Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
PLoS One ; 14(4): e0214764, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30995277

RESUMEN

Healthy mitochondria use an electrochemical gradient across the inner mitochondrial membrane (IMM) to generate energy in the form of ATP. A variety of endogenous and exogenous factors can lead to transient or sustained depolarization of the IMM, including mitochondrial fission events, expression of uncoupling proteins, electron transport chain (ETC) inhibitors, or chemical uncouplers. This depolarization in turn leads to a variety of physiological responses, ranging from selective mitochondrial clearance (mitophagy) to cell death. How cells recognize and ultimately respond to depolarized mitochondria remains incompletely understood. Here we show that the small GTPases RalA and RalB both relocalize to mitochondria following depolarization in a process dependent on clathrin-mediated endocytosis (CME). Furthermore, both genetic and pharmacologic inhibition of RalA and RalB leads to an increase in the activity of the atypical IκB kinase TBK1 both basally and in response to mitochondrial depolarization. This phenotype was also observed following inhibition of Ral relocalization. Collectively, these data suggest a model in which RalA and RalB inhibit TBK1 and that relocalization of Ral to depolarized mitochondria facilitates TBK1 activation through release of this inhibition.


Asunto(s)
Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Unión al GTP ral/metabolismo , Carbonil Cianuro m-Clorofenil Hidrazona/farmacología , Clatrina/metabolismo , Endocitosis , Células HeLa , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Modelos Biológicos , Transporte de Proteínas , ARN Interferente Pequeño/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas de Unión al GTP ral/antagonistas & inhibidores , Proteínas de Unión al GTP ral/genética
2.
Cell Rep ; 28(7): 1845-1859.e5, 2019 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-31412251

RESUMEN

Mitochondria undergo fission and fusion to maintain homeostasis, and tumors exhibit the dysregulation of mitochondrial dynamics. We recently demonstrated that ectopic HRasG12V promotes mitochondrial fragmentation and tumor growth through Erk phosphorylation of the mitochondrial fission GTPase Dynamin-related protein 1 (Drp1). However, the role of Drp1 in the setting of endogenous oncogenic KRas remains unknown. Here, we show that Drp1 is required for KRas-driven anchorage-independent growth in fibroblasts and patient-derived pancreatic cancer cell lines, and it promotes glycolytic flux, in part through the regulation of hexokinase 2 (HK2). Furthermore, Drp1 deletion imparts a significant survival advantage in a model of KRas-driven pancreatic cancer, and tumors exhibit a strong selective pressure against complete Drp1 deletion. Rare tumors that arise in the absence of Drp1 have restored glycolysis but exhibit defective mitochondrial metabolism. This work demonstrates that Drp1 plays dual roles in KRas-driven tumor growth: supporting both glycolysis and mitochondrial function through independent mechanisms.


Asunto(s)
Dinaminas/metabolismo , Dinaminas/fisiología , Mitocondrias/patología , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Animales , Apoptosis , Proliferación Celular , Dinaminas/genética , Regulación Neoplásica de la Expresión Génica , Glucólisis , Humanos , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Dinámicas Mitocondriales , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas p21(ras)/genética , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Nat Biotechnol ; 22(8): 1001-5, 2004 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15258596

RESUMEN

RNA editing by members of the ADAR (adenosine deaminases acting on RNA) family leads to site-specific conversion of adenosine to inosine (A-to-I) in precursor messenger RNAs. Editing by ADARs is believed to occur in all metazoa, and is essential for mammalian development. Currently, only a limited number of human ADAR substrates are known, whereas indirect evidence suggests a substantial fraction of all pre-mRNAs being affected. Here we describe a computational search for ADAR editing sites in the human transcriptome, using millions of available expressed sequences. We mapped 12,723 A-to-I editing sites in 1,637 different genes, with an estimated accuracy of 95%, raising the number of known editing sites by two orders of magnitude. We experimentally validated our method by verifying the occurrence of editing in 26 novel substrates. A-to-I editing in humans primarily occurs in noncoding regions of the RNA, typically in Alu repeats. Analysis of the large set of editing sites indicates the role of editing in controlling dsRNA stability.


Asunto(s)
Adenosina/genética , Mapeo Cromosómico/métodos , Inosina/genética , Edición de ARN/genética , Análisis de Secuencia de ADN/métodos , Análisis de Secuencia de ARN/métodos , Factores de Transcripción/genética , Disparidad de Par Base/genética , Emparejamiento Base/genética , Secuencia de Bases , Etiquetas de Secuencia Expresada , Humanos , Datos de Secuencia Molecular , Alineación de Secuencia/métodos , Homología de Secuencia de Ácido Nucleico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA