Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Exp Eye Res ; 244: 109918, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38705506

RESUMEN

The vertebrate eye lens is an unusual organ in that most of its cells lack nuclei and the ability to replace aging protein. The small heat shock protein α-crystallins evolved to become key components of this lens, possibly because of their ability to prevent aggregation of aging protein that would otherwise lead to lens opacity. Most vertebrates express two α-crystallins, αA- and αB-crystallin, and mutations in each are linked to human cataract. In a mouse knockout model only the loss of αA-crystallin led to early-stage lens cataract. We have used the zebrafish as a model system to investigate the role of α-crystallins during lens development. Interestingly, while zebrafish express one lens-specific αA-crystallin gene (cryaa), they express two αB-crystallin genes, with one evolving lens specificity (cryaba) and the other retaining the broad expression of its mammalian ortholog (cryabb). In this study we used individual mutant zebrafish lines for all three α-crystallin genes to determine the impact of their loss on age-related cataract. Surprisingly, unlike mouse knockout models, we found that the loss of the αBa-crystallin gene cryaba led to an increase in lens opacity compared to cryaa null fish at 24 months of age. Loss of αA-crystallin did not increase the prevalence of cataract. We also used single cell RNA-Seq and RT-qPCR data to show a shift in the lens expression of zebrafish α-crystallins between 5 and 10 days post fertilization (dpf), with 5 and 6 dpf lenses expressing cryaa almost exclusively, and expression of cryaba and cryabb becoming more prominent after 10 dpf. These data show that cryaa is the primary α-crystallin during early lens development, while the protective role for cryaba becomes more important during lens aging. This study is the first to quantify cataract prevalence in wild-type aging zebrafish, showing that lens opacities develop in approximately 25% of fish by 18 months of age. None of the three α-crystallin mutants showed a compensatory increase in the expression of the remaining two crystallins, or in the abundant ßB1-crystallin. Overall, these findings indicate an ontogenetic shift in the functional importance of individual α-crystallins during zebrafish lens development. Our finding that the lens-specific zebrafish αBa-crystallin plays the leading role in preventing age-related cataract adds a new twist to our understanding of vertebrate lens evolution.


Asunto(s)
Envejecimiento , Catarata , Cristalino , Pez Cebra , Cadena A de alfa-Cristalina , Animales , Catarata/metabolismo , Catarata/genética , Catarata/patología , Cristalino/metabolismo , Cadena A de alfa-Cristalina/genética , Cadena A de alfa-Cristalina/metabolismo , Modelos Animales de Enfermedad , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
2.
Exp Eye Res ; 227: 109358, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36572168

RESUMEN

The α-crystallin small heat shock proteins contribute to the transparency and refractive properties of the vertebrate eye lens and prevent the protein aggregation that would otherwise produce lens cataracts, the leading cause of human blindness. There are conflicting data in the literature as to what role the α-crystallins may play in early lens development. In this study, we used CRISPR gene editing to produce zebrafish lines with mutations in each of the three α-crystallin genes (cryaa, cryaba and cryabb) to prevent protein production. The absence of each α-crystallin protein was analyzed by mass spectrometry, and lens phenotypes were assessed with differential interference contrast microscopy and histology. Loss of αA-crystallin produced a variety of lens defects with varying severity in larvae at 3 and 4 dpf but little substantial change in normal fiber cell denucleation. Loss of αBa-crystallin produced no substantial lens defects. Our cryabb mutant produced a truncated αBb-crystallin protein and showed no substantial change in lens development. Mutation of each α-crystallin gene did not alter the mRNA levels of the remaining two, suggesting a lack of genetic compensation. These data suggest that αA-crystallin plays some role in lens development, but the range of phenotype severity in null mutants indicates its loss simply increases the chance for defects and that the protein is not essential. Our finding that cryaba and cryabb mutants lack noticeable lens defects is congruent with insubstantial transcript levels for these genes in lens epithelial and fiber cells through five days of development. Future experiments can explore the molecular mechanisms leading to lens defects in cryaa null mutants and the impact of αA-crystallin loss during zebrafish lens aging.


Asunto(s)
Catarata , Cristalinas , Cristalino , Cadena A de alfa-Cristalina , alfa-Cristalinas , Animales , Humanos , Pez Cebra , alfa-Cristalinas/genética , alfa-Cristalinas/metabolismo , Cristalinas/genética , Cristalinas/metabolismo , Cadena A de alfa-Cristalina/metabolismo , Cristalino/metabolismo , Proteínas/metabolismo , Catarata/metabolismo
3.
Exp Eye Res ; 206: 108535, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33705730

RESUMEN

The vertebrate lens is a valuable model system for investigating the gene expression changes that coordinate tissue differentiation due to its inclusion of two spatially separated cell types, the outer epithelial cells and the deeper denucleated fiber cells that they support. Zebrafish are a useful model system for studying lens development given the organ's rapid development in the first several days of life in an accessible, transparent embryo. While we have strong foundational knowledge of the diverse lens crystallin proteins and the basic gene regulatory networks controlling lens development, no study has detailed gene expression in a vertebrate lens at single cell resolution. Here we report an atlas of lens gene expression in zebrafish embryos and larvae at single cell resolution through five days of development, identifying a number of novel putative regulators of lens development. Our data address open questions about the temperospatial expression of α-crystallins during lens development that will support future studies of their function and provide the first detailed view of ß- and γ-crystallin expression in and outside the lens. We describe divergent expression in transcription factor genes that occur as paralog pairs in the zebrafish. Finally, we examine the expression dynamics of cytoskeletal, membrane associated, RNA-binding, and transcription factor genes, identifying a number of novel patterns. Overall these data provide a foundation for identifying and characterizing lens developmental regulatory mechanisms and revealing targets for future functional studies with potential therapeutic impact.


Asunto(s)
Células Epiteliales/metabolismo , Cristalino/metabolismo , Transcriptoma/genética , alfa-Cristalinas/genética , gamma-Cristalinas/genética , Animales , Células Epiteliales/citología , Cristalino/crecimiento & desarrollo , Pez Cebra , alfa-Cristalinas/metabolismo , gamma-Cristalinas/metabolismo
4.
bioRxiv ; 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38260567

RESUMEN

The vertebrate eye lens is an unusual organ in that most of its cells lack nuclei and the ability to replace aging protein. The small heat shock protein α-crystallins evolved to become key components of this lens, possibly because of their ability to prevent aggregation of aging protein that would otherwise lead to lens opacity. Most vertebrates express two α-crystallins, αA- and αB-crystallin, and mutations in each are linked to human cataract. In a mouse knockout model only the loss of αA-crystallin led to early-stage lens cataract. We have used the zebrafish as a model system to investigate the role of α-crystallins during lens development. Interestingly, while zebrafish express one lens-specific αA-crystallin gene (cryaa), they express two αB-crystallin genes, with one evolving lens specificity (cryaba) and the other retaining the broad expression of its mammalian ortholog (cryabb). In this study we used individual mutant zebrafish lines for all three α-crystallin genes to determine the impact of their loss on age-related cataract. Surprisingly, unlike mouse knockout models, we found that the loss of the αBa-crystallin gene cryaba led to an increase in lens opacity compared to cryaa null fish at 24 months of age. Loss of αA-crystallin did not increase the prevalence of cataract. We also used single cell RNA-Seq and RT-qPCR data to show a shift in the lens expression of zebrafish α-crystallins between 5 and 10 days post fertilization (dpf), with 5 and 6 dpf lenses expressing cryaa almost exclusively, and expression of cryaba and cryabb becoming more prominent after 10 dpf. These data show that cryaa is the primary α-crystallin during early lens development, while the protective role for cryaba becomes more important during lens aging. This study is the first to quantify cataract prevalence in wild-type zebrafish, showing that lens opacities develop in approximately 25% of fish by 18 months of age. None of the three α-crystallin mutants showed a compensatory increase in the expression of the remaining two crystallins, or in the abundant ßB1-crystallin. Overall, these findings indicate an ontogenetic shift in the functional importance of individual α-crystallins during zebrafish lens development. Our finding that the lens-specific zebrafish αBa-crystallin plays the leading role in preventing age-related cataract adds a new twist to our understanding of vertebrate lens evolution.

5.
Mol Vis ; 19: 408-17, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23441112

RESUMEN

PURPOSE: The roles that crystallin proteins play during lens development are not well understood. Similarities in the adult crystallin composition of mammalian and zebrafish lenses have made the latter a valuable model for examining lens function. In this study, we describe the changing zebrafish lens proteome during development to identify ontogenetic shifts in crystallin expression that may provide insights into age-specific functions. METHODS: Two-dimensional gel electrophoresis and size exclusion chromatography were used to characterize the lens crystallin content of 4.5-day to 27-month-old zebrafish. Protein spots were identified with mass spectrometry and comparisons with previously published proteomic maps, and quantified with densitometry. Constituents of size exclusion chromatography elution peaks were identified with sodium dodecyl sulfate-polyacrylamide gel electrophoresis. RESULTS: Zebrafish lens crystallins were expressed in three ontogenetic patterns, with some crystallins produced at relatively constant levels throughout development, others expressed primarily before 10 weeks of age (ßB1-, ßA1-, and γN2-crystallins), and a third group primarily after 10 weeks (α-, ßB3-, and γS-crystallins). Alpha-crystallins comprised less than 1% of total lens protein in 4.5-day lenses and increased to less than 7% in adult lenses. The developmental period between 6 weeks and 4 months contained the most dramatic shifts in lens crystallin expression. CONCLUSIONS: These data provide the first two-dimensional gel electrophoresis maps of the developing zebrafish lens, with quantification of changing crystallin abundance and visualization of post-translational modification. Results suggest that some crystallins may play stage specific roles during lens development. The low levels of zebrafish lens α-crystallin relative to mammals may be due to the high concentrations of γ-crystallins in this aquatic lens. Similarities with mammalian crystallin expression continue to support the use of the zebrafish as a model for lens crystallin function.


Asunto(s)
Cristalinas/metabolismo , Cristalino/crecimiento & desarrollo , Cristalino/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/crecimiento & desarrollo , Pez Cebra/metabolismo , Animales , Cristalinas/genética , Electroforesis en Gel Bidimensional , Proteoma/genética , Proteoma/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Proteínas de Pez Cebra/genética , alfa-Cristalinas/genética , alfa-Cristalinas/metabolismo , beta-Cristalinas/genética , beta-Cristalinas/metabolismo , gamma-Cristalinas/genética , gamma-Cristalinas/metabolismo
6.
Exp Eye Res ; 116: 227-33, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24076322

RESUMEN

Alpha crystallins are small heat shock proteins essential to normal ocular lens function. They also help maintain homeostasis in many non-ocular vertebrate tissues and their expression levels change in multiple diseases of the nervous and cardiovascular system and during cancer. The specific roles that α-crystallins may play in eye development are unclear. Studies with knockout mice suggested that only one of the two mammalian α-crystallins is required for normal early lens development. However, studies in two fish species suggested that reduction of αA-crystallin alone could inhibit normal fiber cell differentiation, cause cataract and contribute to lens degeneration. In this study we used synthetic antisense morpholino oligomers to suppress the expression of zebrafish αA-crystallin to directly test the hypothesis that, unlike mammals, the zebrafish requires αA-crystallin for normal early lens development. Despite the reduction of zebrafish αA-crystallin protein to undetectable levels by western analysis through 4 days of development we found no changes in fiber cell differentiation, lens morphology or transparency. In contrast, suppression of AQP0a expression, previously shown to cause lens cataract, produced irregularly shaped lenses, delay in fiber cell differentiation and lens opacities detectable by confocal microscopy. The normal development observed in αA-crystallin deficient zebrafish embryos may reflect similarly non-essential roles for this protein in the early stages of both zebrafish and mammalian lens development. This finding has ramifications for a growing number of researchers taking advantage of the zebrafish's transparent external embryos to study vertebrate eye development. Our demonstration that lens cataracts can be visualized in three-dimensions by confocal microscopy in a living zebrafish provides a new tool for studying the causes, development and prevention of lens opacities.


Asunto(s)
Catarata/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas de Choque Térmico/genética , Cristalino/metabolismo , ARN/genética , Pez Cebra/embriología , Cadena A de alfa-Cristalina/genética , Animales , Western Blotting , Catarata/metabolismo , Catarata/patología , Modelos Animales de Enfermedad , Femenino , Proteínas de Choque Térmico/biosíntesis , Cristalino/embriología , Masculino , Fenotipo , Reacción en Cadena de la Polimerasa , Biosíntesis de Proteínas , Cadena A de alfa-Cristalina/biosíntesis
7.
J Chem Ecol ; 39(2): 323-32, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23328818

RESUMEN

Gallic acid has been reported to be responsible for the invasive success of nonnative genotypes of Phragmites australis in North America. We have been unable to confirm previous reports of persistent high concentrations of gallic acid in the rhizosphere of invasive P. australis, and of high concentrations of gallic acid and gallotannins in P. australis rhizomes. The half-life of gallic acid in nonsterile P. australis soil was measured by aqueous extraction of soils and found to be less than 1 day at added concentrations up to 10,000 µg g(-1). Furthermore, extraction of P. australis soil collected in North Carolina showed no evidence of gallic acid, and extractions of both rhizomes and leaves of samples of four P. australis populations confirmed to be of invasive genotype show only trace amounts of gallic acid and/or gallotannins. The detection limits were less than 20 µg gallic acid g(-1) FW in the rhizome samples tested, which is approximately 0.015 % of the minimum amount of gallic acid expected based on previous reports. While the occurrence of high concentrations of gallic acid and gallotannins in some local populations of P. australis cannot be ruled out, our results indicate that exudation of gallic acid by P. australis cannot be a primary, general explanation for the invasive success of this species in North America.


Asunto(s)
Ácido Gálico/aislamiento & purificación , Ácido Gálico/metabolismo , Especies Introducidas , Poaceae/genética , Poaceae/metabolismo , Genotipo , América del Norte , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Rizoma/genética , Rizoma/metabolismo , Suelo/análisis
8.
PLoS One ; 14(3): e0211399, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30861003

RESUMEN

The zebrafish has become a valuable model for examining ocular lens development, physiology and disease. The zebrafish cloche mutant, first described for its loss of hematopoiesis, also shows reduced eye and lens size, interruption in lens cell differentiation and a cataract likely caused by abnormal protein aggregation. To facilitate the use of the cloche mutant for studies on cataract development and prevention we characterized variation in the lens phenotype, quantified changes in gene expression by qRT-PCR and RNA-Seq and compared the ability of two promoters to drive expression of introduced proteins into the cloche lens. We found that the severity of cloche embryo lens cataract varied, while the decrease in lens diameter and retention of nuclei in differentiating lens fiber cells was constant. We found very low expression of both αB-crystallin genes (cryaba and cryabb) at 4 days post fertilization (dpf) by both qRT-PCR and RNA-Seq in cloche, cloche sibling and wildtype embryos and no significant difference in αA-crystallin (cryaa) expression. RNA-Seq analysis of 4 dpf embryos identified transcripts from 25,281 genes, with 1,329 showing statistically significantly different expression between cloche and wildtype samples. Downregulation of eight lens ß- and γM-crystallin genes and 22 retinal related genes may reflect a general reduction in eye development and growth. Six stress response genes were upregulated. We did not find misregulation of any known components of lens development gene regulatory networks. These results suggest that the cloche lens cataract is not caused by loss of αA-crystallin or changes to lens gene regulatory networks. Instead, we propose that the cataract results from general physiological stress related to loss of hematopoiesis. Our finding that the zebrafish αA-crystallin promoter drove strong GFP expression in the cloche lens demonstrates its use as a tool for examining the effects of introduced proteins on lens crystallin aggregation and cataract prevention.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Catarata/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/fisiología , Animales , Cristalinas/genética , Cristalinas/fisiología , Modelos Animales de Enfermedad , Hematopoyesis/fisiología , Cristalino/metabolismo , Cristalino/fisiología , Mutación , Fenotipo , Pez Cebra/genética , Cadena A de alfa-Cristalina/genética , Cadena B de alfa-Cristalina/genética
9.
Mol Vis ; 14: 806-14, 2008 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-18449354

RESUMEN

PURPOSE: To characterize the crystallin content of the zebrafish lens using two-dimensional gel electrophoresis (2-DE). These data will facilitate future investigations of vertebrate lens development, function, and disease. METHODS: Adult zebrafish lens proteins were separated by 2-DE, and the resulting spots were identified by matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS). The relative proportion of each crystallin was quantified by image analysis, and phosphospecific staining was used to identify phosphorylated alpha-crystallins. The proportion of each crystallin in the soluble and insoluble fraction of the lens was also determined by resolving these lens fractions separately by 2-DE. RESULTS: alpha-, beta-, and gamma-crystallins comprised 7.8, 36.0, and 47.2% of the zebrafish lens, respectively. While the alpha-crystallin content of the zebrafish lens is less than the amounts found in the human lens, the ratio of alphaA:alphaB crystallin is very similar. The phosphorylation pattern of zebrafish alphaA-crystallins was also similar to that of humans. The most abundant gamma-crystallins were the diverse gammaMs, comprising 30.5% of the lens. Intact zebrafish crystallins were generally more common in the soluble fraction with truncated versions more common in the insoluble fraction. CONCLUSIONS: While the total alpha- and gamma-crystallin content of the zebrafish lens differs from that of humans, similarities in alpha-crystallin ratios and modifications and a link between crystallin truncation and insolubility suggest that the zebrafish is a suitable model for the vertebrate lens. The proteome map provided here will be of value to future studies of lens development, function, and disease.


Asunto(s)
Cristalinas/metabolismo , Regulación de la Expresión Génica , Cristalino/química , Proteoma/análisis , Pez Cebra/metabolismo , Animales , Densitometría , Electroforesis en Gel Bidimensional , Humanos , Proteínas Mutantes/metabolismo , Fosfoproteínas/metabolismo , Homología de Secuencia de Aminoácido , Solubilidad , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , alfa-Cristalinas/química , alfa-Cristalinas/metabolismo , beta-Cristalinas/química , beta-Cristalinas/metabolismo , gamma-Cristalinas/química , gamma-Cristalinas/metabolismo
10.
PeerJ ; 5: e4093, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29201567

RESUMEN

Previous studies have used the zebrafish to investigate the biology of lens crystallin proteins and their roles in development and disease. However, little is known about zebrafish α-crystallin promoter function, how it compares to that of mammals, or whether mammalian α-crystallin promoter activity can be assessed using zebrafish embryos. We injected a variety of α-crystallin promoter fragments from each species combined with the coding sequence for green fluorescent protein (GFP) into zebrafish zygotes to determine the resulting spatiotemporal expression patterns in the developing embryo. We also measured mRNA levels and protein abundance for all three zebrafish α-crystallins. Our data showed that mouse and zebrafish αA-crystallin promoters generated similar GFP expression in the lens, but with earlier onset when using mouse promoters. Expression was also found in notochord and skeletal muscle in a smaller percentage of embryos. Mouse αB-crystallin promoter fragments drove GFP expression primarily in zebrafish skeletal muscle, with less common expression in notochord, lens, heart and in extraocular regions of the eye. A short fragment containing only a lens-specific enhancer region increased lens and notochord GFP expression while decreasing muscle expression, suggesting that the influence of mouse promoter control regions carries over into zebrafish embryos. The two paralogous zebrafish αB-crystallin promoters produced subtly different expression profiles, with the aBa promoter driving expression equally in notochord and skeletal muscle while the αBb promoter resulted primarily in skeletal muscle expression. Messenger RNA for zebrafish αA increased between 1 and 2 days post fertilization (dpf), αBa increased between 4 and 5 dpf, but αBb remained at baseline levels through 5 dpf. Parallel reaction monitoring (PRM) mass spectrometry was used to detect αA, aBa, and αBb peptides in digests of zebrafish embryos. In whole embryos, αA-crystallin was first detected by 2 dpf, peaked in abundance by 4-5 dpf, and was localized to the eye. αBa was detected in whole embryo at nearly constant levels from 1-6 dpf, was also localized primarily to the eye, and its abundance in extraocular tissues decreased from 4-7 dpf. In contrast, due to its low abundance, no αBb protein could be detected in whole embryo, or dissected eye and extraocular tissues. Our results show that mammalian α-crystallin promoters can be efficiently screened in zebrafish embryos and that their controlling regions are well conserved. An ontogenetic shift in zebrafish aBa-crystallin promoter activity provides an interesting system for examining the evolution and control of tissue specificity. Future studies that combine these promoter based approaches with the expanding ability to engineer the zebrafish genome via techniques such as CRISPR/Cas9 will allow the manipulation of protein expression to test hypotheses about lens crystallin function and its relation to lens biology and disease.

11.
FEBS J ; 273(3): 481-90, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16420472

RESUMEN

We previously reported that zebrafish alphaB-crystallin is not constitutively expressed in nervous or muscular tissue and has reduced chaperone-like activity compared with its human ortholog. Here we characterize the tissue expression pattern and chaperone-like activity of a second zebrafish alphaB-crystallin. Expressed sequence tag analysis of adult zebrafish lens revealed the presence of a novel alpha-crystallin transcript designated cryab2 and the resulting protein alphaB2-crystallin. The deduced protein sequence was 58.2% and 50.3% identical with human alphaB-crystallin and zebrafish alphaB1-crystallin, respectively. RT-PCR showed that alphaB2-crystallin is expressed predominantly in lens but, reminiscent of mammalian alphaB-crystallin, also has lower constitutive expression in heart, brain, skeletal muscle and liver. The chaperone-like activity of purified recombinant alphaB2 protein was assayed by measuring its ability to prevent the chemically induced aggregation of alpha-lactalbumin and lysozyme. At 25 degrees C and 30 degrees C, zebrafish alphaB2 showed greater chaperone-like activity than human alphaB-crystallin, and at 35 degrees C and 40 degrees C, the human protein provided greater protection against aggregation. 2D gel electrophoresis indicated that alphaB2-crystallin makes up approximately 0.16% of total zebrafish lens protein. Zebrafish is the first species known to express two different alphaB-crystallins. Differences in primary structure, expression and chaperone-like activity suggest that the two zebrafish alphaB-crystallins perform divergent physiological roles. After gene duplication, zebrafish alphaB2 maintained the widespread protective role also found in mammalian alphaB-crystallin, while zebrafish alphaB1 adopted a more restricted, nonchaperone role in the lens. Gene duplication may have allowed these functions to separate, providing a unique model for studying structure-function relationships and the regulation of tissue-specific expression patterns.


Asunto(s)
Empalme Alternativo , Duplicación de Gen , Pez Cebra/genética , Cadena B de alfa-Cristalina/genética , Cadena B de alfa-Cristalina/fisiología , Secuencia de Aminoácidos , Animales , Clonación Molecular , Electroforesis en Gel Bidimensional , Electroforesis en Gel de Poliacrilamida , Regulación de la Expresión Génica , Humanos , Datos de Secuencia Molecular , Filogenia , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Alineación de Secuencia , Temperatura , Factores de Tiempo
12.
Mol Vis ; 11: 88-96, 2005 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-15692462

RESUMEN

PURPOSE: The vertebrate small heat shock proteins alphaA- and alphaB-crystallin contribute to the transparency and refractive power of the lens and may also prevent the aggregation of non-native proteins that would otherwise lead to cataracts. We previously showed that zebrafish (Danio rerio) and human alphaB-crystallin have diverged far more in primary structure and expression pattern than the orthologous alphaA-crystallins. In this current study we further compare the structure and function of zebrafish and mammalian alpha-crystallins. METHODS: Near UV CD spectroscopy was used to analyze the tertiary structure and thermal stability of recombinant zebrafish alpha-crystallins. The chaperone-like activities of zebrafish and human alpha-crystallins were compared by assaying their ability to prevent the chemically induced aggregation of several target proteins at temperatures between 25 degrees C and 40 degrees C. RESULTS: Zebrafish and human alphaA-crystallin showed very similar tertiary structures, while the alphaB-crystallin orthologs showed differences related to the presence of additional aromatic amino acids in the zebrafish protein. The denaturation temperatures of zebrafish crystallins were lower than those of mammals. The chaperone-like activities of the two zebrafish alpha-crystallins were highly divergent, with alphaA-crystallin showing much greater activity than alphaB-crystallin. CONCLUSIONS: alphaA-crystallin serves a similar physiological function in both zebrafish and mammals as a lens specific chaperone-like molecule. The reduced chaperone-like function of zebrafish alphaB-crystallin and its lack of extralenticular expression indicates that it plays a different physiological role from its mammalian ortholog. Future comparative studies of alpha-crystallin from closely related vertebrate species can help identify specific structural changes that lead to alterations in chaperone-like activity.


Asunto(s)
Chaperonas Moleculares/metabolismo , Cadena A de alfa-Cristalina/química , Cadena B de alfa-Cristalina/química , Animales , Western Blotting , Bovinos , Dicroismo Circular , Electroforesis en Gel de Poliacrilamida , Humanos , Desnaturalización Proteica , Estructura Terciaria de Proteína , Conejos , Espectrofotometría Ultravioleta , Relación Estructura-Actividad , Pez Cebra , Cadena A de alfa-Cristalina/metabolismo , Cadena B de alfa-Cristalina/metabolismo
13.
Mol Vis ; 8: 45-50, 2002 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-11925526

RESUMEN

PURPOSE: To determine the nucleotide sequence, amino acid sequence and tissue specificity of zebrafish alphaA-crystallin. METHODS: RACE, both 3' and 5', was used to clone the zebrafish alphaA-crystallin gene. The peptide sequence of the encoded protein was deduced and compared to cavefish, shark, amphibian, bird and human orthologues using the CLUSTAL W algorithm. alphaA-crystallin transcript was evaluated in brain, heart, lens, liver, skeletal muscle/skin, and spleen by semi-quantitative RT-PCR. RESULTS: The 173 amino acid sequence of zebrafish alphaA-crystallin was determined to be 73% and 86% similar to its human and cavefish orthologues, respectively. We detected high expression of zebrafish alphaA-crystallin in the lens and very low expression in liver and spleen. CONCLUSIONS: Few amino acids identified as being functionally important to chaperone function differ between zebrafish and mammalian alphaA-crystallin. The expression of alphaA-crystallin is mainly confined to the lens in both taxa. These data suggest that zebrafish alphaA-crystallin plays a physiologically limited role outside of the zebrafish lens, similar to its mammalian orthologues.


Asunto(s)
Cristalinas/genética , Pez Cebra/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Clonación Molecular , Cristalinas/aislamiento & purificación , Cristalinas/metabolismo , Regulación de la Expresión Génica , Humanos , Cristalino/química , Cristalino/metabolismo , Datos de Secuencia Molecular , ARN Mensajero/análisis , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido
14.
PLoS One ; 7(3): e34438, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22479631

RESUMEN

Small heat shock proteins (sHsps) maintain cellular homeostasis by preventing stress and disease-induced protein aggregation. While it is known that hydrophobicity impacts the ability of sHsps to bind aggregation-prone denaturing proteins, the complex quaternary structure of globular sHsps has made understanding the significance of specific changes in hydrophobicity difficult. Here we used recombinant protein of the lenticular sHsp α A-crystallin from six teleost fishes environmentally adapted to temperatures ranging from -2°C to 40°C to identify correlations between physiological temperature, protein stability and chaperone-like activity. Using sequence and structural modeling analysis we identified specific amino acid differences between the warm adapted zebrafish and cold adapted Antarctic toothfish that could contribute to these correlations and validated the functional consequences of three specific hydrophobicity-altering amino acid substitutions in αA-crystallin. Site directed mutagenesis of three residues in the zebrafish (V62T, C143S, T147V) confirmed that each impacts either protein stability or chaperone-like activity or both, with the V62T substitution having the greatest impact. Our results indicate a role for changing hydrophobicity in the thermal adaptation of α A-crystallin and suggest ways to produce sHsp variants with altered chaperone-like activity. These data also demonstrate that a comparative approach can provide new information about sHsp function and evolution.


Asunto(s)
Proteínas de Choque Térmico Pequeñas/química , Proteínas de Choque Térmico Pequeñas/metabolismo , Cadena A de alfa-Cristalina/química , Cadena A de alfa-Cristalina/metabolismo , Aclimatación , Secuencia de Aminoácidos , Animales , Peces , Proteínas de Choque Térmico Pequeñas/genética , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Conformación Proteica , Estabilidad Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Cadena A de alfa-Cristalina/genética
15.
Integr Comp Biol ; 43(4): 481-91, 2003 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21680456

RESUMEN

Integration between comparative biology and cellular/molecular biology has helped advance understanding of the structure, function and physiology of the vertebrate small heat shock proteins αA- and αB-crystallin. These proteins are expressed at high concentration in the eye lens where they contribute to transparency and refractive power. But they also function similarly to molecular chaperones by preventing the aggregation of denatured proteins that can cause opacities, or cataracts. α-crystallins also serve a number of other roles in and out of the lens that are still not completely understood. Comparative examination of α-crystallins and closely related small heat shock proteins from diverse taxa has helped provide insights into the proteins' three-dimensional shape and structure/function relationships. Until recently, no studies had examined the tissue specific expression or chaperone-like activity of α-crystallins from a non-mammalian vertebrate. I have been investigating the α-crystallins of the zebrafish, Danio rerio, as a first step towards utilizing the bony fishes as a model group for understanding the evolution of α-crystallin function. Zebrafish αA-crystallin displays similar structure and expression and increased chaperone-like activity compared to its human orthologue. Zebrafish αB-crystallin, however, has a truncated C-terminal extension, more limited expression and lower chaperone-like activity than its human orthologue. These data suggest that αA-crystallin physiological function may be conserved between zebrafish and mammals, while αB-crystallin physiological function has diverged. Understanding zebrafish α-crystallin physiology is necessary before this species can be used for developmental and genetic studies, and provides a foundation for further comparative studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA