Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(3): e2300096121, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38194457

RESUMEN

The prevalence of overweight and obesity continues to rise in the population worldwide. Because it is an important predisposing factor for cancer, cardiovascular diseases, diabetes mellitus, and COVID-19, obesity reduces life expectancy. Adipose tissue (AT), the main fat storage organ with endocrine capacity, plays fundamental roles in systemic metabolism and obesity-related diseases. Dysfunctional AT can induce excess or reduced body fat (lipodystrophy). Dido1 is a marker gene for stemness; gene-targeting experiments compromised several functions ranging from cell division to embryonic stem cell differentiation, both in vivo and in vitro. We report that mutant mice lacking the DIDO N terminus show a lean phenotype. This consists of reduced AT and hypolipidemia, even when mice are fed a high-nutrient diet. DIDO mutation caused hypothermia due to lipoatrophy of white adipose tissue (WAT) and dermal fat thinning. Deep sequencing of the epididymal white fat (Epi WAT) transcriptome supported Dido1 control of the cellular lipid metabolic process. We found that, by controlling the expression of transcription factors such as C/EBPα or PPARγ, Dido1 is necessary for adipocyte differentiation, and that restoring their expression reestablished adipogenesis capacity in Dido1 mutants. Our model differs from other lipodystrophic mice and could constitute a new system for the development of therapeutic intervention in obesity.


Asunto(s)
Adipogénesis , Lipodistrofia , Animales , Ratones , Adipogénesis/genética , Diferenciación Celular , Dieta , Obesidad/genética , Sobrepeso
2.
Int J Mol Sci ; 22(21)2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34768773

RESUMEN

The FASTK family of proteins have been recently reported to play a key role in the post-transcriptional regulation of mitochondrial gene expression, including mRNA stability and translation. Accumulated studies have provided evidence that the expression of some FASTK genes is altered in certain types of cancer, in agreement with the central role of mitochondria in cancer development. Here, we obtained a pan-cancer overview of the genomic and transcriptomic alterations of FASTK genes. FASTK, FASTKD1, FASTKD3 and FASTKD5 showed the highest rates of genetic alterations. FASTK and FASTKD3 alterations consisted mainly of amplifications that were seen in more than 8% of ovarian and lung cancers, respectively. FASTKD1 and FASTKD5 were the most frequently mutated FASTK genes, and the mutations were identified in 5-7% of uterine cancers, as well as in 4% of melanomas. Our results also showed that the mRNA levels of all FASTK members were strongly upregulated in esophageal, stomach, liver and lung cancers. Finally, the protein-protein interaction network for FASTK proteins uncovers the interaction of FASTK, FASTKD2, FASTKD4 and FASTKD5 with cancer signaling pathways. These results serve as a starting point for future research into the potential of the FASTK family members as diagnostic and therapeutic targets for certain types of cancer.


Asunto(s)
Neoplasias/genética , Neoplasias/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Bases de Datos Genéticas , Regulación Neoplásica de la Expresión Génica , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Mutación , Mapas de Interacción de Proteínas/genética , ARN Mensajero/metabolismo , Transducción de Señal/genética , Transcriptoma/genética
3.
Nat Methods ; 14(8): 782-788, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28714987

RESUMEN

Understanding genetic events that lead to cancer initiation and progression remains one of the biggest challenges in cancer biology. Traditionally, most algorithms for cancer-driver identification look for genes that have more mutations than expected from the average background mutation rate. However, there is now a wide variety of methods that look for nonrandom distribution of mutations within proteins as a signal for the driving role of mutations in cancer. Here we classify and review such subgene-resolution algorithms, compare their findings on four distinct cancer data sets from The Cancer Genome Atlas and discuss how predictions from these algorithms can be interpreted in the emerging paradigms that challenge the simple dichotomy between driver and passenger genes.


Asunto(s)
Algoritmos , Carcinogénesis/genética , Mapeo Cromosómico/métodos , Genes Relacionados con las Neoplasias/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Neoplasias/genética , Humanos , Sensibilidad y Especificidad
4.
Genet Med ; 22(12): 2089-2100, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32792570

RESUMEN

PURPOSE: Germline pathogenic variants in the exonuclease domain (ED) of polymerases POLE and POLD1 predispose to adenomatous polyps, colorectal cancer (CRC), endometrial tumors, and other malignancies, and exhibit increased mutation rate and highly specific associated mutational signatures. The tumor spectrum and prevalence of POLE and POLD1 variants in hereditary cancer are evaluated in this study. METHODS: POLE and POLD1 were sequenced in 2813 unrelated probands referred for genetic counseling (2309 hereditary cancer patients subjected to a multigene panel, and 504 patients selected based on phenotypic characteristics). Cosegregation and case-control studies, yeast-based functional assays, and tumor mutational analyses were performed for variant interpretation. RESULTS: Twelve ED missense variants, 6 loss-of-function, and 23 outside-ED predicted-deleterious missense variants, all with population allele frequencies <1%, were identified. One ED variant (POLE p.Met294Arg) was classified as likely pathogenic, four as likely benign, and seven as variants of unknown significance. The most commonly associated tumor types were colorectal, endometrial and ovarian cancers. Loss-of-function and outside-ED variants are likely not pathogenic for this syndrome. CONCLUSIONS: Polymerase proofreading-associated syndrome constitutes 0.1-0.4% of familial cancer cases, reaching 0.3-0.7% when only CRC and polyposis are considered. ED variant interpretation is challenging and should include multiple pieces of evidence.


Asunto(s)
Neoplasias Colorrectales , ADN Polimerasa II , ADN Polimerasa II/genética , ADN Polimerasa III , Mutación de Línea Germinal , Humanos , Mutación , Proteínas de Unión a Poli-ADP-Ribosa/genética
5.
Hum Mol Genet ; 26(1): 33-43, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28013292

RESUMEN

We performed whole exome sequencing in individuals from a family with autosomal dominant gastropathy resembling Ménétrier disease, a premalignant gastric disorder with epithelial hyperplasia and enhanced EGFR signalling. Ménétrier disease is believed to be an acquired disorder, but its aetiology is unknown. In affected members, we found a missense p.V742G variant in MIB2, a gene regulating NOTCH signalling that has not been previously linked to human diseases. The variant segregated with the disease in the pedigree, affected a highly conserved amino acid residue, and was predicted to be deleterious although it was found with a low frequency in control individuals. The purified protein carrying the p.V742G variant showed reduced ubiquitination activity in vitro and white blood cells from affected individuals exhibited significant reductions of HES1 and NOTCH3 expression reflecting alteration of NOTCH signalling. Because mutations of MIB1, the homolog of MIB2, have been found in patients with left ventricle non-compaction (LVNC), we investigated members of our family with Ménétrier-like disease for this cardiac abnormality. Asymptomatic left ventricular hypertrabeculation, the mildest end of the LVNC spectrum, was detected in two members carrying the MIB2 variant. Finally, we identified an additional MIB2 variant (p.V984L) affecting protein stability in an unrelated isolated case with LVNC. Expression of both MIB2 variants affected NOTCH signalling, proliferation and apoptosis in primary rat cardiomyocytes.In conclusion, we report the first example of left ventricular hypertrabeculation/LVNC with germline MIB2 variants resulting in altered NOTCH signalling that might be associated with a gastropathy clinically overlapping with Ménétrier disease.


Asunto(s)
Cardiomiopatías/patología , Gastritis Hipertrófica/patología , Mutación Missense/genética , Receptores Notch/metabolismo , Gastropatías/patología , Ubiquitina-Proteína Ligasas/genética , Disfunción Ventricular Izquierda/patología , Animales , Animales Recién Nacidos , Cardiomiopatías/etiología , Cardiomiopatías/metabolismo , Estudios de Casos y Controles , Células Cultivadas , Exoma/genética , Femenino , Gastritis Hipertrófica/etiología , Gastritis Hipertrófica/metabolismo , Regulación de la Expresión Génica , Humanos , Masculino , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Linaje , Fenotipo , Ratas , Receptores Notch/genética , Transducción de Señal , Gastropatías/etiología , Gastropatías/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Disfunción Ventricular Izquierda/etiología , Disfunción Ventricular Izquierda/metabolismo
6.
Gastroenterology ; 154(1): 181-194.e20, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28912018

RESUMEN

BACKGROUND & AIMS: Although there is a genetic predisposition to colorectal cancer (CRC), few of the genes that affect risk have been identified. We performed whole-exome sequence analysis of individuals in a high-risk family without mutations in genes previously associated with CRC risk to identify variants associated with inherited CRC. METHODS: We collected blood samples from 3 relatives with CRC in Spain (65, 62, and 40 years old at diagnosis) and performed whole-exome sequence analyses. Rare missense, truncating or splice-site variants shared by the 3 relatives were selected. We used targeted pooled DNA amplification followed by next generation sequencing to screen for mutations in candidate genes in 547 additional hereditary and/or early-onset CRC cases (502 additional families). We carried out protein-dependent yeast growth assays and transfection studies in the HT29 human CRC cell line to test the effects of the identified variants. RESULTS: A total of 42 unique or rare (population minor allele frequency below 1%) nonsynonymous genetic variants in 38 genes were shared by all 3 relatives. We selected the BRF1 gene, which encodes an RNA polymerase III transcription initiation factor subunit for further analysis, based on the predicted effect of the identified variant and previous association of BRF1 with cancer. Previously unreported or rare germline variants in BRF1 were identified in 11 of 503 CRC families, a significantly greater proportion than in the control population (34 of 4300). Seven of the identified variants (1 detected in 2 families) affected BRF1 mRNA splicing, protein stability, or expression and/or function. CONCLUSIONS: In an analysis of families with a history of CRC, we associated germline mutations in BRF1 with predisposition to CRC. We associated deleterious BRF1 variants with 1.4% of familial CRC cases, in individuals without mutations in high-penetrance genes previously associated with CRC. Our findings add additional evidence to the link between defects in genes that regulate ribosome synthesis and risk of CRC.


Asunto(s)
Neoplasias Colorrectales/genética , Mutación de Línea Germinal/genética , Factores Asociados con la Proteína de Unión a TATA/genética , Adulto , Anciano , Neoplasias Colorrectales/mortalidad , Neoplasias Colorrectales/patología , Femenino , Predisposición Genética a la Enfermedad/genética , Humanos , Masculino , Persona de Mediana Edad , Linaje , España
7.
Fish Shellfish Immunol ; 86: 559-570, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30481557

RESUMEN

Pituitary adenylate cyclase-activating polypeptide (PACAP) is a regulatory neuropeptide that belongs to the secretin/glucagon superfamily, of which some members have shown antimicrobial activities. Contrasting to mammals, published studies on the action of PACAP in non-mammalian vertebrate immune system remain scarce. Some of our recent studies added this peptide to the growing list of mediators that allow cross-talk between the nervous, endocrine and immune systems in teleost fish. Regulation of PACAP and expression of its receptor genes has been demonstrated during an immune response mounted against acute bacterial infection in fish, though the direct effect of PACAP against fish pathogenic bacteria has never been addressed. Current work provides evidence of antimicrobial activity of Clarias gariepinus PACAP against a wide spectrum of Gram-negative and Gram-positive bacteria and fungi of interest for human medicine and aquaculture, in which computational prediction studies supported the putative PACAP therapeutic activity. Results also indicated that catfish PACAP not only exhibits inhibitory effects on pathogen growth, but also affects the proliferation of human non-small cell lung cancer cell line H460 in a dose-dependent manner. The observed cytotoxic activity of catfish PACAP against human tumor cells and pathogenic microorganisms, but not healthy fish and mammalian erythrocytes support a potential physiological role of this neuropeptide in selective microbial and cancer cell killing. All together, our findings extend the mechanisms by which PACAP could contribute to immune responses, and open up new avenues for future therapeutic application of this bioactive neuropeptide.


Asunto(s)
Antiinfecciosos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Bacterias/efectos de los fármacos , Bagres/inmunología , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/farmacología , Aeromonas hydrophila/efectos de los fármacos , Animales , Antineoplásicos/farmacología , Bacterias/patogenicidad , Candida albicans/efectos de los fármacos , Candida albicans/patogenicidad , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Bagres/microbiología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Péptidos de Penetración Celular/farmacología , Eritrocitos/efectos de los fármacos , Hemólisis , Humanos , Neoplasias Pulmonares/tratamiento farmacológico
8.
Hum Mutat ; 39(9): 1214-1225, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29900613

RESUMEN

The causal association of NUDT1 (=MTH1) and OGG1 with hereditary colorectal cancer (CRC) remains unclear. Here, we sought to provide additional evidence for or against the causal contribution of NUDT1 and OGG1 mutations to hereditary CRC and/or polyposis. Mutational screening was performed using pooled DNA amplification and targeted next-generation sequencing in 529 families (441 uncharacterized MMR-proficient familial nonpolyposis CRC and 88 polyposis cases). Cosegregation, in silico analyses, in vitro functional assays, and case-control associations were carried out to characterize the identified variants. Five heterozygous carriers of novel (n = 1) or rare (n = 4) NUDT1 variants were identified. In vitro deleterious effects were demonstrated for c.143G>A p.G48E (catalytic activity and protein stability) and c.403G>T p.G135W (protein stability), although cosegregation data in the carrier families were inconclusive or nonsupportive. The frequency of missense, loss-of-function, and splice-site NUDT1 variants in our familial CRC cohort was similar to the one observed in cancer-free individuals, suggesting lack of association with CRC predisposition. No OGG1 pathogenic mutations were identified. Our results suggest that the contribution of NUDT1 and OGG1 germline mutations to hereditary CRC and to polyposis is inexistent or, at most, negligible. The inclusion of these genes in routine genetic testing is not recommended.


Asunto(s)
Poliposis Adenomatosa del Colon/genética , Neoplasias Colorrectales Hereditarias sin Poliposis/genética , ADN Glicosilasas/genética , Enzimas Reparadoras del ADN/genética , Monoéster Fosfórico Hidrolasas/genética , Poliposis Adenomatosa del Colon/patología , Neoplasias Colorrectales Hereditarias sin Poliposis/patología , Reparación del ADN/genética , Femenino , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Variación Genética/genética , Genotipo , Mutación de Línea Germinal/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Mutación con Pérdida de Función/genética , Masculino , Mutación Missense/genética , Estrés Oxidativo , Isoformas de Proteínas/genética
9.
Mol Cancer ; 17(1): 23, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29448935

RESUMEN

Germline mutations in BUB1 and BUB3 have been reported to increase the risk of developing colorectal cancer (CRC) at young age, in presence of variegated aneuploidy and reminiscent dysmorphic traits of mosaic variegated aneuploidy syndrome. We performed a mutational analysis of BUB1 and BUB3 in 456 uncharacterized mismatch repair-proficient hereditary non-polyposis CRC families and 88 polyposis cases. Four novel or rare germline variants, one splice-site and three missense, were identified in four families. Neither variegated aneuploidy nor dysmorphic traits were observed in carriers. Evident functional effects in the heterozygous form were observed for c.1965-1G>A, but not for c.2296G>A (p.E766K), in spite of the positive co-segregation in the family. BUB1 c.2473C>T (p.P825S) and BUB3 c.77C>T (p.T26I) remained as variants of uncertain significance. As of today, the rarity of functionally relevant mutations identified in familial and/or early onset series does not support the inclusion of BUB1 and BUB3 testing in routine genetic diagnostics of familial CRC.


Asunto(s)
Poliposis Adenomatosa del Colon/genética , Proteínas de Ciclo Celular/genética , Neoplasias Colorrectales Hereditarias sin Poliposis/genética , Mutación de Línea Germinal , Proteínas de Unión a Poli-ADP-Ribosa/genética , Proteínas Serina-Treonina Quinasas/genética , Huso Acromático/genética , Proteínas de Ciclo Celular/química , Humanos , Modelos Moleculares , Linaje , Proteínas de Unión a Poli-ADP-Ribosa/química , Conformación Proteica , Proteínas Serina-Treonina Quinasas/química
10.
Genet Med ; 20(12): 1652-1662, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30008476

RESUMEN

PURPOSE: MDH2 (malate dehydrogenase 2) has recently been proposed as a novel potential pheochromocytoma/paraganglioma (PPGL) susceptibility gene, but its role in the disease has not been addressed. This study aimed to determine the prevalence of MDH2 pathogenic variants among PPGL patients and determine the associated phenotype. METHODS: Eight hundred thirty patients with PPGLs, negative for the main PPGL driver genes, were included in the study. Interpretation of variants of unknown significance (VUS) was performed using an algorithm based on 20 computational predictions, by implementing cell-based enzymatic and immunofluorescence assays, and/or by using a molecular dynamics simulation approach. RESULTS: Five variants with potential involvement in pathogenicity were identified: three missense (p.Arg104Gly, p.Val160Met and p.Ala256Thr), one in-frame deletion (p.Lys314del), and a splice-site variant (c.429+1G>T). All were germline and those with available biochemical data, corresponded to noradrenergic PPGL. CONCLUSION: This study suggests that MDH2 pathogenic variants may play a role in PPGL susceptibility and that they might be responsible for less than 1% of PPGLs in patients without pathogenic variants in other major PPGL driver genes, a prevalence similar to the one recently described for other PPGL genes. However, more epidemiological data are needed to recommend MDH2 testing in patients negative for other major PPGL genes.


Asunto(s)
Neoplasias de las Glándulas Suprarrenales/genética , Malato Deshidrogenasa/genética , Paraganglioma/genética , Feocromocitoma/genética , Neoplasias de las Glándulas Suprarrenales/patología , Adulto , Femenino , Predisposición Genética a la Enfermedad , Mutación de Línea Germinal , Humanos , Masculino , Persona de Mediana Edad , Mutación Missense , Paraganglioma/patología , Feocromocitoma/patología , Isoformas de Proteínas
11.
Int J Cancer ; 141(7): 1365-1380, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28577310

RESUMEN

In a proportion of patients presenting mismatch repair (MMR)-deficient tumors, no germline MMR mutations are identified, the so-called Lynch-like syndrome (LLS). Recently, MMR-deficient tumors have been associated with germline mutations in POLE and MUTYH or double somatic MMR events. Our aim was to elucidate the molecular basis of MSH2-deficient LS-suspected cases using a comprehensive analysis of colorectal cancer (CRC)-associated genes at germline and somatic level. Fifty-eight probands harboring MSH2-deficient tumors were included. Germline mutational analysis of MSH2 (including EPCAM deletions) and MSH6 was performed. Pathogenicity of MSH2 variants was assessed by RNA analysis and multifactorial likelihood calculations. MSH2 cDNA and methylation of MSH2 and MSH6 promoters were studied. Matched blood and tumor DNA were analyzed using a customized next generation sequencing panel. Thirty-five individuals were carriers of pathogenic or probably pathogenic variants in MSH2 and EPCAM. Five patients harbored 4 different MSH2 variants of unknown significance (VUS) and one had 2 novel MSH6 promoter VUS. Pathogenicity assessment allowed the reclassification of the 4 MSH2 VUS and 6 probably pathogenic variants as pathogenic mutations, enabling a total of 40 LS diagnostics. Predicted pathogenic germline variants in BUB1, SETD2, FAN1 and MUTYH were identified in 5 cases. Three patients had double somatic hits in MSH2 or MSH6, and another 2 had somatic alterations in other MMR genes and/or proofreading polymerases. In conclusion, our comprehensive strategy combining germline and somatic mutational status of CRC-associated genes by means of a subexome panel allows the elucidation of up to 86% of MSH2-deficient suspected LS tumors.


Asunto(s)
Neoplasias Colorrectales Hereditarias sin Poliposis/genética , Reparación de la Incompatibilidad de ADN/genética , Proteínas de Unión al ADN/genética , Mutación de Línea Germinal , Proteína 2 Homóloga a MutS/deficiencia , Proteína 2 Homóloga a MutS/genética , ADN Glicosilasas/genética , Metilación de ADN , Análisis Mutacional de ADN , Proteínas de Unión al ADN/deficiencia , Endodesoxirribonucleasas , Molécula de Adhesión Celular Epitelial/genética , Exodesoxirribonucleasas/genética , Secuenciación de Nucleótidos de Alto Rendimiento , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Pérdida de Heterocigocidad , Enzimas Multifuncionales , Regiones Promotoras Genéticas/genética , Proteínas Serina-Treonina Quinasas/genética
12.
Hum Mutat ; 37(1): 36-42, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26443060

RESUMEN

Most genomic alterations are tolerated while only a minor fraction disrupts molecular function sufficiently to drive disease. Protein kinases play a central biological function and the functional consequences of their variants are abundantly characterized. However, this heterogeneous information is often scattered across different sources, which makes the integrative analysis complex and laborious. wKinMut-2 constitutes a solution to facilitate the interpretation of the consequences of human protein kinase variation. Nine methods predict their pathogenicity, including a kinase-specific random forest approach. To understand the biological mechanisms causative of human diseases and cancer, information from pertinent reference knowledge bases and the literature is automatically mined, digested, and homogenized. Variants are visualized in their structural contexts and residues affecting catalytic and drug binding are identified. Known protein-protein interactions are reported. Altogether, this information is intended to assist the generation of new working hypothesis to be corroborated with ulterior experimental work. The wKinMut-2 system, along with a user manual and examples, is freely accessible at http://kinmut2.bioinfo.cnio.es, the code for local installations can be downloaded from https://github.com/Rbbt-Workflows/KinMut2.


Asunto(s)
Biología Computacional/métodos , Estudios de Asociación Genética/métodos , Predisposición Genética a la Enfermedad , Variación Genética , Genómica/métodos , Proteínas Quinasas/genética , Programas Informáticos , Minería de Datos , Bases de Datos Genéticas , Factor 1 de Crecimiento de Fibroblastos/química , Factor 1 de Crecimiento de Fibroblastos/genética , Factor 1 de Crecimiento de Fibroblastos/metabolismo , Humanos , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Quinasas/química , Proteínas Quinasas/metabolismo , Proteínas Proto-Oncogénicas B-raf/química , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/química , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/metabolismo , Reproducibilidad de los Resultados , Relación Estructura-Actividad , Navegador Web
13.
J Struct Biol ; 195(2): 259-271, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27329566

RESUMEN

Bi-functional inhibitors from the Kunitz-type soybean trypsin inhibitor (STI) family are glycosylated proteins able to inhibit serine and aspartic proteases. Here we report six crystal structures of the wild-type and a non-glycosylated mutant of the bifunctional inhibitor E3Ad obtained at different pH values and space groups. The crystal structures show that E3Ad adopts the typical ß-trefoil fold of the STI family exhibiting some conformational changes due to pH variations and crystal packing. Despite the high sequence identity with a recently reported potato cathepsin D inhibitor (PDI), three-dimensional structures obtained in this work show a significant conformational change in the protease-binding loop proposed for aspartic protease inhibition. The E3Ad binding loop for serine protease inhibition is also proposed, based on structural similarity with a novel non-canonical conformation described for the double-headed inhibitor API-A from the Kunitz-type STI family. In addition, structural and sequence analyses suggest that bifunctional inhibitors of serine and aspartic proteases from the Kunitz-type STI family are more similar to double-headed inhibitor API-A than other inhibitors with a canonical protease-binding loop.


Asunto(s)
Proteasas de Ácido Aspártico/química , Serina Proteasas/química , Inhibidor de la Tripsina de Soja de Kunitz/química , Secuencia de Aminoácidos , Proteasas de Ácido Aspártico/ultraestructura , Cristalografía por Rayos X , Modelos Moleculares , Unión Proteica , Conformación Proteica , Serina/química , Serina Proteasas/ultraestructura , Inhibidor de la Tripsina de Soja de Kunitz/ultraestructura
14.
BMC Genomics ; 17 Suppl 2: 396, 2016 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-27357839

RESUMEN

BACKGROUND: The association between aberrant signal processing by protein kinases and human diseases such as cancer was established long time ago. However, understanding the link between sequence variants in the protein kinase superfamily and the mechanistic complex traits at the molecular level remains challenging: cells tolerate most genomic alterations and only a minor fraction disrupt molecular function sufficiently and drive disease. RESULTS: KinMutRF is a novel random-forest method to automatically identify pathogenic variants in human kinases. Twenty six decision trees implemented as a random forest ponder a battery of features that characterize the variants: a) at the gene level, including membership to a Kinbase group and Gene Ontology terms; b) at the PFAM domain level; and c) at the residue level, the types of amino acids involved, changes in biochemical properties, functional annotations from UniProt, Phospho.ELM and FireDB. KinMutRF identifies disease-associated variants satisfactorily (Acc: 0.88, Prec:0.82, Rec:0.75, F-score:0.78, MCC:0.68) when trained and cross-validated with the 3689 human kinase variants from UniProt that have been annotated as neutral or pathogenic. All unclassified variants were excluded from the training set. Furthermore, KinMutRF is discussed with respect to two independent kinase-specific sets of mutations no included in the training and testing, Kin-Driver (643 variants) and Pon-BTK (1495 variants). Moreover, we provide predictions for the 848 protein kinase variants in UniProt that remained unclassified. A public implementation of KinMutRF, including documentation and examples, is available online ( http://kinmut2.bioinfo.cnio.es ). The source code for local installation is released under a GPL version 3 license, and can be downloaded from https://github.com/Rbbt-Workflows/KinMut2 . CONCLUSIONS: KinMutRF is capable of classifying kinase variation with good performance. Predictions by KinMutRF compare favorably in a benchmark with other state-of-the-art methods (i.e. SIFT, Polyphen-2, MutationAssesor, MutationTaster, LRT, CADD, FATHMM, and VEST). Kinase-specific features rank as the most elucidatory in terms of information gain and are likely the improvement in prediction performance. This advocates for the development of family-specific classifiers able to exploit the discriminatory power of features unique to individual protein families.


Asunto(s)
Biología Computacional/métodos , Mutación , Proteínas Quinasas/genética , Bases de Datos de Proteínas , Árboles de Decisión , Variación Genética , Humanos , Programas Informáticos
15.
Gastroenterology ; 149(3): 563-6, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26052075

RESUMEN

Identification of genes associated with hereditary cancers facilitates management of patients with family histories of cancer. We performed exome sequencing of DNA from 3 individuals from a family with colorectal cancer who met the Amsterdam criteria for risk of hereditary nonpolyposis colorectal cancer. These individuals had mismatch repair-proficient tumors and each carried nonsense variant in the FANCD2/FANCI-associated nuclease 1 gene (FAN1), which encodes a nuclease involved in DNA inter-strand cross-link repair. We sequenced FAN1 in 176 additional families with histories of colorectal cancer and performed in vitro functional analyses of the mutant forms of FAN1 identified. We detected FAN1 mutations in approximately 3% of families who met the Amsterdam criteria and had mismatch repair-proficient cancers with no previously associated mutations. These findings link colorectal cancer predisposition to the Fanconi anemia DNA repair pathway, supporting the connection between genome integrity and cancer risk.


Asunto(s)
Neoplasias Colorrectales Hereditarias sin Poliposis/genética , Reparación del ADN/genética , Exodesoxirribonucleasas/genética , Mutación de Línea Germinal , Adulto , Anciano , Anciano de 80 o más Años , Línea Celular Tumoral , Preescolar , Neoplasias Colorrectales Hereditarias sin Poliposis/enzimología , Neoplasias Colorrectales Hereditarias sin Poliposis/patología , Endodesoxirribonucleasas , Exodesoxirribonucleasas/metabolismo , Femenino , Predisposición Genética a la Enfermedad , Células HEK293 , Herencia , Humanos , Masculino , Persona de Mediana Edad , Enzimas Multifuncionales , Linaje , Fenotipo , Adulto Joven
16.
Bioinformatics ; 31(14): 2397-9, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-25765346

RESUMEN

MOTIVATION: The interpretation of cancer-related single-nucleotide variants (SNVs) considering the protein features they affect, such as known functional sites, protein-protein interfaces, or relation with already annotated mutations, might complement the annotation of genetic variants in the analysis of NGS data. Current tools that annotate mutations fall short on several aspects, including the ability to use protein structure information or the interpretation of mutations in protein complexes. RESULTS: We present the Structure-PPi system for the comprehensive analysis of coding SNVs based on 3D protein structures of protein complexes. The 3D repository used, Interactome3D, includes experimental and modeled structures for proteins and protein-protein complexes. Structure-PPi annotates SNVs with features extracted from UniProt, InterPro, APPRIS, dbNSFP and COSMIC databases. We illustrate the usefulness of Structure-PPi with the interpretation of 1 027 122 non-synonymous SNVs from COSMIC and the 1000G Project that provides a collection of ∼172 700 SNVs mapped onto the protein 3D structure of 8726 human proteins (43.2% of the 20 214 SwissProt-curated proteins in UniProtKB release 2014_06) and protein-protein interfaces with potential functional implications. AVAILABILITY AND IMPLEMENTATION: Structure-PPi, along with a user manual and examples, isavailable at http://structureppi.bioinfo.cnio.es/Structure, the code for local installations at https://github.com/Rbbt-Workflows


Asunto(s)
Variación Genética , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Neoplasias/genética , Programas Informáticos , Bases de Datos de Proteínas , Humanos , Anotación de Secuencia Molecular , Mutación
17.
Genet Med ; 18(4): 325-32, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26133394

RESUMEN

PURPOSE: Germ-line mutations in the exonuclease domains of POLE and POLD1 have been recently associated with polyposis and colorectal cancer (CRC) predisposition. Here, we aimed to gain a better understanding of the phenotypic characteristics of this syndrome to establish specific criteria for POLE and POLD1 mutation screening and to help define the clinical management of mutation carriers. METHODS: The exonuclease domains of POLE and POLD1 were studied in 529 kindred, 441 with familial nonpolyposis CRC and 88 with polyposis, by using pooled DNA amplification and massively parallel sequencing. RESULTS: Seven novel or rare genetic variants were identified. In addition to the POLE p.L424V recurrent mutation in a patient with polyposis, CRC and oligodendroglioma, six novel or rare POLD1 variants (four of them, p.D316H, p.D316G, p.R409W, and p.L474P, with strong evidence for pathogenicity) were identified in nonpolyposis CRC families. Phenotypic data from these and previously reported POLE/POLD1 carriers point to an associated phenotype characterized by attenuated or oligo-adenomatous colorectal polyposis, CRC, and probably brain tumors. In addition, POLD1 mutations predispose to endometrial and breast tumors. CONCLUSION: Our results widen the phenotypic spectrum of the POLE/POLD1-associated syndrome and identify novel pathogenic variants. We propose guidelines for genetic testing and surveillance recommendations.Genet Med 18 4, 325-332.


Asunto(s)
Poliposis Adenomatosa del Colon/genética , Neoplasias Colorrectales/genética , ADN Polimerasa III/genética , ADN Polimerasa II/genética , Mutación , Poliposis Adenomatosa del Colon/diagnóstico , Alelos , Neoplasias Colorrectales/diagnóstico , ADN Polimerasa II/química , ADN Polimerasa III/química , Femenino , Estudios de Asociación Genética , Pruebas Genéticas , Genotipo , Mutación de Línea Germinal , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Linaje , Fenotipo , Proteínas de Unión a Poli-ADP-Ribosa , Dominios y Motivos de Interacción de Proteínas/genética
18.
J Struct Biol ; 190(1): 11-20, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25748338

RESUMEN

Q4D059 (UniProt accession number), is an 86-residue protein from Trypanosoma cruzi, conserved in the related kinetoplastid parasites Trypanosoma brucei and Leishmania major. These pathogens are the causal agents of the neglected diseases: Chagas, sleeping sickness and leishmaniases respectively and had recently their genomes sequenced. Q4D059 shows low sequence similarity with mammal proteins and because of its essentiality demonstrated in T. brucei, it is a potential target for anti-parasitic drugs. The 11 hypothetical proteins homologous to Q4D059 are all uncharacterized proteins of unknown function. Here, the solution structure of Q4D059 was solved by NMR and its backbone dynamics was characterized by (15)N relaxation parameters. The structure is composed by a parallel/anti-parallel three-stranded ß-sheet packed against four helical regions. The structure is well defined by ca. 9 NOEs per residue and a backbone rmsd of 0.50±0.05 Å for the representative ensemble of 20 lowest-energy structures. The structure is overall rigid except for N-terminal residues A(9) to D(11) at the beginning of ß1, K(38), V(39) at the end of helix H3 with rapid motion in the ps-ns timescale and G(25) (helix H2), I(68) (ß2) and V(78) (loop 3) undergoing internal motion in the µs-ms timescale. Limited structural similarities were found in protein structures deposited in the PDB, therefore functional inferences based on protein structure information are not clear. Q4D059 adopts a α/ß fold that is slightly similar to the ATPase sub-domain IIB of the heat-shock protein 70 (HSP70) and to the N-terminal domain of the ribosomal protein L11.


Asunto(s)
Proteínas Protozoarias/química , Trypanosoma cruzi , Secuencia de Aminoácidos , Secuencia Conservada , Modelos Moleculares , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
19.
Proteins ; 82(1): 103-18, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23900790

RESUMEN

The phosphorylation and dephosphorylation of the carboxyl-terminal domain (CTD) of the largest RNA polymerase II (RNAPII) subunit is a critical regulatory checkpoint for transcription and mRNA processing. This CTD is unique to eukaryotic organisms and it contains multiple tandem-repeats with the consensus sequence Tyr(1) -Ser(2) -Pro(3) -Thr(4) -Ser(5) -Pro(6) -Ser(7) . Traditionally, CTD phosphatases that use metal-ion-independent (cysteine-based) and metal-ion-assisted (aspartate-based) catalytic mechanisms have been considered to belong to two independent groups. However, using structural comparisons we have identified a common structural scaffold in these two groups of CTD phosphatases. This common scaffold accommodates different catalytic processes with the same substrate specificity, in this case phospho-serine/threonine residues flanked by prolines. Furthermore, this scaffold provides a structural connection between two groups of protein tyrosine phosphatases (PTPs): Cys-based (classes I, II, and III) and Asp-based (class IV) PTPs. Redundancy in catalytic mechanisms is not infrequent and may arise in specific biological settings. To better understand the activity of the CTD phosphatases, we combined our structural analyses with data on CTD phosphatase expression in different human and mouse tissues. The results suggest that aspartate- and cysteine-based CTD-dephosphorylation acts in concert during cellular stress, when high levels of reactive oxygen species can inhibit the nucleophilic function of the catalytic cysteine, as occurs in mental and neurodegenerative disorders like schizophrenia, Alzheimer's and Parkinson's diseases. Moreover, these findings have significant implications for the study of the RNAPII-CTD dephosphorylation in eukaryotes.


Asunto(s)
Evolución Molecular , Fosfoproteínas Fosfatasas/química , Fosfoproteínas Fosfatasas/metabolismo , ARN Polimerasa II/metabolismo , Secuencia de Aminoácidos , Animales , Catálisis , Biología Computacional , Bases de Datos de Proteínas , Humanos , Ratones , Datos de Secuencia Molecular , Peptidilprolil Isomerasa de Interacción con NIMA , Isomerasa de Peptidilprolil/química , Isomerasa de Peptidilprolil/metabolismo , Fosfoproteínas Fosfatasas/clasificación , Fosfoproteínas Fosfatasas/genética , Fosforilación , Schizosaccharomyces/enzimología , Especificidad de la Especie
20.
Planta ; 239(1): 147-60, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24121807

RESUMEN

Metacaspases are cysteine proteases present in plants, fungi, prokaryotes, and early branching eukaryotes, although a detailed description of their cellular function remains unclear. Currently, three-dimensional (3D) structures are only available for two metacaspases: Trypanosoma brucei (MCA2) and Saccharomyces cerevisiae (Yca1). Furthermore, metacaspases diverged from animal caspases of known structure, which limits straightforward homology-based interpretation of functional data. We report for the first time the identification and initial characterization of a metacaspase of Nicotiana tabacum L., NtMC1. By combining domain search, multiple sequence alignment (MSA), and protein fold-recognition studies, we provide compelling evidences that NtMC1 is a plant metacaspase type II, and predict its 3D structure using the crystal structure of two type I metacaspases (MCA2 and Yca1) and Gsu0716 protein from Geobacter sulfurreducens as template. Analysis of the predicted 3D structure allows us to propose Asp353, at the putative p10 subunit, as a new member of the aspartic acid triad that coordinates the P1 arginine/lysine residue of the substrate. Nevertheless, site-directed mutagenesis and expression analysis in bacteria and Nicotiana benthamiana indicate the functionality of both Asp348 and Asp353. Through the co-expression of mutant and wild-type proteins by transient expression in N. benthamiana leaves we found that polypeptide processing seems to be intramolecular. Our results provide the first evidence in plant metacaspases concerning the functionality of the putative p10 subunit.


Asunto(s)
Ácido Aspártico/química , Caspasas/química , Caspasas/metabolismo , Nicotiana/enzimología , Secuencia de Aminoácidos , Ácido Aspártico/metabolismo , Sitios de Unión , Caspasas/genética , ADN Complementario , Escherichia coli/genética , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Conformación Proteica , Pliegue de Proteína , Subunidades de Proteína , Proteínas de Saccharomyces cerevisiae/química , Alineación de Secuencia , Nicotiana/genética , Trypanosoma brucei brucei/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA