Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34845015

RESUMEN

As coronaviruses (CoVs) replicate in the host cell cytoplasm, they rely on their own capping machinery to ensure the efficient translation of their messenger RNAs (mRNAs), protect them from degradation by cellular 5' exoribonucleases (ExoNs), and escape innate immune sensing. The CoV nonstructural protein 14 (nsp14) is a bifunctional replicase subunit harboring an N-terminal 3'-to-5' ExoN domain and a C-terminal (N7-guanine)-methyltransferase (N7-MTase) domain that is presumably involved in viral mRNA capping. Here, we aimed to integrate structural, biochemical, and virological data to assess the importance of conserved N7-MTase residues for nsp14's enzymatic activities and virus viability. We revisited the crystal structure of severe acute respiratory syndrome (SARS)-CoV nsp14 to perform an in silico comparative analysis between betacoronaviruses. We identified several residues likely involved in the formation of the N7-MTase catalytic pocket, which presents a fold distinct from the Rossmann fold observed in most known MTases. Next, for SARS-CoV and Middle East respiratory syndrome CoV, site-directed mutagenesis of selected residues was used to assess their importance for in vitro enzymatic activity. Most of the engineered mutations abolished N7-MTase activity, while not affecting nsp14-ExoN activity. Upon reverse engineering of these mutations into different betacoronavirus genomes, we identified two substitutions (R310A and F426A in SARS-CoV nsp14) abrogating virus viability and one mutation (H424A) yielding a crippled phenotype across all viruses tested. Our results identify the N7-MTase as a critical enzyme for betacoronavirus replication and define key residues of its catalytic pocket that can be targeted to design inhibitors with a potential pan-coronaviral activity spectrum.


Asunto(s)
Exorribonucleasas/química , Modelos Moleculares , Conformación Proteica , Proteínas no Estructurales Virales/química , Secuencia de Aminoácidos , Secuencia de Bases , Sitios de Unión , Dominio Catalítico , Secuencia Conservada , Exorribonucleasas/genética , Exorribonucleasas/metabolismo , Viabilidad Microbiana , Motivos de Nucleótidos , ARN Viral/química , ARN Viral/genética , Proteínas de Unión al ARN , Relación Estructura-Actividad , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Replicación Viral/genética
2.
J Virol ; 94(23)2020 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-32938769

RESUMEN

Coronaviruses (CoVs) stand out for their large RNA genome and complex RNA-synthesizing machinery comprising 16 nonstructural proteins (nsps). The bifunctional nsp14 contains 3'-to-5' exoribonuclease (ExoN) and guanine-N7-methyltransferase (N7-MTase) domains. While the latter presumably supports mRNA capping, ExoN is thought to mediate proofreading during genome replication. In line with such a role, ExoN knockout mutants of mouse hepatitis virus (MHV) and severe acute respiratory syndrome coronavirus (SARS-CoV) were previously reported to have crippled but viable hypermutation phenotypes. Remarkably, using reverse genetics, a large set of corresponding ExoN knockout mutations has now been found to be lethal for another betacoronavirus, Middle East respiratory syndrome coronavirus (MERS-CoV). For 13 mutants, viral progeny could not be recovered, unless-as happened occasionally-reversion had first occurred. Only a single mutant was viable, likely because its E191D substitution is highly conservative. Remarkably, a SARS-CoV-2 ExoN knockout mutant was found to be unable to replicate, resembling observations previously made for alpha- and gammacoronaviruses, but starkly contrasting with the documented phenotype of ExoN knockout mutants of the closely related SARS-CoV. Subsequently, we established in vitro assays with purified recombinant MERS-CoV nsp14 to monitor its ExoN and N7-MTase activities. All ExoN knockout mutations that proved lethal in reverse genetics were found to severely decrease ExoN activity while not affecting N7-MTase activity. Our study strongly suggests that CoV nsp14 ExoN has an additional function, which apparently is critical for primary viral RNA synthesis and thus differs from the proofreading function that, based on previous MHV and SARS-CoV studies, was proposed to boost longer-term replication fidelity.IMPORTANCE The bifunctional nsp14 subunit of the coronavirus replicase contains 3'-to-5' exoribonuclease (ExoN) and guanine-N7-methyltransferase domains. For the betacoronaviruses MHV and SARS-CoV, ExoN was reported to promote the fidelity of genome replication, presumably by mediating a form of proofreading. For these viruses, ExoN knockout mutants are viable while displaying an increased mutation frequency. Strikingly, we have now established that the equivalent ExoN knockout mutants of two other betacoronaviruses, MERS-CoV and SARS-CoV-2, are nonviable, suggesting an additional and critical ExoN function in their replication. This is remarkable in light of the very limited genetic distance between SARS-CoV and SARS-CoV-2, which is highlighted, for example, by 95% amino acid sequence identity in their nsp14 sequences. For (recombinant) MERS-CoV nsp14, both its enzymatic activities were evaluated using newly developed in vitro assays that can be used to characterize these key replicative enzymes in more detail and explore their potential as target for antiviral drug development.


Asunto(s)
Betacoronavirus/fisiología , Exorribonucleasas/metabolismo , Coronavirus del Síndrome Respiratorio de Oriente Medio/fisiología , Proteínas no Estructurales Virales/metabolismo , Replicación Viral , Animales , Betacoronavirus/enzimología , Betacoronavirus/genética , Dominio Catalítico , Línea Celular , Exorribonucleasas/química , Exorribonucleasas/genética , Fluorouracilo/farmacología , Técnicas de Inactivación de Genes , Genoma Viral , Humanos , Metilación , Coronavirus del Síndrome Respiratorio de Oriente Medio/enzimología , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , Mutación , ARN Viral/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , SARS-CoV-2 , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/genética , Ensayo de Placa Viral , Dedos de Zinc
3.
J Virol ; 93(18)2019 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-31243130

RESUMEN

Previously, the cyclophilin inhibitors cyclosporine (CsA) and alisporivir (ALV) were shown to inhibit the replication of diverse RNA viruses, including arteriviruses and coronaviruses, which both belong to the order Nidovirales In this study, we aimed to identify arterivirus proteins involved in the mode of action of cyclophilin inhibitors and to investigate how these compounds inhibit arterivirus RNA synthesis in the infected cell. Repeated passaging of the arterivirus prototype equine arteritis virus (EAV) in the presence of CsA revealed that reduced drug sensitivity is associated with the emergence of adaptive mutations in nonstructural protein 5 (nsp5), one of the transmembrane subunits of the arterivirus replicase polyprotein. Introduction of singular nsp5 mutations (nsp5 Q21R, Y113H, or A134V) led to an ∼2-fold decrease in sensitivity to CsA treatment, whereas combinations of mutations further increased EAV's CsA resistance. The detailed experimental characterization of engineered EAV mutants harboring CsA resistance mutations implicated nsp5 in arterivirus RNA synthesis. Particularly, in an in vitro assay, EAV RNA synthesis was far less sensitive to CsA treatment when nsp5 contained the adaptive mutations mentioned above. Interestingly, for increased sensitivity to the closely related drug ALV, CsA-resistant nsp5 mutants required the incorporation of an additional adaptive mutation, which resided in nsp2 (H114R), another transmembrane subunit of the arterivirus replicase. Our study provides the first evidence for the involvement of nsp2 and nsp5 in the mechanism underlying the inhibition of arterivirus replication by cyclophilin inhibitors.IMPORTANCE Currently, no approved treatments are available to combat infections with nidoviruses, a group of positive-stranded RNA viruses, including important zoonotic and veterinary pathogens. Previously, the cyclophilin inhibitors cyclosporine (CsA) and alisporivir (ALV) were shown to inhibit the replication of diverse nidoviruses (both arteriviruses and coronaviruses), and they may thus represent a class of pan-nidovirus inhibitors. In this study, using the arterivirus prototype equine arteritis virus, we have established that resistance to CsA and ALV treatment is associated with adaptive mutations in two transmembrane subunits of the viral replication machinery, nonstructural proteins 2 and 5. This is the first evidence for the involvement of specific replicase subunits of arteriviruses in the mechanism underlying the inhibition of their replication by cyclophilin inhibitors. Understanding this mechanism of action is of major importance to guide future drug design, both for nidoviruses and for other RNA viruses inhibited by these compounds.


Asunto(s)
Equartevirus/genética , ARN Polimerasa Dependiente del ARN/genética , Proteínas no Estructurales Virales/metabolismo , Arterivirus/genética , Línea Celular , Ciclofilinas/metabolismo , Ciclosporina/antagonistas & inhibidores , Equartevirus/metabolismo , Células HEK293 , Humanos , Mutación , Nidovirales/genética , Nidovirales/metabolismo , Inhibidores de la Síntesis del Ácido Nucleico/metabolismo , ARN Viral/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Proteínas no Estructurales Virales/genética , Replicación Viral
4.
Nucleic Acids Res ; 43(17): 8416-34, 2015 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-26304538

RESUMEN

RNA viruses encode an RNA-dependent RNA polymerase (RdRp) that catalyzes the synthesis of their RNA(s). In the case of positive-stranded RNA viruses belonging to the order Nidovirales, the RdRp resides in a replicase subunit that is unusually large. Bioinformatics analysis of this non-structural protein has now revealed a nidoviral signature domain (genetic marker) that is N-terminally adjacent to the RdRp and has no apparent homologs elsewhere. Based on its conservation profile, this domain is proposed to have nucleotidylation activity. We used recombinant non-structural protein 9 of the arterivirus equine arteritis virus (EAV) and different biochemical assays, including irreversible labeling with a GTP analog followed by a proteomics analysis, to demonstrate the manganese-dependent covalent binding of guanosine and uridine phosphates to a lysine/histidine residue. Most likely this was the invariant lysine of the newly identified domain, named nidovirus RdRp-associated nucleotidyltransferase (NiRAN), whose substitution with alanine severely diminished the described binding. Furthermore, this mutation crippled EAV and prevented the replication of severe acute respiratory syndrome coronavirus (SARS-CoV) in cell culture, indicating that NiRAN is essential for nidoviruses. Potential functions supported by NiRAN may include nucleic acid ligation, mRNA capping and protein-primed RNA synthesis, possibilities that remain to be explored in future studies.


Asunto(s)
Nidovirales/enzimología , Nucleotidiltransferasas/química , ARN Polimerasa Dependiente del ARN/química , Proteínas Virales/química , Sitios de Unión , Secuencia Conservada , Equartevirus/enzimología , Equartevirus/fisiología , Guanosina/química , Guanosina Trifosfato/metabolismo , Manganeso/química , Nidovirales/genética , Nucleótidos/metabolismo , Nucleotidiltransferasas/metabolismo , Fosfatos/química , Poliproteínas/química , Poliproteínas/metabolismo , Estructura Terciaria de Proteína , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/enzimología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/fisiología , Uridina/química , Uridina Trifosfato/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo , Replicación Viral
5.
Proc Natl Acad Sci U S A ; 111(37): E3900-9, 2014 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-25197083

RESUMEN

In addition to members causing milder human infections, the Coronaviridae family includes potentially lethal zoonotic agents causing severe acute respiratory syndrome (SARS) and the recently emerged Middle East respiratory syndrome. The ∼30-kb positive-stranded RNA genome of coronaviruses encodes a replication/transcription machinery that is unusually complex and composed of 16 nonstructural proteins (nsps). SARS-CoV nsp12, the canonical RNA-dependent RNA polymerase (RdRp), exhibits poorly processive RNA synthesis in vitro, at odds with the efficient replication of a very large RNA genome in vivo. Here, we report that SARS-CoV nsp7 and nsp8 activate and confer processivity to the RNA-synthesizing activity of nsp12. Using biochemical assays and reverse genetics, the importance of conserved nsp7 and nsp8 residues was probed. Whereas several nsp7 mutations affected virus replication to a limited extent, the replacement of two nsp8 residues (P183 and R190) essential for interaction with nsp12 and a third (K58) critical for the interaction of the polymerase complex with RNA were all lethal to the virus. Without a loss of processivity, the nsp7/nsp8/nsp12 complex can associate with nsp14, a bifunctional enzyme bearing 3'-5' exoribonuclease and RNA cap N7-guanine methyltransferase activities involved in replication fidelity and 5'-RNA capping, respectively. The identification of this tripartite polymerase complex that in turn associates with the nsp14 proofreading enzyme sheds light on how coronaviruses assemble an RNA-synthesizing machinery to replicate the largest known RNA genomes. This protein complex is a fascinating example of the functional integration of RNA polymerase, capping, and proofreading activities.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/metabolismo , Exorribonucleasas/metabolismo , Complejos Multiproteicos/metabolismo , Síndrome Respiratorio Agudo Grave/virología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/metabolismo , Proteínas no Estructurales Virales/metabolismo , Secuencia de Bases , Biocatálisis , Humanos , Datos de Secuencia Molecular , Proteínas Mutantes/metabolismo , Mutación/genética , Unión Proteica , ARN/metabolismo , ARN Viral/biosíntesis , Reproducibilidad de los Resultados , Genética Inversa , Replicación Viral
6.
Nucleic Acids Res ; 42(5): 3464-77, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24369429

RESUMEN

All positive-stranded RNA viruses with genomes>∼7 kb encode helicases, which generally are poorly characterized. The core of the nidovirus superfamily 1 helicase (HEL1) is associated with a unique N-terminal zinc-binding domain (ZBD) that was previously implicated in helicase regulation, genome replication and subgenomic mRNA synthesis. The high-resolution structure of the arterivirus helicase (nsp10), alone and in complex with a polynucleotide substrate, now provides first insights into the structural basis for nidovirus helicase function. A previously uncharacterized domain 1B connects HEL1 domains 1A and 2A to a long linker of ZBD, which further consists of a novel RING-like module and treble-clef zinc finger, together coordinating three Zn atoms. On substrate binding, major conformational changes were evident outside the HEL1 domains, notably in domain 1B. Structural characterization, mutagenesis and biochemistry revealed that helicase activity depends on the extensive relay of interactions between the ZBD and HEL1 domains. The arterivirus helicase structurally resembles the cellular Upf1 helicase, suggesting that nidoviruses may also use their helicases for post-transcriptional quality control of their large RNA genomes.


Asunto(s)
Equartevirus/enzimología , ARN Helicasas/química , Proteínas Virales/química , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , ADN/metabolismo , Modelos Moleculares , Degradación de ARNm Mediada por Codón sin Sentido , Estructura Terciaria de Proteína , ARN Helicasas/genética , ARN Helicasas/metabolismo , Eliminación de Secuencia , Proteínas Virales/genética , Proteínas Virales/metabolismo , Zinc/química
7.
J Biol Chem ; 289(37): 25783-96, 2014 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-25074927

RESUMEN

The RNA-synthesizing machinery of the severe acute respiratory syndrome Coronavirus (SARS-CoV) is composed of 16 non-structural proteins (nsp1-16) encoded by ORF1a/1b. The 148-amino acid nsp10 subunit contains two zinc fingers and is known to interact with both nsp14 and nsp16, stimulating their respective 3'-5' exoribonuclease and 2'-O-methyltransferase activities. Using alanine-scanning mutagenesis, in cellulo bioluminescence resonance energy transfer experiments, and in vitro pulldown assays, we have now identified the key residues on the nsp10 surface that interact with nsp14. The functional consequences of mutations introduced at these positions were first evaluated biochemically by monitoring nsp14 exoribonuclease activity. Disruption of the nsp10-nsp14 interaction abrogated the nsp10-driven activation of the nsp14 exoribonuclease. We further showed that the nsp10 surface interacting with nsp14 overlaps with the surface involved in the nsp10-mediated activation of nsp16 2'-O-methyltransferase activity, suggesting that nsp10 is a major regulator of SARS-CoV replicase function. In line with this notion, reverse genetics experiments supported an essential role of the nsp10 surface that interacts with nsp14 in SARS-CoV replication, as several mutations that abolished the interaction in vitro yielded a replication-negative viral phenotype. In contrast, mutants in which the nsp10-nsp16 interaction was disturbed proved to be crippled but viable. These experiments imply that the nsp10 surface that interacts with nsp14 and nsp16 and possibly other subunits of the viral replication complex may be a target for the development of antiviral compounds against pathogenic coronaviruses.


Asunto(s)
Infecciones por Coronavirus/enzimología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/enzimología , Proteínas no Estructurales Virales/genética , Replicación Viral/genética , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Infecciones por Coronavirus/patología , Cristalografía por Rayos X , Exorribonucleasas/genética , Exorribonucleasas/metabolismo , Humanos , Metiltransferasas/genética , Metiltransferasas/metabolismo , Mutagénesis , Mapas de Interacción de Proteínas/genética , Proteínas no Estructurales Virales/metabolismo
8.
J Gen Virol ; 96(9): 2643-2655, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26041874

RESUMEN

The 3'-terminal domain of the most conserved ORF1b in three of the four families of the order Nidovirales (except for the family Arteriviridae) encodes a (putative) 2'-O-methyltransferase (2'-O-MTase), known as non structural protein (nsp) 16 in the family Coronaviridae and implicated in methylation of the 5' cap structure of nidoviral mRNAs. As with coronavirus transcripts, arterivirus mRNAs are assumed to possess a 5' cap although no candidate MTases have been identified thus far. To address this knowledge gap, we analysed the uncharacterized nsp12 of arteriviruses, which occupies the ORF1b position equivalent to that of the nidovirus 2'-O-MTase (coronavirus nsp16). In our in-depth bioinformatics analysis of nsp12, the protein was confirmed to be family specific whilst having diverged much further than other nidovirus ORF1b-encoded proteins, including those of the family Coronaviridae. Only one invariant and several partially conserved, predominantly aromatic residues were identified in nsp12, which may adopt a structure with alternating α-helices and ß-strands, an organization also found in known MTases. However, no statistically significant similarity was found between nsp12 and the twofold larger coronavirus nsp16, nor could we detect MTase activity in biochemical assays using recombinant equine arteritis virus (EAV) nsp12. Our further analysis established that this subunit is essential for replication of this prototypic arterivirus. Using reverse genetics, we assessed the impact of 25 substitutions at 14 positions, yielding virus phenotypes ranging from WT-like to non-viable. Notably, replacement of the invariant phenylalanine 109 with tyrosine was lethal. We concluded that nsp12 plays an essential role during EAV replication, possibly by acting as a co-factor for another enzyme.


Asunto(s)
Proteínas Arqueales/metabolismo , Coronavirus/enzimología , Equartevirus/metabolismo , Metiltransferasas/metabolismo , Poliproteínas/metabolismo , Proteínas no Estructurales Virales/metabolismo , Secuencia de Aminoácidos , Proteínas Arqueales/química , Proteínas Arqueales/genética , Arterivirus/química , Arterivirus/enzimología , Arterivirus/genética , Coronavirus/química , Coronavirus/genética , Equartevirus/química , Equartevirus/genética , Metilación , Metiltransferasas/química , Metiltransferasas/genética , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Poliproteínas/química , Poliproteínas/genética , Procesamiento Proteico-Postraduccional , ARN Viral/genética , ARN Viral/metabolismo , Alineación de Secuencia , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/genética
9.
Bioorg Med Chem Lett ; 25(15): 2923-6, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-26048809

RESUMEN

A series of doubly flexible nucleoside analogues were designed based on the acyclic sugar scaffold of acyclovir and the flex-base moiety found in the fleximers. The target compounds were evaluated for their antiviral potential and found to inhibit several coronaviruses. Significantly, compound 2 displayed selective antiviral activity (CC50 >3× EC50) towards human coronavirus (HCoV)-NL63 and Middle East respiratory syndrome-coronavirus, but not severe acute respiratory syndrome-coronavirus. In the case of HCoV-NL63 the activity was highly promising with an EC50 <10 µM and a CC50 >100 µM. As such, these doubly flexible nucleoside analogues are viewed as a novel new class of drug candidates with potential for potent inhibition of coronaviruses.


Asunto(s)
Aciclovir/análogos & derivados , Aciclovir/farmacología , Antivirales/química , Antivirales/farmacología , Infecciones por Coronavirus/tratamiento farmacológico , Coronavirus/efectos de los fármacos , Animales , Chlorocebus aethiops , Coronavirus/fisiología , Coronavirus Humano NL63/efectos de los fármacos , Coronavirus Humano NL63/fisiología , Diseño de Fármacos , Humanos , Coronavirus del Síndrome Respiratorio de Oriente Medio/efectos de los fármacos , Coronavirus del Síndrome Respiratorio de Oriente Medio/fisiología , Nucleósidos/química , Nucleósidos/farmacología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/efectos de los fármacos , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/fisiología , Células Vero , Replicación Viral/efectos de los fármacos
10.
Antimicrob Agents Chemother ; 58(8): 4875-84, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24841269

RESUMEN

Coronaviruses can cause respiratory and enteric disease in a wide variety of human and animal hosts. The 2003 outbreak of severe acute respiratory syndrome (SARS) first demonstrated the potentially lethal consequences of zoonotic coronavirus infections in humans. In 2012, a similar previously unknown coronavirus emerged, Middle East respiratory syndrome coronavirus (MERS-CoV), thus far causing over 650 laboratory-confirmed infections, with an unexplained steep rise in the number of cases being recorded over recent months. The human MERS fatality rate of ∼ 30% is alarmingly high, even though many deaths were associated with underlying medical conditions. Registered therapeutics for the treatment of coronavirus infections are not available. Moreover, the pace of drug development and registration for human use is generally incompatible with strategies to combat emerging infectious diseases. Therefore, we have screened a library of 348 FDA-approved drugs for anti-MERS-CoV activity in cell culture. If such compounds proved sufficiently potent, their efficacy might be directly assessed in MERS patients. We identified four compounds (chloroquine, chlorpromazine, loperamide, and lopinavir) inhibiting MERS-CoV replication in the low-micromolar range (50% effective concentrations [EC(50)s], 3 to 8 µM). Moreover, these compounds also inhibit the replication of SARS coronavirus and human coronavirus 229E. Although their protective activity (alone or in combination) remains to be assessed in animal models, our findings may offer a starting point for treatment of patients infected with zoonotic coronaviruses like MERS-CoV. Although they may not necessarily reduce viral replication to very low levels, a moderate viral load reduction may create a window during which to mount a protective immune response.


Asunto(s)
Antivirales/farmacología , Coronavirus Humano 229E/efectos de los fármacos , Coronavirus del Síndrome Respiratorio de Oriente Medio/efectos de los fármacos , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Línea Celular , Chlorocebus aethiops , Cloroquina/farmacología , Clorpromazina/farmacología , Coronavirus Humano 229E/fisiología , Aprobación de Drogas , Hepatocitos/efectos de los fármacos , Hepatocitos/patología , Hepatocitos/virología , Ensayos Analíticos de Alto Rendimiento , Humanos , Concentración 50 Inhibidora , Loperamida/farmacología , Lopinavir/farmacología , Coronavirus del Síndrome Respiratorio de Oriente Medio/fisiología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/fisiología , Células Vero , Replicación Viral/efectos de los fármacos
11.
J Gen Virol ; 94(Pt 8): 1749-1760, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23620378

RESUMEN

Coronavirus (CoV) infections are commonly associated with respiratory and enteric disease in humans and animals. The 2003 outbreak of severe acute respiratory syndrome (SARS) highlighted the potentially lethal consequences of CoV-induced disease in humans. In 2012, a novel CoV (Middle East Respiratory Syndrome coronavirus; MERS-CoV) emerged, causing 49 human cases thus far, of which 23 had a fatal outcome. In this study, we characterized MERS-CoV replication and cytotoxicity in human and monkey cell lines. Electron microscopy of infected Vero cells revealed extensive membrane rearrangements, including the formation of double-membrane vesicles and convoluted membranes, which have been implicated previously in the RNA synthesis of SARS-CoV and other CoVs. Following infection, we observed rapidly increasing viral RNA synthesis and release of high titres of infectious progeny, followed by a pronounced cytopathology. These characteristics were used to develop an assay for antiviral compound screening in 96-well format, which was used to identify cyclosporin A as an inhibitor of MERS-CoV replication in cell culture. Furthermore, MERS-CoV was found to be 50-100 times more sensitive to alpha interferon (IFN-α) treatment than SARS-CoV, an observation that may have important implications for the treatment of MERS-CoV-infected patients. MERS-CoV infection did not prevent the IFN-induced nuclear translocation of phosphorylated STAT1, in contrast to infection with SARS-CoV where this block inhibits the expression of antiviral genes. These findings highlight relevant differences between these distantly related zoonotic CoVs in terms of their interaction with and evasion of the cellular innate immune response.


Asunto(s)
Antivirales/farmacología , Coronavirus/efectos de los fármacos , Coronavirus/fisiología , Ciclosporina/farmacología , Efecto Citopatogénico Viral , Interferón-alfa/farmacología , Replicación Viral , Animales , Línea Celular , Membrana Celular/ultraestructura , Chlorocebus aethiops , Coronavirus/patogenicidad , Evaluación Preclínica de Medicamentos , Humanos , Pruebas de Sensibilidad Microbiana , Microscopía Electrónica de Transmisión
12.
J Virol ; 85(14): 7449-53, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21561912

RESUMEN

Arterivirus replicase polyproteins are cleaved into at least 13 mature nonstructural proteins (nsps), and in particular the nsp5-to-nsp8 region is subject to a complex processing cascade. The function of the largest subunit from this region, nsp7, which is further cleaved into nsp7α and nsp7ß, is unknown. Using nuclear magnetic resonance (NMR) spectroscopy, we determined the solution structure of nsp7α of equine arteritis virus, revealing an interesting unique fold for this protein but thereby providing little clue to its possible functions. Nevertheless, structure-based reverse genetics studies established the importance of nsp7/nsp7α for viral RNA synthesis, thus providing a basis for future studies.


Asunto(s)
Arterivirus/genética , Proteínas no Estructurales Virales/genética , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular
13.
J Gen Virol ; 92(Pt 5): 1097-1106, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21307223

RESUMEN

The arterivirus family (order Nidovirales) of single-stranded, positive-sense RNA viruses includes porcine respiratory and reproductive syndrome virus and equine arteritis virus (EAV). Their replicative enzymes are translated from their genomic RNA, while their seven structural proteins are encoded by a set of small, partially overlapping genes in the genomic 3'-proximal region. The latter are expressed via synthesis of a set of subgenomic mRNAs that, in general, are functionally monocistronic (except for a bicistronic mRNA encoding the E and GP2 proteins). ORF5, which encodes the major glycoprotein GP5, has been used extensively for phylogenetic analyses. However, an in-depth computational analysis now reveals the arterivirus-wide conservation of an additional AUG-initiated ORF, here termed ORF5a, that overlaps the 5' end of ORF5. The pattern of substitutions across sequence alignments indicated that ORF5a is subject to functional constraints at the amino acid level, while an analysis of substitutions at synonymous sites in ORF5 revealed a greatly reduced frequency of substitution in the portion of ORF5 that is overlapped by ORF5a. The 43-64 aa ORF5a protein and GP5 are probably expressed from the same subgenomic mRNA, via a translation initiation mechanism involving leaky ribosomal scanning. Inactivation of ORF5a expression by reverse genetics yielded a severely crippled EAV mutant, which displayed lower titres and a tiny plaque phenotype. These defects, which could be partially complemented in ORF5a-expressing cells, indicate that the novel protein, which may be the eighth structural protein of arteriviruses, is expressed and important for arterivirus infection.


Asunto(s)
Antígenos Virales/genética , Equartevirus/genética , Proteínas del Envoltorio Viral/genética , Proteínas Estructurales Virales/genética , Secuencia de Aminoácidos , Sustitución de Aminoácidos/genética , Secuencia de Bases , Secuencia Conservada , Silenciador del Gen , Datos de Secuencia Molecular , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Homología de Secuencia de Aminoácido , Ensayo de Placa Viral , Replicación Viral
14.
J Virol ; 84(15): 7869-79, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20484504

RESUMEN

The ubiquitin-proteasome system (UPS) is a key player in regulating the intracellular sorting and degradation of proteins. In this study we investigated the role of the UPS in different steps of the coronavirus (CoV) infection cycle. Inhibition of the proteasome by different chemical compounds (i.e., MG132, epoxomicin, and Velcade) appeared to not only impair entry but also RNA synthesis and subsequent protein expression of different CoVs (i.e., mouse hepatitis virus [MHV], feline infectious peritonitis virus, and severe acute respiratory syndrome CoV). MHV assembly and release were, however, not appreciably affected by these compounds. The inhibitory effect on CoV protein expression did not appear to result from a general inhibition of translation due to induction of a cellular stress response by the inhibitors. Stress-induced phosphorylation of eukaryotic translation initiation factor 2alpha (eIF2alpha) generally results in impaired initiation of protein synthesis, but the sensitivity of MHV infection to proteasome inhibitors was unchanged in cells lacking a phosphorylatable eIF2alpha. MHV infection was affected not only by inhibition of the proteasome but also by interfering with protein ubiquitination. Viral protein expression was reduced in cells expressing a temperature-sensitive ubiquitin-activating enzyme E1 at the restrictive temperature, as well as in cells in which ubiquitin was depleted by using small interfering RNAs. Under these conditions, the susceptibility of the cells to virus infection was, however, not affected, excluding an important role of ubiquitination in virus entry. Our observations reveal an important role of the UPS in multiple steps of the CoV infection cycle and identify the UPS as a potential drug target to modulate the impact of CoV infection.


Asunto(s)
Infecciones por Coronavirus/virología , Coronavirus Felino/patogenicidad , Virus de la Hepatitis Murina/patogenicidad , Complejo de la Endopetidasa Proteasomal/metabolismo , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/patogenicidad , Ubiquitina/metabolismo , Animales , Ácidos Borónicos/farmacología , Bortezomib , Gatos , Línea Celular , Chlorocebus aethiops , Leupeptinas/farmacología , Ratones , Oligopéptidos/farmacología , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasoma , Pirazinas/farmacología , Internalización del Virus , Liberación del Virus , Replicación Viral
15.
J Virol ; 82(9): 4480-91, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18305048

RESUMEN

The replication/transcription complex of the arterivirus equine arteritis virus (EAV) is associated with paired membranes and/or double-membrane vesicles (DMVs) that are thought to originate from the endoplasmic reticulum. Previously, coexpression of two putative transmembrane nonstructural proteins (nsp2 and nsp3) was found to suffice to induce these remarkable membrane structures, which are typical of arterivirus infection. Here, site-directed mutagenesis was used to investigate the role of nsp3 in more detail. Liberation of the hydrophobic N terminus of nsp3, which is normally achieved by cleavage of the nsp2/3 junction by the nsp2 protease, was nonessential for the formation of DMVs. However, the substitution of each of a cluster of four conserved cysteine residues, residing in a predicted luminal loop of nsp3, completely blocked DMV formation. Some of these mutant nsp3 proteins were also found to be highly cytotoxic, in particular, exerting a dramatic effect on the endoplasmic reticulum. The functionality of an engineered N glycosylation site in the cysteine-containing loop confirmed both its presence in the lumen and the transmembrane nature of nsp3. This mutant displayed an interesting intermediate phenotype in terms of DMV formation, with paired and curved membranes being formed, but DMV formation apparently being impaired. The effect of nsp3 mutations on replicase polyprotein processing was investigated, and several mutations were found to influence processing of the region downstream of nsp3 by the nsp4 main protease. When tested in an EAV reverse genetics system, none of the nsp3 mutations was tolerated, again underlining the crucial role of the protein in the arterivirus life cycle.


Asunto(s)
Arterivirus/química , Membranas Intracelulares/virología , Proteínas no Estructurales Virales/fisiología , Animales , Arterivirus/fisiología , Arterivirus/ultraestructura , Caballos , Complejos Multiproteicos , Mutagénesis Sitio-Dirigida , Transcripción Genética , Proteínas no Estructurales Virales/genética , Replicación Viral
16.
Front Microbiol ; 10: 1813, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31440227

RESUMEN

Among RNA viruses, the order Nidovirales stands out for including viruses with the largest RNA genomes currently known. Nidoviruses employ a complex RNA-synthesizing machinery comprising a variety of non-structural proteins (nsps). One of the postulated drivers of the expansion of nidovirus genomes is the presence of a proofreading 3'-to-5' exoribonuclease (ExoN) belonging to the DEDDh family. ExoN may enhance the fidelity of RNA synthesis by correcting nucleotide incorporation errors made by the RNA-dependent RNA polymerase. Here, we review our current understanding of ExoN evolution, structure, and function. Most experimental data are derived from studies of the ExoN domain of coronaviruses (CoVs), which were triggered by the bioinformatics-based identification of ExoN in the genome of severe acute respiratory syndrome coronavirus (SARS-CoV) and its relatives in 2003. Although convincing data supporting the proofreading hypothesis have been obtained, from biochemical assays and studies with CoV mutants lacking ExoN functionality, the features of ExoN from most other nidovirus families remain to be characterized. Remarkably, viable ExoN knockout mutants were obtained only for two CoVs, mouse hepatitis virus (MHV) and SARS-CoV, whose RNA synthesis and replication kinetics were mildly affected by the lack of ExoN function. In several other CoV species, ExoN inactivation was not tolerated, and knockout mutants could not be rescued when launched using a reverse genetics system. This suggests that ExoN is also critical for primary viral RNA synthesis, a property that poorly matches the profile of an enzyme that would merely boost long-term replication fidelity. In CoVs, ExoN resides in a bifunctional replicase subunit (nsp14) whose C-terminal part has (N7-guanine)-methyltransferase activity. The crystal structure of SARS-CoV nsp14 has shed light on the interplay between these two domains, and on nsp14's interactions with nsp10, a co-factor that strongly enhances ExoN activity in vitro assays. Further elucidation of the structure-function relationships of ExoN and its interactions with other (viral and/or host) members of the CoV replication machinery will be key to understanding the enzyme's role in viral RNA synthesis and pathogenesis, and may contribute to the design of new approaches to combat emerging nidoviruses.

17.
J Med Chem ; 62(13): 6346-6362, 2019 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-31244113

RESUMEN

The 6'-fluorinated aristeromycins were designed as dual-target antiviral compounds aimed at inhibiting both the viral RNA-dependent RNA polymerase (RdRp) and the host cell S-adenosyl-l-homocysteine (SAH) hydrolase, which would indirectly target capping of viral RNA. The introduction of a fluorine at the 6'-position enhanced the inhibition of SAH hydrolase and the activity against RNA viruses. The adenosine and N6-methyladenosine analogues 2a-e showed potent inhibition against SAH hydrolase, while only the adenosine derivatives 2a-c exhibited potent antiviral activity against all tested RNA viruses such as Middle East respiratory syndrome-coronavirus (MERS-CoV), severe acute respiratory syndrome-coronavirus, chikungunya virus, and/or Zika virus. 6',6'-Difluoroaristeromycin (2c) showed the strongest antiviral effect for MERS-CoV, with a ∼2.5 log reduction in infectious progeny titer in viral load reduction assay. The phosphoramidate prodrug 3a also demonstrated potent broad-spectrum antiviral activity, possibly by inhibiting the viral RdRp. This study shows that 6'-fluorinated aristeromycins can serve as starting points for the development of broad-spectrum antiviral agents that target RNA viruses.


Asunto(s)
Adenosina/análogos & derivados , Antivirales/farmacología , Inhibidores Enzimáticos/farmacología , Virus ARN/efectos de los fármacos , Adenosina/síntesis química , Adenosina/farmacología , Adenosilhomocisteinasa/antagonistas & inhibidores , Animales , Antivirales/síntesis química , Chlorocebus aethiops , Diseño de Fármacos , Inhibidores Enzimáticos/síntesis química , Halogenación , Humanos , Estructura Molecular , Profármacos/síntesis química , Profármacos/farmacología , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , Células Vero
18.
Virology ; 522: 46-55, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30014857

RESUMEN

Cyclophilins (Cyps) belong to the family of peptidyl-prolyl isomerases (PPIases). The PPIase activity of most Cyps is inhibited by the immunosuppressive drug cyclosporin A and several of its non-immunosuppressive analogs, which can also block the replication of nidoviruses (arteriviruses and coronaviruses). Cyclophilins have been reported to play an essential role in the replication of several other RNA viruses, including human immunodeficiency virus-1, hepatitis C virus, and influenza A virus. Likewise, the replication of various nidoviruses was reported to depend on Cyps or other PPIases. This review summarizes our current understanding of this class of nidovirus-host interactions, including the potential function of in particular CypA and the inhibitory effect of Cyp inhibitors. Also the involvement of the FK-506-binding proteins and parvulins is discussed. The nidovirus data are placed in a broader perspective by summarizing the most relevant data on Cyp interactions and Cyp inhibitors for other RNA viruses.


Asunto(s)
Ciclofilinas/antagonistas & inhibidores , Ciclofilinas/metabolismo , Interacciones Huésped-Patógeno , Nidovirales/fisiología , Replicación Viral , Animales , Humanos , Isomerasa de Peptidilprolil/antagonistas & inhibidores , Isomerasa de Peptidilprolil/metabolismo
19.
Virology ; 517: 148-156, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29249267

RESUMEN

Cyclophilin A (CypA) is an important host factor in the replication of a variety of RNA viruses. Also the replication of several nidoviruses was reported to depend on CypA, although possibly not to the same extent. These prior studies are difficult to compare, since different nidoviruses, cell lines and experimental set-ups were used. Here, we investigated the CypA dependence of three distantly related nidoviruses that can all replicate in Huh7 cells: the arterivirus equine arteritis virus (EAV), the alphacoronavirus human coronavirus 229E (HCoV-229E), and the betacoronavirus Middle East respiratory syndrome coronavirus (MERS-CoV). The replication of these viruses was compared in the same parental Huh7 cells and in CypA-knockout Huh7 cells generated using CRISPR/Cas9-technology. CypA depletion reduced EAV yields by ~ 3-log, whereas MERS-CoV progeny titers were modestly reduced (3-fold) and HCoV-229E replication was unchanged. This study reveals that the replication of nidoviruses can differ strikingly in its dependence on cellular CypA.


Asunto(s)
Arterivirus/fisiología , Coronavirus/fisiología , Ciclofilina A/metabolismo , Cultivo de Virus , Replicación Viral/fisiología , Animales , Línea Celular , Cricetinae , Humanos
20.
Virus Res ; 234: 58-73, 2017 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-28174054

RESUMEN

Coronaviruses and arteriviruses are distantly related human and animal pathogens that belong to the order Nidovirales. Nidoviruses are characterized by their polycistronic plus-stranded RNA genome, the production of subgenomic mRNAs and the conservation of a specific array of replicase domains, including key RNA-synthesizing enzymes. Coronaviruses (26-34 kilobases) have the largest known RNA genomes and their replication presumably requires a processive RNA-dependent RNA polymerase (RdRp) and enzymatic functions that suppress the consequences of the typically high error rate of viral RdRps. The arteriviruses have significantly smaller genomes and form an intriguing package with the coronaviruses to analyse viral RdRp evolution and function. The RdRp domain of nidoviruses resides in a cleavage product of the replicase polyprotein named non-structural protein (nsp) 12 in coronaviruses and nsp9 in arteriviruses. In all nidoviruses, the C-terminal RdRp domain is linked to a conserved N-terminal domain, which has been coined NiRAN (nidovirus RdRp-associated nucleotidyl transferase). Although no structural information is available, the functional characterization of the nidovirus RdRp and the larger enzyme complex of which it is part, has progressed significantly over the past decade. In coronaviruses several smaller, non-enzymatic nsps were characterized that direct RdRp function, while a 3'-to-5' exoribonuclease activity in nsp14 was implicated in fidelity. In arteriviruses, the nsp1 subunit was found to maintain the balance between genome replication and subgenomic mRNA production. Understanding RdRp behaviour and interactions during RNA synthesis and subsequent processing will be key to rationalising the evolutionary success of nidoviruses and the development of antiviral strategies.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/metabolismo , Nidovirales/enzimología , Nidovirales/fisiología , ARN Viral/metabolismo , Transcripción Genética , Replicación Viral , Animales , Humanos , Multimerización de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA