, the interest in bioactive compounds derived from natural sources including bacteria, fungi, plants, and algae has significantly increased. It is well-known that aquatic or terrestrial organisms can produce, in special conditions, secondary metabolites with a wide range of biological properties, such as anticancer, antioxidant, anti-inflammatory, and antimicrobial activities. In this study, we focused on the extremophilic microalga Galdieria sulphuraria as a possible producer of bioactive compounds with antiviral activity. The algal culture was subjected to organic extraction with acetone. The cytotoxicity effect of the extract was evaluated by the 2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. The antiviral activity was assessed through a plaque assay against herpesviruses and coronaviruses as enveloped viruses and poliovirus as a naked one. The monolayer was treated with different concentrations of extract, ranging from 1 µg/mL to 200 µg/mL, and infected with viruses. The algal extract displayed strong antiviral activity at non-toxic concentrations against all tested enveloped viruses, in particular in the virus pre-treatment against HSV-2 and HCoV-229E, with IC50 values of 1.7 µg/mL and IC90 of 1.8 µg/mL, respectively. However, no activity against the non-enveloped poliovirus has been detected. The inhibitory effect of the algal extract was confirmed by the quantitative RT-PCR of viral genes. Preliminary chemical profiling of the extract was performed using ultra-high-performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-HRMS), revealing the enrichment in primary fatty acid amides (PFAA), such as oleamide, palmitamide, and pheophorbide A. These promising results pave the way for the further purification of the mixture to explore its potential role as an antiviral agent.


Asunto(s)
Infecciones por Coronavirus , Rhodophyta , Virus , Humanos , Antivirales/química , Rhodophyta/metabolismo , Extractos Vegetales/farmacología
3.
Mar Drugs ; 20(4)2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35447929

RESUMEN

In this study, a strain of Anabaena flos-aquae UTEX 1444 was cultivated in six different concentrations of iron (III). Cultures were extracted with organic solvents and analyzed using our dereplication strategy, based on the combined use of high-resolution tandem mass spectrometry and molecular networking. The analysis showed the presence of the siderophores' family, named synechobactins, only in the zero iron (III) treatment culture. Seven unknown synechobactin variants were present in the extract, and their structures have been determined by a careful HRMS/MS analysis. This study unveils the capability of Anabaena flos-aquae UTEX 1444 to produce a large array of siderophores and may be a suitable model organism for a sustainable scale-up exploitation of such bioactive molecules, for the bioremediation of contaminated ecosystems, as well as in drug discovery.


Asunto(s)
Anabaena , Dolichospermum flos-aquae , Ecosistema , Hierro , Sideróforos
4.
World J Microbiol Biotechnol ; 37(12): 215, 2021 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-34762205

RESUMEN

The demand for natural antioxidants to be used in food industry is increasing, as synthetic antioxidants are toxic and have high production costs. Specifically, food processing and preservation require antioxidants resistant to thermal sterilization processes. In this study, twenty-five strains among microalgae and cyanobacteria were screened as antioxidants producers. The species Enallax sp., Synechococcus bigranulatus and Galdieria sulphuraria showed the highest content of chlorophyll a and total carotenoids. In vitro stability and antioxidant activity of the ethanolic extracts were performed. The results revealed that pigments present in the extracts, obtained from the previously mentioned species, were stable at room temperature and exhibited in vitro free radical scavenging potential with IC50 values of 0.099 ± 0.001, 0.048 ± 0.001 and 0.13 ± 0.02 mg mL-1, respectively. Biocompatibility assay showed that the extracts were not toxic on immortalized cell lines. The antioxidant activity was also tested on a cell-based model by measuring intracellular ROS levels after sodium arsenite treatment. Noteworthy, extracts were able to exert the same protective effect, before and after the pasteurization process. Results clearly indicate the feasibility of obtaining biologically active and thermostable antioxidants from microalgae. Green solvents can be used to obtain thermo-resistant antioxidants from cyanobacteria and microalgae which can be used in the food industry. Thus, the substitution of synthetic pigments with natural ones is now practicable.


