Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Cell ; 159(4): 775-88, 2014 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-25417155

RESUMEN

Radial glial progenitors (RGPs) are responsible for producing nearly all neocortical neurons. To gain insight into the patterns of RGP division and neuron production, we quantitatively analyzed excitatory neuron genesis in the mouse neocortex using Mosaic Analysis with Double Markers, which provides single-cell resolution of progenitor division patterns and potential in vivo. We found that RGPs progress through a coherent program in which their proliferative potential diminishes in a predictable manner. Upon entry into the neurogenic phase, individual RGPs produce ?8-9 neurons distributed in both deep and superficial layers, indicating a unitary output in neuronal production. Removal of OTX1, a transcription factor transiently expressed in RGPs, results in both deep- and superficial-layer neuron loss and a reduction in neuronal unit size. Moreover, ?1/6 of neurogenic RGPs proceed to produce glia. These results suggest that progenitor behavior and histogenesis in the mammalian neocortex conform to a remarkably orderly and deterministic program.


Asunto(s)
Neocórtex/citología , Neurogénesis , Animales , Ratones , Neuroglía/metabolismo , Neuronas/metabolismo , Factores de Transcripción Otx/metabolismo , Coloración y Etiquetado/métodos , Células Madre/metabolismo
2.
Proc Natl Acad Sci U S A ; 111(3): 1014-9, 2014 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-24381158

RESUMEN

The orientation of the mitotic spindle determines the relative size and position of the daughter cells and influences the asymmetric inheritance of localized cell fate determinants. The onset of mammalian neurogenesis, for example, coincides with changes in spindle orientation. To address the functional implications of this and related phenomena, precise methods for determining the orientation of the mitotic spindle in complex tissues are needed. Here, we present methodology for the analysis of spindle orientation in 3D. Our method allows statistical analysis and modeling of spindle orientation and involves two parameters for horizontal and vertical bias that can unambiguously describe the distribution of spindle orientations in an experimental sample. We find that 3D analysis leads to systematically different results from 2D analysis and, surprisingly, truly random spindle orientations do not result in equal numbers of horizontal and vertical orientations. We show that our method can describe the distribution of spindle orientation angles under different biological conditions. As an example of biological application we demonstrate that the adapter protein Inscuteable (mInsc) can actively promote vertical spindle orientation in apical progenitors during mouse neurogenesis.


Asunto(s)
Huso Acromático , Algoritmos , Animales , Proteínas de Ciclo Celular/metabolismo , Diferenciación Celular/genética , División Celular , Linaje de la Célula , Polaridad Celular/genética , Simulación por Computador , Imagenología Tridimensional , Ratones , Neurogénesis/fisiología , Neuronas/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Probabilidad , Procesos Estocásticos
3.
Neuron ; 94(3): 517-533.e3, 2017 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-28472654

RESUMEN

The concerted production of neurons and glia by neural stem cells (NSCs) is essential for neural circuit assembly. In the developing cerebral cortex, radial glia progenitors (RGPs) generate nearly all neocortical neurons and certain glia lineages. RGP proliferation behavior shows a high degree of non-stochasticity, thus a deterministic characteristic of neuron and glia production. However, the cellular and molecular mechanisms controlling RGP behavior and proliferation dynamics in neurogenesis and glia generation remain unknown. By using mosaic analysis with double markers (MADM)-based genetic paradigms enabling the sparse and global knockout with unprecedented single-cell resolution, we identified Lgl1 as a critical regulatory component. We uncover Lgl1-dependent tissue-wide community effects required for embryonic cortical neurogenesis and novel cell-autonomous Lgl1 functions controlling RGP-mediated glia genesis and postnatal NSC behavior. These results suggest that NSC-mediated neuron and glia production is tightly regulated through the concerted interplay of sequential Lgl1-dependent global and cell intrinsic mechanisms.


Asunto(s)
Proliferación Celular/genética , Glicoproteínas/genética , Neocórtex/embriología , Células-Madre Neurales/metabolismo , Neurogénesis/genética , Neuroglía/metabolismo , Neuronas/metabolismo , Animales , Polaridad Celular , Embrión de Mamíferos/metabolismo , Glicoproteínas/metabolismo , Ratones , Ratones Noqueados , Microscopía Confocal , Neocórtex/crecimiento & desarrollo , Neocórtex/patología , Células-Madre Neurales/citología , Neuroglía/citología , Neuronas/citología
4.
Neuron ; 93(4): 777-791.e3, 2017 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-28231465

RESUMEN

The developmental mechanisms regulating the number of adult neural stem cells (aNSCs) are largely unknown. Here we show that the cleavage plane orientation in murine embryonic radial glia cells (RGCs) regulates the number of aNSCs in the lateral ganglionic eminence (LGE). Randomizing spindle orientation in RGCs by overexpression of Insc or a dominant-negative form of Lgn (dnLgn) reduces the frequency of self-renewing asymmetric divisions while favoring symmetric divisions generating two SNPs. Importantly, these changes during embryonic development result in reduced seeding of aNSCs. Interestingly, no effects on aNSC numbers were observed when Insc was overexpressed in postnatal RGCs or aNSCs. These data suggest a new mechanism for controlling aNSC numbers and show that the role of spindle orientation during brain development is highly time and region dependent.


Asunto(s)
Células Madre Adultas/citología , Diferenciación Celular/fisiología , División Celular/fisiología , Polaridad Celular/fisiología , Proliferación Celular/fisiología , Células-Madre Neurales/citología , Animales , Ciclo Celular/fisiología , Ratones Transgénicos , Huso Acromático
5.
Nat Cell Biol ; 16(8): 758-69, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25016959

RESUMEN

Asymmetric cell divisions allow stem cells to balance proliferation and differentiation. During embryogenesis, murine epidermis expands rapidly from a single layer of unspecified basal layer progenitors to a stratified, differentiated epithelium. Morphogenesis involves perpendicular (asymmetric) divisions and the spindle orientation protein LGN, but little is known about how the apical localization of LGN is regulated. Here, we combine conventional genetics and lentiviral-mediated in vivo RNAi to explore the functions of the LGN-interacting proteins Par3, mInsc and Gαi3. Whereas loss of each gene alone leads to randomized division angles, combined loss of Gnai3 and mInsc causes a phenotype of mostly planar divisions, akin to loss of LGN. These findings lend experimental support for the hitherto untested model that Par3-mInsc and Gαi3 act cooperatively to polarize LGN and promote perpendicular divisions. Finally, we uncover a developmental switch between delamination-driven early stratification and spindle-orientation-dependent differentiation that occurs around E15, revealing a two-step mechanism underlying epidermal maturation.


Asunto(s)
Proteínas Portadoras/fisiología , Moléculas de Adhesión Celular/fisiología , Proteínas de Ciclo Celular/fisiología , Células Epidérmicas , Epidermis/fisiología , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/fisiología , Proteínas Adaptadoras Transductoras de Señales , Animales , Tipificación del Cuerpo , Proteínas Portadoras/antagonistas & inhibidores , Proteínas Portadoras/genética , Moléculas de Adhesión Celular/antagonistas & inhibidores , Moléculas de Adhesión Celular/genética , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/genética , Diferenciación Celular/genética , Diferenciación Celular/fisiología , División Celular/genética , División Celular/fisiología , Epidermis/embriología , Femenino , Subunidad alfa de la Proteína de Unión al GTP Gi2/antagonistas & inhibidores , Subunidad alfa de la Proteína de Unión al GTP Gi2/genética , Subunidad alfa de la Proteína de Unión al GTP Gi2/fisiología , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/antagonistas & inhibidores , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Biológicos , Embarazo , Interferencia de ARN , Huso Acromático/fisiología
6.
Neuron ; 72(2): 269-84, 2011 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-22017987

RESUMEN

Neurons in the mammalian neocortex arise from asymmetric divisions of progenitors residing in the ventricular zone. While in most progenitor divisions, the mitotic spindle is parallel to the ventricular surface, some progenitors reorient the spindle and divide in oblique orientations. Here, we use conditional deletion and overexpression of mouse Inscuteable (mInsc) to analyze the relevance of spindle reorientation in cortical progenitors. Mutating mInsc almost abolishes oblique and vertical mitotic spindles, while mInsc overexpression has the opposite effect. Our data suggest that oblique divisions are essential for generating the correct numbers of neurons in all cortical layers. Using clonal analysis, we demonstrate that spindle orientation affects the rate of indirect neurogenesis, a process where progenitors give rise to basal progenitors, which in turn divide symmetrically into two differentiating neurons. Our results indicate that the orientation of progenitor cell divisions is important for correct lineage specification in the developing mammalian brain.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Linaje de la Célula/fisiología , Polaridad Celular/fisiología , Neocórtex/crecimiento & desarrollo , Neurogénesis/fisiología , Neuronas/metabolismo , Huso Acromático/metabolismo , Alelos , Animales , Proteínas de Ciclo Celular/genética , Ratones , Ratones Transgénicos , Mutación , Neocórtex/metabolismo , Células-Madre Neurales/metabolismo , Huso Acromático/genética
8.
Dev Biol ; 276(2): 464-75, 2004 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-15581879

RESUMEN

The thyroid gland originates from the ventral floor of the foregut as a thickening of the endodermal cell layer. The molecular mechanisms underlying the early steps of thyroid morphogenesis are not known. Gene targeting experiments have contributed to the identification of several transcription factors, in general playing a role in the proliferation, survival, and migration of the thyroid cell precursors. The experiments reported here analyze the expression of the transcription factors Titf1, Hhex, Pax8, and Foxe1 in the thyroid primordium of null mutants of each of them. We found that most of these transcription factors are linked in an integrated regulatory network, each of them controlling the presence of other members of the network. The expression of Foxe1 is regulated in an intriguing fashion as it is strongly dependent on the presence of Pax8 in thyroid precursor cells, while the expression of the same gene in the pharyngeal endoderm surrounding the primordium is dependent on Sonic hedgehog (Shh)-derived signaling. Moreover, by the generation of mouse mutants expressing Foxe1 exclusively in the thyroid primordium, we provide a better understanding of the role of Foxe1 in these cells in order to acquire the competence to migrate into the underlying mesenchyme. In conclusion, we provide the first evidence of gene expression programs, controlled by a hierarchy of transcription factors expressed in the thyroid presumptive gut domain and directing the progression of thyroid morphogenesis.


Asunto(s)
Movimiento Celular , Supervivencia Celular , Proteínas de Unión al ADN/metabolismo , Regulación del Desarrollo de la Expresión Génica , Morfogénesis , Proteínas Nucleares/metabolismo , Glándula Tiroides , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Animales , Proteínas de Unión al ADN/genética , Endodermo/citología , Endodermo/metabolismo , Factores de Transcripción Forkhead , Proteínas Hedgehog , Hibridación in Situ , Ratones , Ratones Endogámicos , Ratones Noqueados , Proteínas Nucleares/genética , Factor de Transcripción PAX8 , Factores de Transcripción Paired Box , Transducción de Señal/fisiología , Células Madre/citología , Células Madre/metabolismo , Glándula Tiroides/citología , Glándula Tiroides/embriología , Glándula Tiroides/metabolismo , Transactivadores/genética , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA