RESUMEN
The synthesis and solution and solid-state characterization of [Pu4+(NPC)4], 1-Pu, (NPC = [NPtBu(pyrr)2]-; tBu = C(CH3)3; pyrr = pyrrolidinyl) and [Pu3+(NPC)4][K(2.2.2.-cryptand)], 2-Pu, is described. Cyclic voltammetry studies of 1-Pu reveal a quasi-reversible Pu4+/3+ couple, an irreversible Pu5+/4+ couple, and a third couple evincing a rapid proton-coupled electron transfer (PCET) reaction occurring after the electrochemical formation of Pu5+. The chemical identity of the product of the PCET reaction was confirmed by independent chemical synthesis to be [Pu4+(NPC)3(HNPC)][B(ArF5)4], 3-Pu, (B(ArF5)4 = tetrakis(2,3,4,5,6-pentafluourophenyl)borate) via two mechanistically distinct transformations of 1-Pu: protonation and oxidation. The kinetics and thermodynamics of this PCET reaction are determined via electrochemical analysis, simulation, and density functional theory. The computational studies demonstrate a direct correlation between the changing nature of 5f and 6d orbital participation in metal-ligand bonding and the electron density on the Nim atom with the thermodynamics of the PCET reaction from Np to Pu, and an indirect correlation with the roughly 5-orders of magnitude faster Pu PCET compared to Np for the An5+ species.
RESUMEN
Copper has been shown to be an important substrate for the growth of borophenes. Copper-boron binary clusters are ideal platforms to study the interactions between copper and boron, which may provide insight about the underlying growth mechanisms of borophene on copper substrates. Here we report a joint photoelectron spectroscopy and theoretical study on two copper-doped boron clusters, CuB7- and CuB8-. Well resolved photoelectron spectra are obtained for the two clusters at different wavelengths and are used to understand the structures and bonding properties of the two CuBn- clusters. We find that CuB8- is a highly stable borozene complex, which possesses a half-sandwich structure with a Cu+ species interacting with the doubly aromatic η8-B82- borozene. The CuB7- cluster is found to consist of a terminal copper atom bonded to a double-chain B7 motif, but it has a low-lying isomer composed of a half-sandwich structure with a Cu+ species interacting with an open-shell η7-B72- borozene. Both ionic and covalent interactions are found to be possible in the binary Cu-B clusters, resulting in different structures.
RESUMEN
The development of high-valent transuranic chemistry requires robust methodologies to access and fully characterize reactive species. We have recently demonstrated that the reducing nature of imidophosphorane ligands supports the two-electron oxidation of U4+ to U6+ and established the use of this ligand to evaluate the inverse-trans-influence (ITI) in actinide metal-ligand multiple bond (MLMB) complexes. To extend this methodology and analysis to transuranic complexes, new small-scale synthetic strategies and lower-symmetry ligand derivatives are necessary to improve crystallinity and reduce crystallographic disorder. To this end, the synthesis of two new imidophosphorane ligands, [NâPtBu(pip)2]- (NPC1) and [NâPtBu(pyrr)2]- (NPC2) (pip = piperidinyl; pyrr = pyrrolidinyl), is presented, which break pseudo-C3 axes in the tetravalent complexes, U[NPC1]4 and U[NPC2]4. The reaction of these complexes with two-electron oxygen-atom-transfer reagents (N2O, trimethylamine N-oxide (TMAO) and 2,3:5,6-dibenzo-7-azabicyclo[2.2.1]hepta-2,5-diene (dbabhNO)) yields the U6+ mono-oxo complexes U(O)[NPC1]4 and U(O)[NPC2]4. This methodology is optimized for direct translation to transuranic elements. Of the two ligands, the NPC2 framework is most suitable for facilitating detailed bonding analysis and assessment of the ITI. Theoretical evaluation of the U-(NPC) bonding confirms a substantial difference between axially and equatorially bonded N atoms, revealing markedly more covalent U-Nax interactions. The U 6d + 5f combined contribution for U-Nax is nearly double that of U-Neq, accounting for ITI shortening and increased bond order of the axial bond. Two distinct N-atom hybridizations in the pyrrolidine/piperidine rings are noted across the complexes, with approximate sp2 and sp3 configurations describing the slightly shorter P-N"planar" and slightly longer P-N"pyramidal" bonds, respectively. In all complexes, the NPC2 ligands feature more planar N atoms than NPC1, in accordance with a higher electron-donating capacity of the former.
RESUMEN
The synthesis, characterization, electrochemical performance, and theoretical modeling of two base-metal charge carrier complexes incorporating a pendent quaternary ammonium group, [Ni(bppn-Me3)][BF4], 3', and [Fe(PyTRENMe)][OTf]3, 4', are described. Both complexes were produced in high yield and fully characterized using NMR, IR, and UV-vis spectroscopies as well as elemental analysis and single-crystal X-ray crystallography. The solubility of 3' in acetonitrile showed a 283% improvement over its neutral precursor, whereas the solubility of complex 4' was effectively unchanged. Cyclic voltammetry indicates an â¼0.1 V positive shift for all waves, with some changes in reversibility depending on the wave. Bulk electrochemical cycling demonstrates that both 3' and 4' can utilize the second more negative wave to a degree, whereas 4' ceases to have a reversible positive wave. Flow cell testing of 3' and 4' with Fc as the posolyte reveals little improvement to the cycling performance of 3' compared with its parent complex, whereas 4' exhibits reductions in capacity decay when cycling either negative wave. Postcycling CVs indicate that crossover is the likely source of capacity loss in complexes 3, 3', and 4' because there is little change in the CV trace. Density functional theory calculations indicate that the ammonium group lowers the HOMO energy in 3' and 4', which may impart stability to cycling negative waves while making positive waves less accessible. Overall, the incorporation of a positively charged species can improve solubility, stored electron density, and capacity decay depending on the complex, features critical to high energy density redox flow battery performance.
RESUMEN
The study of the redox chemistry of mid-actinides (U-Pu) has historically relied on cerium as a model, due to the accessibility of trivalent and tetravalent oxidation states for these ions. Recently, dramatic shifts of lanthanide 4+/3+ non-aqueous redox couples have been established within a homoleptic imidophosphorane ligand framework. Herein we extend the chemistry of the imidophosphorane ligand (NPC=[N=Pt Bu(pyrr)2 ]- ; pyrr=pyrrolidinyl) to tetrahomoleptic NPC complexes of neptunium and cerium (1-M, 2-M, M=Np, Ce) and present comparative structural, electrochemical, and theoretical studies of these complexes. Large cathodic shifts in the M4+/3+ (M=Ce, U, Np) couples underpin the stabilization of higher metal oxidation states owing to the strongly donating nature of the NPC ligands, providing access to the U5+/4+ , U6+/5+ , and to an unprecedented, well-behaved Np5+/4+ redox couple. The differences in the chemical redox properties of the U vs. Ce and Np complexes are rationalized based on their redox potentials, degree of structural rearrangement upon reduction/oxidation, relative molecular orbital energies, and orbital composition analyses employing density functional theory.
RESUMEN
During the past two decades, single-atom-centered medium-sized germanium clusters [M@Gen ] (M=transition metals, n>12) have been extensively explored, both from theoretical perspectives and experimental gas-phase syntheses. However, the actual structural arrangements of the Ge13 and Ge14 endohedral cages are still ambiguous and have long remained an unresolved problem for experimental implementation. In this work, we successfully synthesize 13-/14-vertex Ge clusters [Nb@Ge13 ]3- (1) and [Nb@Ge14 ]3- (2), which are structurally characterized and exhibit unprecedented topologies, neither classical deltahedra nor 3-connected polyhedral structures. Theoretical analysis indicates that the major stabilization of the Ge backbones arises due to the substantial interaction of Ge 4p-AOs with the endohedral Nb 4d-AOs through three/four-center two-electron bonds with an enhanced electron density accumulated over the shortest Nb-Ge13 contact in 1. Low occupancies of the direct two-center two-electron (2c-2e) Nb-Ge and Ge-Ge σ bonds point to a considerable degree of electron delocalization over the Ge cages revealing their electron deficiency.
RESUMEN
Groupâ 14 endohedral clusters containing a metal center inside usually possess a single cage topological structure, but here an unexpected single-metal-filled double-cage cluster, [Pt@Sn17 ]4- (1 a) is reported. It can be seen as a combination of the more extended Pt-filled [Pt@Sn9 ] cage and hollow [Sn9 ] cage sharing a central Sn atom, which is offset from the central position. This double-cage species represents the largest groupâ 14 intermetalloid cluster encapsulating a single transition metal atom. DFT calculations show that the capsule-like architecture of [Sn17 ]4- , similar to that found in [Pt2 @Sn17 ]4- , is unstable if filled with a single Pt atom and collapses to the title cluster 1 a upon geometry optimization. Deviation of the central Sn atom occurs due to the vibronic coupling as a consequence of pseudo-Jahn-Teller distortion leading to the bent Cs -symmetrical structure, in contrast to the more symmetrical D2d cage previously reported in [Ni2 @Sn17 ]4- .
RESUMEN
A method to explore head-to-head Ï back-bonding from uranium f-orbitals into allyl π* orbitals has been pursued. Anionic allyl groups were coordinated to uranium with tethered anilide ligands, then the products were investigated by using NMR spectroscopy, single-crystal XRD, and theoretical methods. The (allyl)silylanilide ligand, N-((dimethyl)prop-2-enylsilyl)-2,6-diisopropylaniline (LH), was used as either the fully protonated, singly deprotonated, or doubly deprotonated form, thereby highlighting the stability and versatility of the silylanilide motif. A free, neutral allyl group was observed in UI2 (L1)2 (1), which was synthesized by using the mono-deprotonated ligand [K][N-((dimethyl)prop-2-enyl)silyl)-2,6-diisopropylanilide] (L1). The desired homoleptic sandwich complex U[L2]2 (2) was prepared from all three ligand precursors, but the most consistent results came from using the dipotassium salt of the doubly deprotonated ligand [K]2 [N-((dimethyl)propenidesilyl)-2,6-diisopropylanilide] (L2). This allyl-based sandwich complex was studied by using theoretical techniques with supporting experimental spectroscopy to investigate the potential for phi (Ï) back-bonding. The bonding between UIV and the allyl fragments is best described as ligand-to-metal electron donation from a two carbon fragment-localized electron density into empty f-orbitals.
RESUMEN
Herein we present two new ferrocene compounds Fc3 and Fc4 with, respectively, propyl and butyl zwitterionic side chains. These compounds are highly soluble in water (0.66 M for Fc3 and 2.01 M for Fc4). When paired with anthraquinone-2,7-disulfonate as the anolyte, these zwitterionic ferrocenes exhibit excellent performance under neutral aqueous conditions. Voltage and energy efficiencies were ca. 88%, and the Coulombic efficiency was over 99% for both high-concentration redox flow batteries. We observed a difference in stability between the lengths of the zwitterionic chains, with Fc4 showing higher stability than Fc3, and the capacity decreased by â¼5% at the end of 20 cycles (â¼1% per day). Density functional theory calculations revealed striking differences in the conformational properties between Fc3 and Fc4, with Fc4 retaining a linear structure of the side chain in solution, while Fc3 favored both linear and curved geometries.
RESUMEN
Hexamethylguanidinium bis(fluorosulfonyl)imide ([HMG][FSI]) has recently been shown to be a promising solid state organic ionic plastic crystal with potential application in advanced alkali metal batteries. This study provides a detailed exploration of the structural and dynamic behavior of [HMG][FSI] mixtures with the sodium salt NaFSI across the whole composition range from 0 to 100 mol%. All mixtures are solids at room temperature. A combination of differential scanning calorimetry (DSC), synchrotron X-ray diffraction (SXRD) and multinuclear solid state NMR spectroscopy is employed to identify a partial phase diagram. The 25 mol% NaFSI/75 mol% [HMG][FSI] composition presents as the eutectic composition with the eutectic transition temperature at 44 °C. Both DSC and SXRD strongly support the formation of a new compound near 50 mol% NaFSI. Interestingly, the 53 mol% NaFSI [HMG][FSI] composition was consistently found to display features of a pure compound whereas the 50 mol% materials always showed a second phase. Many of the compositions examined showed unusual metastable behaviour. Moreover, the ion dynamics as determined by NMR, indicate that the Na+ and FSI- anions are signifcantly more mobile than the HMG cation in the liquid state (including the metastable state) for these materials.
RESUMEN
Apical constriction regulates epithelial morphogenesis during embryonic development, but how this process is controlled is not understood completely. Here, we identify a Rho guanine nucleotide exchange factor (GEF) gene plekhg5 as an essential regulator of apical constriction of bottle cells during Xenopus gastrulation. plekhg5 is expressed in the blastopore lip and its expression is sufficient to induce ectopic bottle cells in epithelia of different germ layers in a Rho-dependent manner. This activity is not shared by arhgef3, which encodes another organizer-specific RhoGEF. Plekhg5 protein is localized in the apical cell cortex via its pleckstrin homology domain, and the GEF activity enhances its apical recruitment. Plekhg5 induces apical actomyosin accumulation and cell elongation. Knockdown of plekhg5 inhibits activin-induced bottle cell formation and endogenous blastopore lip formation in gastrulating frog embryos. Apical accumulation of actomyosin, apical constriction and bottle cell formation fail to occur in these embryos. Taken together, our data indicate that transcriptional regulation of plekhg5 expression at the blastopore lip determines bottle cell morphology via local polarized activation of Rho by Plekhg5, which stimulates apical actomyosin activity to induce apical constriction.
Asunto(s)
Polaridad Celular , Gastrulación , Factores de Intercambio de Guanina Nucleótido/fisiología , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Proteínas de Xenopus/fisiología , Xenopus laevis/embriología , Xenopus laevis/metabolismo , Activinas/metabolismo , Actomiosina/metabolismo , Animales , Citoesqueleto/metabolismo , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Células Epiteliales/citología , Células Epiteliales/metabolismo , Gástrula/embriología , Gástrula/metabolismo , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Factores de Intercambio de Guanina Nucleótido/genética , Movimiento , Proteínas de Xenopus/genética , Xenopus laevis/genéticaRESUMEN
The separation of trivalent lanthanides and actinides is challenging because of their similar sizes and charge densities. S-donating extractants have shown significant selectivity for trivalent actinides over lanthanides, with single-stage americium/lanthanide separation efficiencies for some thiol-based extractants reported at >99.999%. While such separations could transform the nuclear waste management landscape, these systems are often limited by the hydrolytic and radiolytic stability of the extractant. Progress away from thiol-based systems is limited by the poorly understood and complex interactions of these extractants in organic phases, where molecular aggregation and micelle formation obfuscates assessment of the metal-extractant coordination environment. Because S-donating thioethers are generally more resistant to hydrolysis and oxidation and the aqueous phase coordination chemistry is anticipated to lack complications brought on by micelle formation, we have considered three thioethers, 2,2'-thiodiacetic acid (TDA), (2R,5S)-tetrahydrothiophene-2,5-dicarboxylic acid, and 2,5-thiophenedicarboxylic acid (TPA), as possible trivalent actinide selective reagents. Formation constants, extended X-ray absorption fine structure spectroscopy, and computational studies were completed for thioether complexes with a variety of trivalent lanthanides and actinides including Nd, Eu, Tb, Am, Cm, Bk, and Cf. TPA was found to have moderately higher selectivity for the actinides because of its ability to bind actinides in a different manner than lanthanides, but the utility of TPA is limited by poor water solubility and high rigidity. While significant competition with water for the metal center limits the efficacy of aqueous-based thioethers for separations, the characterization of these solution-phase, S-containing lanthanide and actinide complexes is the most comprehensively available in the literature to date. This is due to the breadth of lanthanides and actinides considered as well as the techniques deployed and serves as a platform for the further development of S-containing reagents for actinide separations. Additionally, this paper reports on the first bond lengths for Cf and Bk with a neutral S donor.
RESUMEN
Until now, all B≡B triple bonds have been achieved by adopting two ligands in the LâB≡BâL manner. Herein, we report an alternative route of designing the B≡B bonds based on the assumption that by acquiring two extra electrons, an element with the atomic number Z can have properties similar to those of the element with the atomic number Z+2. Specifically, we show that due to the electron donation from Al to B, the negatively charged B≡B kernel in the B2 Al3 - cluster mimics a triple N≡N bond. Comprehensive computational searches reveal that the global minimum structure of B2 Al3 - exhibits a direct B-B distance of 1.553â Å, and its calculated electron vertical detachment energies are in excellent agreement with the corresponding values of the experimental photoelectron spectrum. Chemical bonding analysis revealed one σ and two π bonds between the two B atoms, thus confirming a classical textbook B≡B triple bond, similar to that of N2 .
RESUMEN
Posttranslational histone modifications play important roles in regulating chromatin-based nuclear processes. Histone H2AK119 ubiquitination (H2Aub) is a prevalent modification and has been primarily linked to gene silencing. However, the underlying mechanism remains largely obscure. Here we report the identification of RSF1 (remodeling and spacing factor 1), a subunit of the RSF complex, as a H2Aub binding protein, which mediates the gene-silencing function of this histone modification. RSF1 associates specifically with H2Aub, but not H2Bub nucleosomes, through a previously uncharacterized and obligatory region designated as ubiquitinated H2A binding domain. In human and mouse cells, genes regulated by RSF1 overlap significantly with those controlled by RNF2/Ring1B, the subunit of Polycomb repressive complex 1 (PRC1) which catalyzes the ubiquitination of H2AK119. About 82% of H2Aub-enriched genes, including the classic PRC1 target Hox genes, are bound by RSF1 around their transcription start sites. Depletion of H2Aub levels by Ring1B knockout results in a significant reduction of RSF1 binding. In contrast, RSF1 knockout does not affect RNF2/Ring1B or H2Aub levels but leads to derepression of H2Aub target genes, accompanied by changes in H2Aub chromatin organization and release of linker histone H1. The action of RSF1 in H2Aub-mediated gene silencing is further demonstrated by chromatin-based in vitro transcription. Finally, RSF1 and Ring1 act cooperatively to regulate mesodermal cell specification and gastrulation during Xenopus early embryonic development. Taken together, these data identify RSF1 as a H2Aub reader that contributes to H2Aub-mediated gene silencing by maintaining a stable nucleosome pattern at promoter regions.
Asunto(s)
Silenciador del Gen/fisiología , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Nucleosomas/metabolismo , Transactivadores/metabolismo , Ubiquitinación/fisiología , Animales , Células HeLa , Histonas/genética , Humanos , Ratones , Proteínas Nucleares/genética , Nucleosomas/genética , Complejo Represivo Polycomb 1/genética , Complejo Represivo Polycomb 1/metabolismo , Regiones Promotoras Genéticas/fisiología , Transactivadores/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismoRESUMEN
In this work, the largest heterometallic supertetrahedral clusters, [Zn6 Ge16 ]4- and [Cd6 Ge16 ]4- , were directly self-assembled through highly-charged [Ge4 ]4- units and transition metal cations, in which 3-center-2-electron σ bonding in Ge2 Zn or Ge2 Cd triangles plays a vital role in the stabilization of the whole structure. The cluster structures have an open framework with a large central cavity of diameter 4.6â Å for Zn and 5.0â Å for Cd, respectively. Time-dependent HRESI-MS spectra show that the larger clusters grow from smaller components with a single [Ge4 ]4- and ZnMes2 units. Calculations performed at the DFT level indicate a very large HOMO-LUMO energy gap in [M6 Ge16 ]4- (2.22â eV), suggesting high kinetic stability that may offer opportunities in materials science. These observations offer a new strategy for the assembly of heterometallic clusters with high symmetry.
RESUMEN
Synthetic strategies to yield molecular complexes of high-valent lanthanides, other than the ubiquitous Ce4+ ion, are exceptionally rare, and thorough, detailed characterization in these systems is limited by complex lifetime and reaction and isolation conditions. The synthesis of high-symmetry complexes in high purity with significant lifetimes in solution and the solid state is essential for determining the role of ligand-field splitting, multiconfigurational behavior, and covalency in governing the reactivity and physical properties of these potentially technologically transformative tetravalent ions. We report the synthesis and physical characterization of an S4 symmetric, four-coordinate tetravalent terbium complex, [Tb(NP(1,2-bis-tBu-diamidoethane)(NEt2))4] (where Et is ethyl and tBu is tert-butyl). The ligand field in this complex is weak and the metal-ligand bonds sufficiently covalent so that the tetravalent terbium ion is stable and accessible via a mild oxidant from the anionic, trivalent, terbium precursor, [(Et2O)K][Tb(NP(1,2-bis-tBu-diamidoethane)(NEt2))4]. The significant stability of the tetravalent complex enables its thorough characterization. The stepwise development of the supporting ligand points to key ligand control elements for further extending the known tetravalent lanthanide ions in molecular complexes. Magnetic susceptibility, electron paramagnetic resonance (EPR) spectroscopy, X-ray absorption near-edge spectroscopy (XANES), and density functional theory studies indicate a 4f7 ground state for [Tb(NP(1,2-bis-tBu-diamidoethane)(NEt2))4] with considerable zero-field splitting, demonstrating that magnetic, tetravalent lanthanide ions engage in covalent metal-ligand bonds. This result has significant implications for the use of tetravalent lanthanide ions in magnetic applications since the observed zero-field splitting is intermediate between that observed for the trivalent lanthanides and for the transition metals. The similarity of the multiconfigurational behavior in the ground state of [Tb(NP(1,2-bis-tBu-diamidoethane)(NEt2))4] (measured by Tb L3-edge XAS) to that observed in TbO2 implicates ligand control of multiconfigurational behavior as a key component of the stability of the complex.
Asunto(s)
Complejos de Coordinación/química , Terbio/química , Complejos de Coordinación/síntesis química , Espectroscopía de Resonancia por Spin del Electrón , Ligandos , Modelos Moleculares , Fosforanos/síntesis química , Fosforanos/química , Espectroscopía de Absorción de Rayos XRESUMEN
Polymerized ionic liquids (PolyILs) are promising materials for applications in electrochemical devices spanning from fuel cells to capacitors and batteries. In principle, PolyILs have a competitive advantage over traditional electrolytes in being single ion conductors and thus enabling a transference number close to unity. Despite this perceived advantage, surprisingly low room temperature ionic conductivities measured in the lab raise an important fundamental question: how does the molecular structure mediate conductivity? In this work, wide-angle X-ray scattering (WAXS), vibrational sum frequency generation (vSFG), and density functional theory (DFT) calculations were used to study the bulk and interfacial structure of PolyILs, while broad band dielectric spectroscopy (BDS) was used to probe corresponding dynamics and conductive properties for a series of the PolyIL samples with tunable chemistries and structures. Our results reveal that the size of the mobile anions has a tremendous impact on chain packing in PolyILs that wasn't addressed previously. Larger mobile ions tend to create a well-packed structure, while smaller ions frustrate chain packing. The magnitude of these changes and level of structural heterogeneity are shown to depend on the chemical functionality and flexibility of studied PolyILs. Furthermore, these experimental and computational results provide new insight into the correlation between conductivity and structure in PolyILs, suggesting that structural heterogeneity helps to reduce the activation energy for ionic conductivity in the glassy state.
RESUMEN
It is not an understatement to say that the interplay between water and protein is a fundamental aspect of life. The vitality of an organism depends on the functionality of its biological machinery, and this, in turn, is mediated in water. Yet, we understand surprisingly little about the nature of the interface between bulk water and the protein. On the one hand, we know that the nature of the bulk water is dominated by the existence of H-bonding and H-bonded networks. On the other hand, the protein surface, where much of the bioactivity is centered, is a complex landscape of hydrophilic and hydrophobic elements. So how does the interface between these two entities work and how do they influence each other? The question is important because if one understands how a particular protein interface influences the dynamics of the water, it then becomes an easily accessible marker for similar behavior in other protein systems. The dielectric relaxation of hydrated proteins with different structures, lysozyme, collagen, and phycocyanin, has been reviewed in this paper. The dynamics of hydrated water was analyzed in terms of orientation and the ionic defect migration model. This approach enables to characterize the microscopic relaxation mechanism of the dynamics of hydration water on the different structures of the protein. In addition, our model is also capable of characterizing not only hydrated proteins but also polymer-water systems.
RESUMEN
We report the characterization of the compound [K([2.2.2]crypt)]4 [In8 Sb13 ], which proves to contain a 1:1 mixture of [Sb@In8 Sb12 ]3- and [Sb@In8 Sb12 ]5- . The tri-anion displays perfect Th symmetry, the first completely inorganic molecule to do so, and contains eight equivalent In3+ centers in a cube. The gas-phase potential energy surface of the penta-anion has eight equivalent minima where the extra pair of electrons is localized on one In+ center, and these minima are linked by low-lying transition states where the electron pair is delocalized over two adjacent centers. The best fit to the electron density is obtained from a model where the structure of the 5- cluster lies close to the gas-phase transition state.
RESUMEN
During early vertebrate embryogenesis, cell fate specification is often coupled with cell acquisition of specific adhesive, polar and/or motile behaviors. In Xenopus gastrulae, tissues fated to form different axial structures display distinct motility. The cells in the early organizer move collectively and directionally toward the animal pole and contribute to anterior mesendoderm, whereas the dorsal and the ventral-posterior trunk tissues surrounding the blastopore of mid-gastrula embryos undergo convergent extension and convergent thickening movements, respectively. While factors regulating cell lineage specification have been described in some detail, the molecular machinery that controls cell motility is not understood in depth. To gain insight into the gene battery that regulates both cell fates and motility in particular embryonic tissues, we performed RNA sequencing (RNA-seq) to investigate differentially expressed genes in the early organizer, the dorsal and the ventral marginal zone of Xenopus gastrulae. We uncovered many known signaling and transcription factors that have been reported to play roles in embryonic patterning during gastrulation. We also identified many uncharacterized genes as well as genes that encoded extracellular matrix (ECM) proteins or potential regulators of actin cytoskeleton. Co-expression of a selected subset of the differentially expressed genes with activin in animal caps revealed that they had distinct ability to block activin-induced animal cap elongation. Most of these factors did not interfere with mesodermal induction by activin, but an ECM protein, EFEMP2, inhibited activin signaling and acted downstream of the activated type I receptor. By focusing on a secreted protein kinase PKDCC1, we showed with overexpression and knockdown experiments that PKDCC1 regulated gastrulation movements as well as anterior neural patterning during early Xenopus development. Overall, our studies identify many differentially expressed signaling and cytoskeleton regulators in different embryonic regions of Xenopus gastrulae and imply their functions in regulating cell fates and/or behaviors during gastrulation.