Asunto(s)
Antioxidantes/química , Cianobacterias/química , Microalgas/química , Antioxidantes/aislamiento & purificación , Antioxidantes/metabolismo , Procesos Autotróficos , Clorofila A/metabolismo , Cianobacterias/metabolismo , Cianobacterias/efectos de la radiación , Calor , Microalgas/metabolismo , Microalgas/efectos de la radiación , Procesos Fototróficos , Especies Reactivas de Oxígeno/metabolismo
5.
Appl Microbiol Biotechnol ; 104(7): 3109-3119, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32060692

RESUMEN

The extremophile red alga Galdieria sulphuraria was successfully grown immobilized in a twin-layer porous substrate bioreactor (TL-PSBR). A maximal biomass growth rate of 10 g dry weight m-2 day-1 was measured at a photon fluence rate of 200 µmol photons m-2 s-1 with addition of 1% CO2 and a temperature of 34 °C. Under these conditions, a maximal biomass value of 232 g m-2 was attained after 33 days of growth. Phycobilin productivity, however, was highest at a lower photon fluence rate of 100 µmol photons m-2 s-1 and reached a phycobilin value of 14 g m-2, a phycobilin content in the biomass of 63 mg g-1 and a phycobilin growth rate of 0.28 g m-2 day-1 for phycocyanin and 0.23 g m-2 day-1 for allophycocyanin. Addition of CO2 was essential to enhance growth and phycobilin production in G. sulphuraria and further optimization of the cultivation process in the TL-PSBR appears possible using a multi-phase approach, higher growth temperatures and optimization of nutrient supply. It is concluded that autotrophic cultivation of G. sulphuraria in a TL-PSBR is an attractive alternative to suspension cultivation for phycobilin production and applications in bioremediation.


Asunto(s)
Biomasa , Fotobiorreactores , Ficobiliproteínas/biosíntesis , Rhodophyta/crecimiento & desarrollo , Rhodophyta/metabolismo , Dióxido de Carbono/metabolismo , Células Inmovilizadas , Medios de Cultivo/química , Microbiología Industrial , Fotones , Ficocianina/biosíntesis , Ficocianina/química , Porosidad , Temperatura
6.
Mar Drugs ; 18(3)2020 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-32197552

RESUMEN

Algae have multiple similarities with fungi, with both belonging to the Thallophyte, a polyphyletic group of non-mobile organisms grouped together on the basis of similar characteristics, but not sharing a common ancestor. The main difference between algae and fungi is noted in their metabolism. In fact, although algae have chlorophyll-bearing thalloids and are autotrophic organisms, fungi lack chlorophyll and are heterotrophic, not able to synthesize their own nutrients. However, our studies have shown that the extremophilic microalga Galderia sulphuraria (GS) can also grow very well in heterotrophic conditions like fungi. This study was carried out using several approaches such as scanning electron microscope (SEM), gas chromatography/mass spectrometry (GC/MS), and infrared spectrophotometry (ATR-FTIR). Results showed that the GS, strain ACUF 064, cultured in autotrophic (AGS) and heterotrophic (HGS) conditions, produced different biomolecules. In particular, when grown in HGS, the algae (i) was 30% larger, with an increase in carbon mass that was 20% greater than AGS; (ii) produced higher quantities of stearic acid, oleic acid, monounsaturated fatty acids (MUFAs), and ergosterol; (iii) produced lower quantities of fatty acid methyl esters (FAMEs) such as methyl palmytate, and methyl linoleate, saturated fatty acids (SFAs), and poyliunsaturated fatty acids (PUFAs). ATR-FTIR and principal component analysis (PCA) statistical analysis confirmed that the macromolecular content of HGS was significantly different from AGS. The ability to produce different macromolecules by changing the trophic conditions may represent an interesting strategy to induce microalgae to produce different biomolecules that can find applications in several fields such as food, feed, nutraceutical, or energy production.


Asunto(s)
Ácidos Grasos/metabolismo , Rhodophyta/crecimiento & desarrollo , Humanos , Espectrometría de Masas , Rhodophyta/metabolismo
7.
Molecules ; 25(21)2020 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-33171936

RESUMEN

In the scenario of promising sources of functional foods and preventive drugs, microalgae and cyanobacteria are attracting global attention. In this review, the current and future role of microalgae as natural sources of functional foods for human health and, in particular, for oral health has been reported and discussed in order to provide an overview on the state of art on microalgal effects on human oral health. It is well known that due to their richness in high-valuable products, microalgae offer good anti-inflammatory, antioxidant, antitumoral, anti-glycemic, cholesterol-lowering, and antimicrobial activity. Moreover, the findings of the present research show that microalgae could also have a significant impact on oral health: several studies agree on the potential application of microalgae for oral cancer prevention as well as for the treatment of chronic periodontitis and different oral diseases with microbial origin. Thus, beneficial effects of microalgae could be implemented in different medical fields. Microalgae and cyanobacteria could represent a potential natural alternative to antibiotic, antiviral, or antimycotic therapies, as well as a good supplement for the prevention and co-adjuvant treatment of different oral diseases. Nevertheless, more studies are required to identify strains of interest, increase overall functioning, and make safe, effective products available for the whole population.


Asunto(s)
Cianobacterias/química , Alimentos Funcionales , Microalgas/química , Salud Bucal , Animales , Antiinfecciosos/química , Antiinfecciosos/farmacología , Anticarcinógenos/química , Anticarcinógenos/farmacología , Antivirales/química , Antivirales/farmacología , Chlorella/química , Suplementos Dietéticos , Humanos , Neoplasias de la Boca/prevención & control , Periodontitis/tratamiento farmacológico , Spirulina/química , Spirulina/clasificación
8.
Appl Microbiol Biotechnol ; 103(23-24): 9455-9464, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31696285

RESUMEN

The setup of an economic and sustainable method to increase the production and commercialization of products from microalgae, beyond niche markets, is a challenge. Here, a cascade approach has been designed to optimize the recovery of high valuable bioproducts starting from the wet biomass of Galdieria phlegrea. This unicellular thermo-acidophilic red alga can accumulate high-value compounds and can live under conditions considered hostile to most other species. Extractions were performed in two sequential steps: a conventional high-pressure procedure to recover phycocyanins and a solvent extraction to obtain fatty acids. Phycocyanins were purified to the highest purification grade reported so far and were active as antioxidants on a cell-based model. Fatty acids isolated from the residual biomass contained high amount of PUFAs, more than those recovered from the raw biomass. Thus, a simple, economic, and high effective procedure was set up to isolate phycocyanin at high purity levels and PUFAs.


Asunto(s)
Ácidos Grasos/aislamiento & purificación , Ficocianina/aislamiento & purificación , Rhodophyta/química , Biomasa , Biotecnología/métodos , Ácidos Grasos/metabolismo , Ficocianina/metabolismo
9.
Phytochem Anal ; 30(5): 564-571, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31238388

RESUMEN

INTRODUCTION: Artemisia annua is a small herbaceous plant belonging to the Asteraceae family declared therapeutic by the World Health Organisation, in particular for its artemisinin content, an active ingredient at the base of most antimalarial treatments, used every year by over 300 million people. In the last years, owing to low artemisinin content, research of new ways to increase the yield of the plant matrix has led to the use of the total extract taking advantage from the synergic and stabilising effects of the other components. OBJECTIVE: In this work we evaluated and compared the content of artemisinin and scopoletin in extracts of A. annua collected in the Campania Region (southern Italy), by two different extraction processes. METHODOLOGY: Artemisia annua plants were extracted by traditional maceration (TM) in hydroalcoholic solution as a mother tincture prepared according to the European Pharmacopeia and by pressurised cyclic solid-liquid (PCSL) extraction, a new generation method using the Naviglio extractor. RESULTS: The results showed that the PCSL extraction technique is more effective than traditional methods in extracting both phytochemicals, up to 15 times more, reducing the extraction times, without using solvents or having risks for the operators, the environment and the users of the extracts. CONCLUSION: The Naviglio extractor provides extracts with an artemisinin and scopoletin content eight times higher than the daily therapeutic dose, which should be evaluated for its stability over time and biological properties for possible direct use for therapeutic purposes.


Asunto(s)
Artemisia annua/química , Artemisininas/aislamiento & purificación , Extracción Líquido-Líquido/métodos , Extractos Vegetales/química , Escopoletina/aislamiento & purificación , Extracción en Fase Sólida/métodos , Presión
10.
Water Sci Technol ; 80(10): 1832-1843, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32144215

RESUMEN

The effects of autotrophic and mixotrophic conditions on microalgae growth and nutrient removal efficiency from synthetic wastewater by different microalgae were investigated. Although several studies have demonstrated the suitability of microalgae technologies for ammonia-rich wastewater treatment, only a few have been used for treatment of phosphate-rich industrial wastewaters. In this work, six microalgae were cultivated in batch mode in a growth medium with a high phosphate concentration (0.74 Mm PO4 3--P) and different carbon sources (ammonium acetate and sodium bicarbonate) without CO2 supplementation or pH adjustment. Their potential for nutrient removal and biomass generation was estimated. The biomass growth in the reactors was modeled and the data aligned to the Verhulst model with R2 > 0.93 in all cases. Chlorella pyrenoidosa ACUF_808 showed the highest final biomass productivity of 106.21 and 75.71 mg·L-1·d-1 in media with inorganic and organic carbon sources, respectively. The highest phosphorus removal efficiency was 32% with Chlorella vulgaris ACUF_809, while the nitrate removal efficiency in all reactors exceeded 93%. The coupled cultivation of the novel isolated strains of C. pyrenoidosa and C. vulgaris under mixotrophic conditions supplemented with ammonium acetate might be a promising solution for simultaneous nitrate and phosphate removal from phosphorus-rich wastewaters.


Asunto(s)
Chlorella vulgaris , Microalgas , Biomasa , Nitrógeno , Nutrientes , Fosfatos , Aguas Residuales
11.
Extremophiles ; 22(5): 713-723, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29779132

RESUMEN

Cyanidiophytina are a group of polyextremophilic red algae with a worldwide, but discontinuous colonization. They are restricted to widely dispersed hot springs, geothermal habitats, and also some human-altered environments. Cyanidiophytina are predominant where pH is prohibitive for the majority of eukaryotes (pH 0.5-3). Turkey is characterized by areas rich in volcanic activity separated by non-volcanic areas. Here we show that Cyanidiophycean populations are present in thermal baths located around Turkey on neutral/alkaline soils. All known genera and species within Cyanidiophytina were detected in Turkey, including Galdieria phlegrea, recorded up to now only in Italian Phlegrean Fields. By phylogenetic analyses, Turkish G. sulphuraria strains are monophyletic with Italian and Icelandic strains, and with Russian G. daedala strains. G. maxima from Turkey clustered with Icelandic, Kamchatka, and Japanese populations. The discovery of Cyanidiophytina in non-acidic Turkish soils raises new questions about the ecological boundaries of these extremophilic algae. This aids in the understanding of the dispersal abilities and distribution patterns of this ecologically and evolutionarily interesting group of algae.


Asunto(s)
Respiraderos Hidrotermales/microbiología , Rhodophyta/genética , Ácidos/análisis , Biodiversidad , Respiraderos Hidrotermales/química , Filogenia , Rhodophyta/clasificación , Rhodophyta/fisiología , Turquía
12.
Appl Microbiol Biotechnol ; 101(23-24): 8321-8329, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29032470

RESUMEN

Scenedesmus is a genus of microalgae employed for several industrial uses. Industrial cultivations are performed in open ponds or in closed photobioreactors (PBRs). In the last years, a novel type of PBR based on immobilized microalgae has been developed termed porous substrate photobioreactors (PSBR) to achieve significant higher biomass density during cultivation in comparison to classical PBRs. This work presents a study of the growth of Scenedesmus vacuolatus in a Twin Layer System PSBR at different light intensities (600 µmol photons m-2 s-1 or 1000 µmol photons m-2 s-1), different types and concentrations of the nitrogen sources (nitrate or urea), and at two CO2 levels in the gas phase (2% or 0.04% v/v). The microalgal growth was followed by monitoring the attached biomass density as dry weight, the specific growth rate and pigment accumulation. The highest productivity (29 g m-2 d-1) was observed at a light intensity of 600 µmol photons m-2 s-1 and 2% CO2. The types and concentrations of nitrogen sources did not influence the biomass productivity. Instead, the higher light intensity of 1000 µmol photons m-2 s-1 and an ambient CO2 concentration (0.04%) resulted in a significant decrease of productivity to 18 and 10-12 g m-2 d-1, respectively. When compared to the performance of similar cultivation systems (15-30 g m-2 d-1), these results indicate that the Twin Layer cultivation System is a competitive technique for intensified microalgal cultivation in terms of productivity and, at the same time, biomass density.


Asunto(s)
Biomasa , Técnicas Microbiológicas/métodos , Fotobiorreactores/microbiología , Scenedesmus/crecimiento & desarrollo , Dióxido de Carbono/metabolismo , Medios de Cultivo/química , Microbiología Industrial/métodos , Luz , Nitrógeno/metabolismo , Pigmentos Biológicos/metabolismo
13.
Plant Cell Physiol ; 57(9): 1890-8, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27388343

RESUMEN

In plants and algae, sulfate assimilation and cysteine synthesis are regulated by sulfur (S) accessibility from the environment. This study reports the effects of S deprivation in autotrophic and heterotrophic cultures of Galdieria phlegrea (Cyanidiophyceae), a unicellular red alga isolated in the Solfatara crater located in Campi Flegrei (Naples, Italy), where H2S is the prevalent form of gaseous S in the fumarolic fluids and S is widespread in the soils near the fumaroles. This is the first report on the effects of S deprivation on a sulfurous microalga that is also able to grow heterotrophically in the dark. The removal of S from the culture medium of illuminated cells caused a decrease in the soluble protein content and a significant decrease in the intracellular levels of glutathione. Cells from heterotrophic cultures of G. phlegrea exhibited high levels of internal proteins and high glutathione content, which did not diminish during S starvation, but rather glutathione significantly increased. The activity of O-acetylserine(thiol)lyase (OASTL), the enzyme synthesizing cysteine, was enhanced under S deprivation in a time-dependent manner in autotrophic but not in heterotrophic cells. Analysis of the transcript abundance of the OASTL gene supports the OASTL activity increase in autotrophic cultures under S deprivation.


Asunto(s)
Microalgas/crecimiento & desarrollo , Microalgas/metabolismo , Rhodophyta/crecimiento & desarrollo , Rhodophyta/metabolismo , Azufre/metabolismo , Procesos Autotróficos , Liasas de Carbono-Oxígeno/genética , Liasas de Carbono-Oxígeno/metabolismo , Cisteína/biosíntesis , Procesos Heterotróficos , Proteínas/metabolismo , Compuestos de Sulfhidrilo/metabolismo
14.
Molecules ; 21(4): 395, 2016 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-27023497

RESUMEN

The methanol extracts of the aerial part of four ethnomedicinal plants of Mediterranean region, two non-seed vascular plants, Equisetum hyemale L. and Phyllitis scolopendrium (L.) Newman, and two Spermatophyta, Juniperus communis L. (J. communis) and Cotinus coggygria Scop. (C. coggygria), were screened against four human cells lines (A549, MCF7, TK6 and U937). Only the extracts of J. communis and C. coggygria showed marked cytotoxic effects, affecting both cell morphology and growth. A dose-dependent effect of these two extracts was also observed on the cell cycle distribution. Incubation of all the cell lines in a medium containing J. communis extract determined a remarkable accumulation of cells in the G2/M phase, whereas the C. coggygria extract induced a significant increase in the percentage of G1 cells. The novelty of our findings stands on the observation that the two extracts, consistently, elicited coherent effects on the cell cycle in four cell lines, independently from their phenotype, as two of them have epithelial origin and grow adherent and two are lymphoblastoid and grow in suspension. Even the expression profiles of several proteins regulating cell cycle progression and cell death were affected by both extracts. LC-MS investigation of methanol extract of C. coggygria led to the identification of twelve flavonoids (compounds 1-11, 19) and eight polyphenols derivatives (12-18, 20), while in J. communis extract, eight flavonoids (21-28), a α-ionone glycoside (29) and a lignin (30) were found. Although many of these compounds have interesting individual biological activities, their natural blends seem to exert specific effects on the proliferation of cell lines either growing adherent or in suspension, suggesting potential use in fighting cancer.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Extractos Vegetales/farmacología , Polifenoles/farmacología , Anacardiaceae/química , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Humanos , Células MCF-7 , Medicina Tradicional , Neoplasias/genética , Extractos Vegetales/química , Polifenoles/análisis , Polifenoles/química , Semillas/química
15.
Molecules ; 21(1): E38, 2015 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-26712732

RESUMEN

Stevia rebaudiana Bertoni is a small perennial shrub of the Asteraceae (Compositae) family that is native to South America, particularly Brazil and Paraguay, where it is known as "stevia" or "honey leaf" for its powerful sweetness. Several studies have suggested that in addition to their sweetness, steviosides and their related compounds, including rebaudioside A and isosteviol, may offer additional therapeutic benefits. These benefits include anti-hyperglycaemic, anti-hypertensive, anti-inflammatory, anti-tumor, anti-diarrheal, diuretic, and immunomodulatory actions. Additionally, critical analysis of the literature supports the anti-bacterial role of steviosides on oral bacteria flora. The aim of this review is to show the emerging results regarding the anti-cariogenic properties of S. rebaudiana Bertoni. Data shown in the present paper provide evidence that stevioside extracts from S. rebaudiana are not cariogenic. Future research should be focused on in vivo studies to evaluate the effects on dental caries of regular consumption of S. rebaudiana extract-based products.


Asunto(s)
Caries Dental/prevención & control , Stevia/química , Edulcorantes/uso terapéutico , Antibacterianos/química , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bacterias/efectos de los fármacos , Estudios Clínicos como Asunto , Caries Dental/etiología , Humanos , Extractos Vegetales/química , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Edulcorantes/farmacología
16.
Biotechnol Adv ; 68: 108235, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37567398

RESUMEN

Cyanotoxins are by definition "harmful agents" produced by cyanobacteria. Their toxicity has been extensively studied and reviewed over the years. Cyanotoxins have been commonly classified, based on their poisonous effects on mammals, into three main classes, neurotoxins, hepatotoxins and dermatotoxins, and, considering their chemical features, mainly identified as peptides, alkaloids and lipopolysaccharides. Here we propose a broader subdivision of cyanotoxins into eight distinct classes, taking into account their molecular structures, biosynthesis and modes of action: alkaloids, non-ribosomal peptides, polyketides, non-protein amino acids, indole alkaloids, organophosphates, lipopeptides and lipoglycans. For each class, the structures and primary mechanisms of toxicity of the main representative cyanotoxins are reported. Despite their powerful biological activities, only recently scientists have considered the biotechnological potential of cyanotoxins, and their applications both in medical and in industrial settings, even if only a few of these have reached the biotech market. In this perspective, we discuss the potential uses of cyanotoxins as anticancer, antimicrobial, and biocidal agents, as common applications for cytotoxic compounds. Furthermore, taking into account their mechanisms of action, we describe peculiar potential bioactivities for several cyanotoxin classes, such as local anaesthetics, antithrombotics, neuroplasticity promoters, immunomodulating and antifouling agents. In this review, we aim to stimulate research on the potential beneficial roles of cyanotoxins, which require interdisciplinary cooperation to facilitate the discovery of innovative biotechnologies.


Asunto(s)
Alcaloides , Toxinas Bacterianas , Cianobacterias , Animales , Toxinas de Cianobacterias , Toxinas Bacterianas/toxicidad , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Microcistinas/toxicidad , Microcistinas/química , Microcistinas/metabolismo , Cianobacterias/metabolismo , Alcaloides/metabolismo , Mamíferos
17.
Front Microbiol ; 13: 820907, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35154060

RESUMEN

Despite their large number and diversity, microalgae from only four genera are currently cultivated at large-scale. Three of those share common characteristics: they are cultivated mainly autotrophically and are extremophiles or tolerate "extreme conditions." Extreme growth conditions aid in preventing contamination and predation of microalgae, therefore facilitating outdoor cultivation. In search for new extremophilic algae suitable for large-scale production, we investigated six microalgal strains able to grow at pH below 3 and belonging to four genera; Stichococcus bacillaris ACUF158, Chlamydomonas acidophila SAG 2045, and Chlamydomonas pitschmannii ACUF238, Viridiella fridericiana ACUF035 and Galdieria sulphuraria ACUF064 and ACUF074. All strains were cultivated autotrophically at light intensity of 100 and 300 µmol m-2 s-1 and pH between 1.9 and 2.9. The autotrophic biomass productivities were compared with one of the most productive microalgae, Chlorella sorokiniana SAG 211-8K, grown at pH 6.8. The acid tolerant strains have their autotrophic biomass productivities reported for the first time. Mixotrophic and heterotrophic properties were investigated when possible. Five of the tested strains displayed autotrophic biomass productivities 10-39% lower than Chlorella sorokiniana but comparable with other commercially relevant neutrophilic microalgae, indicating the potential of these microalgae for autotrophic biomass production under acidic growth conditions. Two acid tolerant species, S. bacillaris and C. acidophila were able to grow mixotrophically with glucose. Chlamydomonas acidophila and the two Galdieria strains were also cultivated heterotrophically with glucose at various temperatures. Chlamydomonas acidophila failed to grow at 37°C, while G. sulphuraria ACUF64 showed a temperature optimum of 37°C and G. sulphuraria ACUF74 of 42°C. For each strain, the biomass yield on glucose decreased when cultivated above their optimal temperature. The possible biotechnological applications of our findings will be addressed.

18.
Curr Top Med Chem ; 22(11): 939-956, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34392822

RESUMEN

To date, just over a hundred phenanthrenoid dimers have been isolated. Of these, forty-two are completely phenanthrenic in nature. They are isolated from fourteen genera of different plants belonging to only five families, of which Orchidaceae is the most abundant source. Other nine completely acetylated and five methylated dimers were also defined, which were effective in establishing the position of the free hydroxyls of the corresponding natural products, from which they were obtained by semi-synthesis. Structurally, they could be useful chemotaxonomic markers considering that some substituents are typical of a single-family, such as the vinyl group for Juncaceae. From a biogenetic point of view, it is thought that these compounds derive from the radical coupling of the corresponding phenanthrenes or by dehydrogenation of the dihydrophenanthrenoid analogs. Phenanthrenes or dihydroderivatives possess different biological activities, e.g., antiproliferative, antimicrobial, antiinflammatory, antioxidant, spasmolytic, anxiolytic, and antialgal effects. The aim of this review is to summarize the occurrence of phenanthrene dimers in the different natural sources and give a comprehensive overview of their structural characteristics and biological activities.


Asunto(s)
Orchidaceae , Fenantrenos , Antiinflamatorios/química , Humanos , Orchidaceae/química , Fenantrenos/química , Fenantrenos/farmacología , Extractos Vegetales/química
19.
Toxins (Basel) ; 14(6)2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35737068

RESUMEN

Biocides based on chemical synthetic compounds have been commonly used to counteract damages caused by microorganisms on stone cultural heritage. However, in the last few years, the use of commercial and traditional biocides has been banned and/or limited due to their dangerous profile for the environment, as well as human and animal health. Natural products could be used as suitable alternatives for cultural heritage purposes, as they have low toxicity and stability compared with synthetic pesticides. Even if most of the investigated solutions have already shown promising results, their efficiency, ecotoxicological, and chemical features are poorly investigated. In this manuscript, we aimed to evaluate the ecotoxicological profile of four fungal metabolites-namely, cavoxin, epi-epoformin, seiridin, and sphaeropsidone-with potential antimicrobial properties for monumental artworks. A battery of ecotoxicological tests using Aliivibrio fischeri (bacterium), Raphidocelis subcapitata (alga), Raphanus sativus L. (macrophyte), Daphnia magna (crustacean), and Caenorhabditis elegans (nematode) revealed a relative lower toxicity of these compounds, especially when compared with Preventol® and Rocima®, commercial biocides mainly used for the conservation of cultural heritage.


Asunto(s)
Desinfectantes , Contaminantes Químicos del Agua , Animales , Benzoatos , Daphnia , Desinfectantes/toxicidad , Ecotoxicología , Contaminantes Químicos del Agua/química
20.
Molecules ; 16(2): 1486-507, 2011 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-21317840

RESUMEN

Polyphenols constitute one of the most common groups of substances in plants. Polyphenolic compounds have been reported to have a wide range of biological activities, many of which are related to their conventional antioxidant action; however, increasing scientific knowledge has highlighted their potential activity in preventing oral disease, including the prevention of tooth decay. The aim of this review is to show the emerging findings on the anti-cariogenic properties of polyphenols, which have been obtained from several in vitro studies investigating the effects of these bioactive molecules against Streptococcus mutans, as well as in vivo studies. The analysis of the literature supports the anti-bacterial role of polyphenols on cariogenic streptococci, suggesting (1) a direct effect against S. mutans; (2) an interaction with microbial membrane proteins inhibiting the adherence of bacterial cells to the tooth surface; and (3) the inhibition of glucosyl transferase and amylase. However, more studies, particularly in vivo and in situ, are necessary to establish conclusive evidence for the effectiveness and the clinical applications of these compounds in the prevention of dental caries. It is essential to better determine the nature and distribution of these compounds in our diet and to identify which of the hundreds of existing polyphenols are likely to provide the greatest effects.


Asunto(s)
Cariostáticos/uso terapéutico , Caries Dental/tratamiento farmacológico , Flavonoides/uso terapéutico , Fenoles/uso terapéutico , Extractos Vegetales/uso terapéutico , Animales , Antibacterianos/química , Antibacterianos/uso terapéutico , Adhesión Bacteriana/efectos de los fármacos , Cariostáticos/química , Caries Dental/microbiología , Flavonoides/química , Flavonoides/clasificación , Humanos , Estructura Molecular , Fenoles/química , Fenoles/clasificación , Extractos Vegetales/química , Polifenoles , Streptococcus mutans/efectos de los fármacos , Streptococcus mutans/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA