Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Small ; 18(51): e2204767, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36328759

RESUMEN

The discoveries of 2D nanomaterials have made huge impacts on the scientific community. Their unique properties unlock new technologies and bring significant advances to diverse applications. Herein, an unprecedented 2D-stacked material consisting of copper (Cu) on nitro-oxygenated carbon is disclosed. Unlike any known 2D stacked structures that are usually constructed by stacking of separate 2D layers, this material forms a continuously folded 2D-stacked structure. Interestingly, advanced characterizations indicate that Cu atoms inside the structure are in an atomically-dispersed form with extraordinarily high Cu loading up to 15.9 ± 1.2 wt.%, which is among the highest reported metal loading for single-atom catalysts on 2D supports. Facile exfoliation results in thin 2D nanosheets that maximize the exposure of the unique active sites (two neighboring Cu single atoms), leading to impressive catalytic performance, as demonstrated in the electrochemical oxygen reduction reaction.


Asunto(s)
Cobre , Nanoestructuras , Humanos , Carbono , Catálisis , Hipoxia
2.
ACS Appl Mater Interfaces ; 16(8): 10227-10237, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38367256

RESUMEN

Single-atom catalysts (SACs) possess the potential to involve the merits of both homogeneous and heterogeneous catalysts altogether and thus have gained considerable attention. However, the large-scale synthesis of SACs with rich isolate-metal sites by simple and low-cost strategies has remained challenging. In this work, we report a facile one-step pyrolysis that automatically produces SACs with high metal loading (5.2-15.9 wt %) supported on two-dimensional nitro-oxygenated carbon (M1-2D-NOC) without using any solvents and sacrificial templates. The method is also generic to various transition metals and can be scaled up to several grams based on the capacity of the containers and furnaces. The high density of active sites with N/O coordination geometry endows them with impressive catalytic activities and stability, as demonstrated in the oxygen reduction reaction (ORR). For example, Fe1-2D-NOC exhibits an onset potential of 0.985 V vs RHE, a half-wave potential of 0.826 V, and a Tafel slope of -40.860 mV/dec. Combining the theoretical and experimental studies, the high ORR activity could be attributed its unique FeO-N3O structure, which facilitates effective charge transfer between the surface and the intermediates along the reaction, and uniform dispersion of this active site on thin 2D nanocarbon supports that maximize the exposure to the reactants.

3.
RSC Adv ; 9(21): 12047-12054, 2019 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-35517027

RESUMEN

(PEA)2(MA) n-1Pb n I n+1Br2n perovskites are semi-transparent, color-tunable thin films with broader band gaps. They have the potential for semi-transparent solar cell and smart window applications. Solvent engineering significantly alters the morphology, absorbance, crystallinity, charge separation, and defects, thereby influencing the optoelectronic properties. Herein, we investigated the effect of the solvent type on the low dimensional, mixed halide perovskite thin films (n = 1, 3, and 5) and identified DMF : DMSO = 8 : 2 as the most suitable solvent. The mixed solvent regulated the growth rate of perovskites, which led to the smooth morphology and larger crystallite size. Through surface photovoltage spectroscopy and time resolved photoluminescence, good charge separation and low defects were linked to DD82 usage.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA