Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
BMC Vet Res ; 9: 171, 2013 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-24000820

RESUMEN

BACKGROUND: There is a widely recognised lack of baseline epidemiological data on the dynamics and impacts of infectious cattle diseases in east Africa. The Infectious Diseases of East African Livestock (IDEAL) project is an epidemiological study of cattle health in western Kenya with the aim of providing baseline epidemiological data, investigating the impact of different infections on key responses such as growth, mortality and morbidity, the additive and/or multiplicative effects of co-infections, and the influence of management and genetic factors.A longitudinal cohort study of newborn calves was conducted in western Kenya between 2007-2009. Calves were randomly selected from all those reported in a 2 stage clustered sampling strategy. Calves were recruited between 3 and 7 days old. A team of veterinarians and animal health assistants carried out 5-weekly, clinical and postmortem visits. Blood and tissue samples were collected in association with all visits and screened using a range of laboratory based diagnostic methods for over 100 different pathogens or infectious exposures. RESULTS: The study followed the 548 calves over the first 51 weeks of life or until death and when they were reported clinically ill. The cohort experienced a high all cause mortality rate of 16% with at least 13% of these due to infectious diseases. Only 307 (6%) of routine visits were classified as clinical episodes, with a further 216 reported by farmers. 54% of calves reached one year without a reported clinical episode. Mortality was mainly to east coast fever, haemonchosis, and heartwater. Over 50 pathogens were detected in this population with exposure to a further 6 viruses and bacteria. CONCLUSION: The IDEAL study has demonstrated that it is possible to mount population based longitudinal animal studies. The results quantify for the first time in an animal population the high diversity of pathogens a population may have to deal with and the levels of co-infections with key pathogens such as Theileria parva. This study highlights the need to develop new systems based approaches to study pathogens in their natural settings to understand the impacts of co-infections on clinical outcomes and to develop new evidence based interventions that are relevant.


Asunto(s)
Enfermedades de los Bovinos/epidemiología , Enfermedades Transmisibles/veterinaria , Agricultura/economía , Agricultura/métodos , Animales , Bovinos , Estudios de Cohortes , Enfermedades Transmisibles/epidemiología , Bases de Datos Factuales , Femenino , Humanos , Kenia/epidemiología , Masculino , Pruebas Serológicas/veterinaria
2.
Front Immunol ; 13: 1015840, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36713406

RESUMEN

Nanoparticle vaccines usually prime stronger immune responses than soluble antigens. Within this class of subunit vaccines, the recent development of computationally designed self-assembling two-component protein nanoparticle scaffolds provides a powerful and versatile platform for displaying multiple copies of one or more antigens. Here we report the generation of three different nanoparticle immunogens displaying 60 copies of p67C, an 80 amino acid polypeptide from a candidate vaccine antigen of Theileria parva, and their immunogenicity in cattle. p67C is a truncation of p67, the major surface protein of the sporozoite stage of T. parva, an apicomplexan parasite that causes an often-fatal bovine disease called East Coast fever (ECF) in sub-Saharan Africa. Compared to I32-19 and I32-28, we found that I53-50 nanoparticle scaffolds displaying p67C had the best biophysical characteristics. p67C-I53-50 also outperformed the other two nanoparticles in stimulating p67C-specific IgG1 and IgG2 antibodies and CD4+ T-cell responses, as well as sporozoite neutralizing capacity. In experimental cattle vaccine trials, p67C-I53-50 induced significant immunity to ECF, suggesting that the I53-50 scaffold is a promising candidate for developing novel nanoparticle vaccines. To our knowledge this is the first application of computationally designed nanoparticles to the development of livestock vaccines.


Asunto(s)
Enfermedades de los Bovinos , Vacunas Antiprotozoos , Theileria parva , Theileriosis , Bovinos , Animales , Antígenos
3.
Front Vet Sci ; 8: 611263, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34262959

RESUMEN

We assessed the effectiveness of Interactive Voice Response (IVR) technology in delivering biosecurity messages for the control of African swine fever (ASF) in Uganda using a randomized controlled trial (RCT) with 408 smallholder pig farmers. Our results show that IVR technology significantly improved knowledge of farmers who had not been exposed to training on biosecurity. Furthermore, it enhanced knowledge for farmers who had received face-to-face (f2f) training in biosecurity. This group of farmers recorded the highest knowledge gain following IVR training compared to farmers who did not receive f2f training. IVR technology was perceived by farmers as a new technology capable of transforming their lives because it is time efficient, has high potential for resource saving and flexibility. IVR also seems to be gender sensitive as it addresses some of the constraints women face in accessing conventional extension services such as time. IVR is an innovative way for delivery of advisory information to pig farmers. The scalability of IVR technology could further be explored and its feasibility assessed for wider use by the extension systems in Uganda and elsewhere.

4.
Acta Vet Scand ; 62(1): 62, 2020 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-33198794

RESUMEN

Contagious bovine pleuropneumonia (CBPP) is a respiratory disease caused by Mycoplasma mycoides subsp. mycoides. Infection occurs via Mycoplasma-containing droplets and therefore requires close contact between animals. The current infection models are suboptimal and based on intratracheal installation of mycoplasmas or in-contact infection. This work tested the infection of adult cattle via aerosols containing live mycoplasmas mimicking the infection of cattle in the field. Therefore, we infected six cattle with aerosolized Mycoplasma mycoides subsp. mycoides strain Afadé over seven consecutive days with altogether 109 colony forming units. All animals seroconverted between 11-24 days post infection and five out of six animals showed typical CBPP lesions. One animal did not show any lung lesions at necropsy, while another animal had to be euthanized at 25 days post infection because it reached endpoint criteria. Seroconversion confirmed successful infection and the spectrum of clinical and lesions observed mirrors epidemiological models and the field situation, in which only a fraction of animals suffers from acute clinical disease post infection.


Asunto(s)
Enfermedades de los Bovinos/transmisión , Infecciones por Mycoplasma/veterinaria , Mycoplasma/fisiología , Pleuroneumonía/veterinaria , Aerosoles , Animales , Bovinos , Enfermedades de los Bovinos/microbiología , Femenino , Infecciones por Mycoplasma/microbiología , Infecciones por Mycoplasma/transmisión , Pleuroneumonía/microbiología
5.
PLoS One ; 9(2): e76324, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24586220

RESUMEN

In natural populations, individuals may be infected with multiple distinct pathogens at a time. These pathogens may act independently or interact with each other and the host through various mechanisms, with resultant varying outcomes on host health and survival. To study effects of pathogens and their interactions on host survival, we followed 548 zebu cattle during their first year of life, determining their infection and clinical status every 5 weeks. Using a combination of clinical signs observed before death, laboratory diagnostic test results, gross-lesions on post-mortem examination, histo-pathology results and survival analysis statistical techniques, cause-specific aetiology for each death case were determined, and effect of co-infections in observed mortality patterns. East Coast fever (ECF) caused by protozoan parasite Theileria parva and haemonchosis were the most important diseases associated with calf mortality, together accounting for over half (52%) of all deaths due to infectious diseases. Co-infection with Trypanosoma species increased the hazard for ECF death by 6 times (1.4-25; 95% CI). In addition, the hazard for ECF death was increased in the presence of Strongyle eggs, and this was burden dependent. An increase by 1000 Strongyle eggs per gram of faeces count was associated with a 1.5 times (1.4-1.6; 95% CI) increase in the hazard for ECF mortality. Deaths due to haemonchosis were burden dependent, with a 70% increase in hazard for death for every increase in strongyle eggs per gram count of 1000. These findings have important implications for disease control strategies, suggesting a need to consider co-infections in epidemiological studies as opposed to single-pathogen focus, and benefits of an integrated approach to helminths and East Coast fever disease control.


Asunto(s)
Enfermedades de los Bovinos/epidemiología , Enfermedades de los Bovinos/parasitología , Coinfección/veterinaria , Hemoncosis/epidemiología , Infecciones por Strongylida/veterinaria , Theileriosis/epidemiología , Tripanosomiasis/veterinaria , Animales , Bovinos , Estudios de Cohortes , Coinfección/epidemiología , Coinfección/parasitología , Kenia/epidemiología , Estudios Longitudinales , Modelos de Riesgos Proporcionales , Infecciones por Strongylida/epidemiología , Tripanosomiasis/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA