Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Langmuir ; 40(18): 9414-9425, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38651693

RESUMEN

Emulsions have become a crucial product form in various industries in modern times. Expanding the class of substances used to stabilize emulsions can improve their stability or introduce new properties. Particularly, the use of stimuli-responsive microgels makes it possible to create "smart" emulsions whose stability can be controlled by changing any of the specified stimuli. Thus, finding new ways to stabilize emulsions may broaden their application. In this work, for the first time, we applied microgels based on interpenetrating polymeric networks (IPNs) of poly(N-isopropylacrylamide) (PNIPAM) and poly(acrylic acid) (PAA) as stabilizing agents for "oil-in-water" emulsions. We have demonstrated that emulsions stabilized by such soft particles can remain colloidally stable for an extended period, even after being heated up to 40 °C, which is above the lower critical solution temperature (LCST) of PNIPAM. On the contrary, the emulsions stabilized by PNIPAM homopolymer microgels were broken upon heating. To understand the stabilization mechanism of the emulsions, mesoscopic computer simulations were performed to study the IPN microgels at the liquid-liquid interface. The simulations demonstrated that when the first subnetwork (PNIPAM) collapses, the particle adopts a flattened core-shell morphology with a highly swollen PAA-rich shell and a collapsed PNIPAM-rich core. Unlike its PNIPAM homopolymer counterpart, the IPN microgel maintains its three-dimensional shape, which provides stability to the microgel-based emulsions over a wide range of temperatures. Our combined findings could be useful in developing new approaches to emulsions' storage, biphasic catalysis, and lubrication of mechanisms in various operating and climatic conditions.

2.
Soft Matter ; 20(2): 388-396, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38100081

RESUMEN

The use of linear supercharged unfolded polypeptides (SUPs) and oppositely charged surfactants in aqueous solution has demonstrated impressive adhesive properties. These substances possess biocompatibility, biodegradability and other necessary properties for practical application as a biomedical glue in wound repair. The success of these substances, coupled with limited knowledge about such systems, provides hope for enhancing the performance of the final product. One potential approach involves altering the topology of the polypeptide chain. In this article, we conduct a comparative analysis to examine the behavior of the ring and linear chains of a polypeptide in aqueous solution. This analysis utilizes full-atomic computer modeling to monitor the properties of the chains. We investigate the temperature dependence of the shape and size of individual polypeptides in the solution, as well as the formation of complexes via mixing the polypeptide chains with oppositely charged sodium dodecylbenzene sulfonate (SDBS) surfactant molecules in a stoichiometric ratio. Additionally, we explore the cohesive properties of the resulting complex through power experiments involving the extraction of single polypeptide chains out of the SUP-SDBS complexes.

3.
Langmuir ; 39(35): 12420-12429, 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37611207

RESUMEN

Monolayers of polymer microgels with a spherical cavity adsorbed at the liquid-liquid interface were studied using mesoscopic computer simulations. One liquid, named water, was always considered as a good solvent, while the microgel solubility in the second liquid, named oil, was varied. The symmetric and asymmetric cases of vanishing and the strong differences in solubility between the network particles and the liquids were considered. The simulations provided us with an insight into the shape and volume changes of the microgels upon compression, making it possible to relate the response of the individual network with the collective order and structure of the monolayer. Similar to regular microgels, the compression of the monolayer of hollow particles led to a decrease in lateral sizes accompanied by shape transformation from a flattened to a nearly spherical shape. However, the presence of a cavity filled with solvent caused some unique differences in the behavior of the system. The adsorption pathway of hollow microgels at the liquid interface predefines: (a) the position of the particles with respect to the interface and (b) the structure of the monolayer. A striking discovery is that in the symmetric case of similar solubility of the microgel in both liquids, it is possible to produce a monolayer in which one part of the network faces the aqueous phase and the other part faces the oil phase. The polymer concentration profiles plotted along the normal to the interface reveal a redistribution of polymeric mass of the microgels relative to the interface, distinguishing between the microgels whose cavities are filled with water and oil, respectively. Moreover, the ratio between the microgels faced in water and oil does not change upon compression and predetermines the response and order of the monolayer.

4.
Langmuir ; 39(50): 18354-18365, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38059308

RESUMEN

Surface-active polymers have important applications as effective and responsive emulsifiers, foaming agents, and coatings. In this contribution, we explore the impact of the polymer architecture on the behavior at oil-water interfaces by comparing different poly(N-isopropylacrylamide) (pNIPAM)-based systems, namely, monolayers of linear and star-shaped macromolecules, ultralow cross-linked, regular cross-linked, and hollow microgels. Compression isotherms were determined experimentally as well as by computer simulations. The latter provides information about the conformational changes of the individual macromolecules as well as the interfacial properties of the monolayer, including the surface structure and the density distribution of an ensemble of interacting macromolecules near an interface. Surprisingly, the isotherms of the linear polymer, of the star polymer, and of the ultralow cross-linked microgel have an identical shape that differs from the isotherms of regular and hollow microgels. We introduced the mass fraction of adsorbed polymer, which gives a measure of the polymer segments contributing to the isotherm in relation to the most flexible architecture, i.e., the linear polymer, and allows a comparison of polymers with different architectures. The data demonstrate that increasing the number of cross-links leads to a significantly lower amount of polymer in the proximity of the interface as the increase in cross-linker reduces the deformability or softness of the polymers at the interface. The volume fraction profiles along the normal to the interface are essentially different in the microgel monolayers as compared to those in the linear and star polymer. The profiles through the microgel contact line and their growth upon initial compression are similar to those of the linear chains. Herewith, the profiles through the center of mass practically do not change upon compression. Therefore, the initial growth in the microgel surface pressure reveals the polymer-like behavior and is related to the deformation of the peripheral part of the microgel. Further compression of the microgel monolayer leads to 3D interactions of the microgels within the aqueous side of the interface and soft colloid-like behavior.

5.
Langmuir ; 38(14): 4351-4363, 2022 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-35349289

RESUMEN

Microgels, cross-linked polymers with submicrometer size, are ideal soft model systems. While spherical microgels have been studied extensively, anisotropic microgels have hardly been investigated. In this study, we compare the interfacial deformation and assembly of anisotropic core-shell and hollow microgels. The core-shell microgel consists of an elliptical core of hematite covered with a thin silica layer and a thin shell made of poly(N-isopropylacrylamide). The hollow microgels were obtained after a two-step etching procedure of the inorganic core. The behavior of these microgels at the oil-water interface was investigated in a Langmuir-Blodgett trough combined with ex situ atomic force microscopy. First, the influence of the architecture of anisotropic microgels on their spreading at the interface was investigated experimentally and by dissipative particle dynamic simulations. Hereby, the importance of the local shell thickness on the lateral and longitudinal interfacial deformation was highlighted as well as the differences between the core-shell and hollow architectures. The shape of the compression isotherms as well as the dimensions, ordering, and orientation of the microgels at the different compressions were analyzed. Due to their anisotropic shape and stiffness, both anisotropic microgels were found to exhibit significant capillary interactions with a preferential side-to-side assembly leading to stable microgel clusters at low interfacial coverage. Such capillary interactions were found to decrease in the case of the more deformable hollow anisotropic microgels. Consequently, anisotropic hollow microgels were found to distribute more evenly at high surface pressure compared to stiffer core-shell microgels. Our findings emphasize the complex interplay between the colloid design, anisotropy, and softness on the interfacial assembly and the opportunities it therefore offers to create more complex ordered interfaces.

6.
Langmuir ; 38(17): 5063-5080, 2022 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-34586813

RESUMEN

Anisotropic, submicrometer-sized particles are versatile systems providing interesting features in creating ordering in two-dimensional systems. Combining hard ellipsoids with a soft shell further enhances the opportunities to trigger and control order and alignment. In this work, we report rich 2D phase behavior and show how softness affects the ordering of anisotropic particles at fluid oil-water interfaces. Three different core-shell systems were synthesized such that they have the same elliptical hematite-silica core but differ with respect to thickness and stiffness of the soft microgel shell. Compression isotherms, the shape of individual core-shell microgels, and their 2D order at a decane-water interface are investigated by means of the Langmuir-Blodgett technique combined with ex-situ atomic force microscopy (AFM) imaging as well as dissipative particle dynamics (DPD) simulations. We show how the softness, size, and anisotropy of the microgel shell affect the side-to-side vs tip-to-tip ordering of anisotropic hybrid microgels as well as the alignment with respect to the direction of compression in the Langmuir trough. A large, soft microgel shell leads to an ordered structure with tip-to-tip alignment directed perpendicular to the direction of compression. In contrast, a thin and harder microgel shell leads to side-to-side ordering orientated parallel to the compression direction. In addition, the thin and harder microgel shell induces clustering of the microgels in the dilute state, indicating the presence of strong capillary interactions. Our findings highlight the relevance of softness for the complex ordering of anisotropic hybrid microgels at interfaces.

7.
Langmuir ; 38(17): 5226-5236, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35166545

RESUMEN

The structures of a molecular brush in a good solvent are investigated using synchrotron small-angle X-ray scattering in a wide range of concentrations. The brush under study, PiPOx239-g-PnPrOx14, features a relatively long poly(2-isopropenyl-2-oxazoline) (PiPOx) backbone and short poly(2-n-propyl-2-oxazoline) (PnPrOx) side chains. As a solvent, ethanol is used. By model fitting, the overall size and the persistence length as well as the interaction length and interaction strength are determined. At this, the interplay between form and structure factor is taken into account. The conformation of the molecular brush is traced upon increasing the solution concentration, and a rigid-to-flexible transition is found near the overlap concentration. Finally, the results of computer simulations of the molecular brush solutions confirm the experimental results.


Asunto(s)
Solventes , Simulación por Computador , Conformación Molecular , Solventes/química
8.
Soft Matter ; 18(19): 3738-3747, 2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35506715

RESUMEN

Polymer microgels synthesized in silico were studied at a liquid-liquid interface via mesoscopic computer simulations and compared to microgels with ideal (diamond-like) structure. The effect of crosslinkers reactivity ratio on the single particle morphology at the interface and monolayer behavior was examined. It was demonstrated that single particles deform into an explicit core-corona morphology when adsorbed at the interface. An increase in the crosslinker reactivity ratio decreased both the deformation ratio and the ratio between the core and corona sizes. Meanwhile, the compression of microgel monolayers revealed the existence of five distinct interparticle contact regimes, which have been observed experimentally in the literature. The crosslinker reactivity ratio appeared to define the compression range in these regimes and the sharpness of the transition between them. In particular, the higher the crosslinker reactivity ratio, the smaller the corona, and in turn, the narrower the range of the intermediate regime comprising both core-core and corona-corona contacts. The obtained results demonstrate that the more realistic model of microgels synthesized via precipitation polymerization allows for a more accurate prediction of the properties of the microgels at a liquid-liquid interface in comparison to the conventional diamond-like lattice model.

9.
Soft Matter ; 18(25): 4810, 2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35699144

RESUMEN

Correction for 'Effect of network topology and crosslinker reactivity on microgel structure and ordering at liquid-liquid interface' by Rustam A. Gumerov et al., Soft Matter, 2022, 18, 3738-3747, https://doi.org/10.1039/D2SM00269H.

10.
Molecules ; 27(23)2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36500646

RESUMEN

In this research, we studied, in detail, the behavior of common PNIPAM microgels, obtained through surfactant-free precipitation polymerization, in a number of organic solvents. We showed that many of the selected solvents serve as good solvents for the PNIPAM microgels and that the size and architecture of the microgels depend on the solvent chosen. Expanding the range of solvents used for PNIPAM microgel incubation greatly enhances the possible routes for microparticle functionalization and modification, as well as the encapsulation of water-insoluble species. In this demonstration, we successfully encapsulated water-insoluble Sudan III dye in PNIPAM microgels and prepared the aqueous dispersions of such composite-colored microparticles.


Asunto(s)
Microgeles , Geles , Temperatura , Polimerizacion , Agua , Solventes
11.
Angew Chem Int Ed Engl ; 61(20): e202116653, 2022 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-35274425

RESUMEN

Peptide receptor radionuclide therapy is used to treat solid tumors by locally delivering radiation. However, due to nephro- and hepato-toxicity, it is limited by its dosage. To amplify radiation damage to tumor cells, radiolabeled nanogels can be used. We show that by tuning the mechanical properties of nanogels significant enhancement in circulation half-life of the gel could be achieved. We demonstrate why and how small changes in the mechanical properties of the nanogels influence its cellular fate. Nanogels with a storage modulus of 37 kPa were minimally phagocytosed by monocytes and macrophages compared to nanogels with 93 kPa modulus. Using PET/CT a significant difference in the blood circulation time of the nanogels was shown. Computer simulations affirmed the results and predicted the mechanism of cellular uptake of the nanogels. Altogether, this work emphasizes the important role of elasticity even for particles that are inherently soft such as nano- or microgels.


Asunto(s)
Microgeles , Tomografía Computarizada por Tomografía de Emisión de Positrones , Tiempo de Circulación Sanguínea , Elasticidad , Nanogeles
12.
Phys Chem Chem Phys ; 23(8): 4927-4934, 2021 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-33620358

RESUMEN

Soft matter at solid-liquid interfaces plays an important role in multiple scientific disciplines as well as in various technological fields. For microgels, representing highly interesting soft matter systems, we demonstrate that the preparation method, i.e. the way how the microgel is applied to the specific surface, plays a key role. Focusing on the three most common sample preparation methods (spin-coating, drop-casting and adsorption from solution), we performed a comparative study of the deformation behavior of microgels at the solid-liquid interface on three different surfaces with varying hydrophilicities. For in situ visualization of the deformation of pNIPMAM microgels, we conducted highly sensitive 3D super resolution fluorescence microscopy methods. We furthermore performed complementary molecular dynamics simulations to determine the driving force responsible for the deformation depending on the surface and the deposition method. The combination of experiments and simulations revealed that the simulated equilibrium structure obtained after simulation of the completely dry microgel after deposition is retained after rehydration and subsequent fluorescent imaging.

13.
Angew Chem Int Ed Engl ; 60(21): 12082-12089, 2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-33647184

RESUMEN

Complex coacervation enables important wet adhesion processes in natural and artificial systems. However, existed synthetic coacervate adhesives show limited wet adhesion properties, non-thermoresponsiveness, and inferior biodegradability, greatly hampering their translations. Herein, by harnessing supramolecular assembly and rational protein design, we present a temperature-sensitive wet bioadhesive fabricated through recombinant protein and surfactant. Mechanical performance of the bioglue system is actively tunable with thermal triggers. In cold condition, adhesion strength of the bioadhesive was only about 50 kPa. By increasing temperature, the strength presented up to 600 kPa, which is remarkably stronger than other biological counterparts. This is probably due to the thermally triggered phase transition of the engineered protein and the formation of coacervate, thus leading to the enhanced wet adhesion bonding.


Asunto(s)
Adhesivos/química , Proteínas Recombinantes/química , Tensoactivos/química , Sustancias Viscoelásticas/química , Adhesividad , Transición de Fase , Temperatura
14.
Langmuir ; 36(37): 11079-11093, 2020 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-32845643

RESUMEN

The role of electrostatics on the interfacial properties of polyelectrolyte microgels has been discussed controversially in the literature. It is not yet clear if, or how, Coulomb interactions affect their behavior under interfacial confinement. In this work, we combine compression isotherms, atomic force microscopy imaging, and computer simulations to further investigate the behavior of pH-responsive microgels at oil-water interfaces. At low compression, charged microgels can be compressed more than uncharged microgels. The in-plane effective area of charged microgels is found to be smaller in comparison to uncharged ones. Thus, the compressibility is governed by in-plane interactions of the microgels with the interface. At high compression, however, charged microgels are less compressible than uncharged microgels. Microgel fractions located in the aqueous phase interact earlier for charged than for uncharged microgels because of their different swelling perpendicular to the interface. Therefore, the compressibility at high compression is controlled by out-of-plane interactions. In addition, the size of the investigated microgels plays a pivotal role. The charge-dependent difference in compressibility at low compression is only observed for small but not for large microgels, while the behavior at high compression does not depend on the size. Our results highlight the complex nature of soft polymer microgels as compared to rigid colloidal particles. We clearly demonstrate that electrostatic interactions affect the interfacial properties of polyelectrolyte microgels.

15.
Macromol Rapid Commun ; 41(1): e1900422, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31736176

RESUMEN

The authors demonstrate how the size and structure of the cavity of hollow charged microgels may be controlled by varying pH and ionic strength. Hollow charged microgels based on N-isopropylacrylamide with ionizable co-monomers (itaconic acid) combine advanced structure with enhanced responsiveness to external stimuli. Structural advantages accrue from the increased surface area provided by the extra internal surface. Extreme sensitivity to pH and ionic strength due to ionizable moieties in the polymer network differentiates these soft colloidal particles from their uncharged counterparts, which sustain a hollow structure only at cross-link densities sufficiently high that stimuli sensitivity is reduced. Using small-angle neutron and light scattering, increased swelling of the network in the charged state accompanied by an expanded internal cavity is observed. Upon addition of salt, the external fuzziness of the microgel surface diminishes while the internal fuzziness grows. These structural changes are interpreted via Poisson-Boltzmann theory in the cell model.


Asunto(s)
Microgeles/química , Polielectrolitos/química , Acrilamidas/química , Concentración de Iones de Hidrógeno , Concentración Osmolar , Temperatura
16.
Nano Lett ; 19(12): 8862-8867, 2019 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-31642321

RESUMEN

Solid-liquid interfaces play an important role for functional devices. Hence, a detailed understanding of the interaction of soft matter objects with solid supports and of the often concomitant structural deformations is of great importance. We address this topic in a combined experimental and simulation approach. We investigated thermoresponsive poly(N-isopropylmethacrylamide) microgels (µGs) at different surfaces in an aqueous environment. As super-resolution fluorescence imaging method, three-dimensional direct stochastical optical reconstruction microscopy (dSTORM) allowed for visualizing µGs in their three-dimensional (3D) shape, for example, in a "fried-egg" conformation depending on the hydrophilicity of the surface (strength of adsorption). The 3D shape, as defined by point clouds obtained from single-molecule localizations, was analyzed. A new fitting algorithm yielded an isosurface of constant density which defines the deformation of µGs at the different surfaces. The presented methodology quantifies deformation of objects with fuzzy surfaces and allows for comparison of their structures, whereby it is completely independent from the data acquisition method. Finally, the experimental data are complemented with mesoscopic computer simulations in order to (i) rationalize the experimental results and (ii) to track the evolution of the shape with changing surface hydrophilicity; a good correlation of the shapes obtained experimentally and with computer simulations was found.

17.
Angew Chem Int Ed Engl ; 59(3): 1248-1255, 2020 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-31664769

RESUMEN

Controlling the distribution of ionizable groups of opposite charge in microgels is an extremely challenging task, which could open new pathways to design a new generation of stimuli-responsive colloids. Herein, we report a straightforward approach for the synthesis of polyampholyte Janus-like microgels, where ionizable groups of opposite charge are located on different sides of the colloidal network. This synthesis approach is based on the controlled self-assembly of growing polyelectrolyte microgel precursors during the precipitation polymerization process. We confirmed the morphology of polyampholyte Janus-like microgels and demonstrate that they are capable of responding quickly to changes in both pH and temperature in aqueous solutions.

18.
Langmuir ; 35(7): 2680-2691, 2019 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-30720279

RESUMEN

Using a combination of a mean-field theoretical method and the numerical Scheutjens-Fleer self-consistent field approach, we predict that it is possible to have re-entrant morphological transitions in nanostructures of diblock copolymers upon variation in temperature-mediated solubility of the associating blocks. This peculiar effect is explained by the different rates in variation of the density of the collapsed core domains and the corresponding interfacial energy as a function of the temperature. The theoretical findings are supported by existing experimental observations of reversed sequences of the morphological transitions occurring upon temperature variation in solutions of amphiphilic block copolymers.

19.
Langmuir ; 35(51): 16780-16792, 2019 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-31782927

RESUMEN

We investigate soft, temperature-sensitive microgels at fluid interfaces. Though having an isotropic, spherical shape in bulk solution, the microgels become anisotropic upon adsorption. The structure of microgels at interfaces is described by a core-corona morphology. Here, we investigate how changing temperature across the microgel volume phase transition temperature, which leads to swelling/deswelling of the microgels in the aqueous phase, affects the phase behavior within the monolayer. We combine compression isotherms, atomic force microscopy imaging, multiwavelength ellipsometry, and computer simulations. At low compression, the interaction between adsorbed microgels is dominated by their highly stretched corona and the phase behavior of the microgel monolayers is the same. The polymer segments within the interface lose their temperature-sensitivity because of the strong adsorption to the interface. At high compression, however, the portions of the microgels that are located in the aqueous side of the interface become relevant and prevail in the microgel interactions. These portions are able to collapse and, consequently, the isostructural phase transition is altered. Thus, the temperature-dependent swelling perpendicular to the interface ("3D") affects the compressibility parallel to the interface ("2D"). Our results highlight the distinctly different behavior of soft, stimuli-sensitive microgels as compared to rigid nanoparticles.

20.
Langmuir ; 35(19): 6231-6255, 2019 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-30998365

RESUMEN

Nanogels and microgels are soft, deformable, and penetrable objects with an internal gel-like structure that is swollen by the dispersing solvent. Their softness and the potential to respond to external stimuli like temperature, pressure, pH, ionic strength, and different analytes make them interesting as soft model systems in fundamental research as well as for a broad range of applications, in particular in the field of biological applications. Recent tremendous developments in their synthesis open access to systems with complex architectures and compositions allowing for tailoring microgels with specific properties. At the same time state-of-the-art theoretical and simulation approaches offer deeper understanding of the behavior and structure of nano- and microgels under external influences and confinement at interfaces or at high volume fractions. Developments in the experimental analysis of nano- and microgels have become particularly important for structural investigations covering a broad range of length scales relevant to the internal structure, the overall size and shape, and interparticle interactions in concentrated samples. Here we provide an overview of the state-of-the-art, recent developments as well as emerging trends in the field of nano- and microgels. The following aspects build the focus of our discussion: tailoring (multi)functionality through synthesis; the role in biological and biomedical applications; the structure and properties as a model system, e.g., for densely packed arrangements in bulk and at interfaces; as well as the theory and computer simulation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA