Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Hum Mol Genet ; 33(9): 739-751, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38272457

RESUMEN

INTRODUCTION: Primary open angle glaucoma (POAG) is a leading cause of blindness globally. Characterized by progressive retinal ganglion cell degeneration, the precise pathogenesis remains unknown. Genome-wide association studies (GWAS) have uncovered many genetic variants associated with elevated intraocular pressure (IOP), one of the key risk factors for POAG. We aimed to identify genetic and morphological variation that can be attributed to trabecular meshwork cell (TMC) dysfunction and raised IOP in POAG. METHODS: 62 genes across 55 loci were knocked-out in a primary human TMC line. Each knockout group, including five non-targeting control groups, underwent single-cell RNA-sequencing (scRNA-seq) for differentially-expressed gene (DEG) analysis. Multiplexed fluorescence coupled with CellProfiler image analysis allowed for single-cell morphological profiling. RESULTS: Many gene knockouts invoked DEGs relating to matrix metalloproteinases and interferon-induced proteins. We have prioritized genes at four loci of interest to identify gene knockouts that may contribute to the pathogenesis of POAG, including ANGPTL2, LMX1B, CAV1, and KREMEN1. Three genetic networks of gene knockouts with similar transcriptomic profiles were identified, suggesting a synergistic function in trabecular meshwork cell physiology. TEK knockout caused significant upregulation of nuclear granularity on morphological analysis, while knockout of TRIOBP, TMCO1 and PLEKHA7 increased granularity and intensity of actin and the cell-membrane. CONCLUSION: High-throughput analysis of cellular structure and function through multiplex fluorescent single-cell analysis and scRNA-seq assays enabled the direct study of genetic perturbations at the single-cell resolution. This work provides a framework for investigating the role of genes in the pathogenesis of glaucoma and heterogenous diseases with a strong genetic basis.


Asunto(s)
Glaucoma de Ángulo Abierto , Presión Intraocular , Humanos , Presión Intraocular/genética , Estudio de Asociación del Genoma Completo , Glaucoma de Ángulo Abierto/genética , Predisposición Genética a la Enfermedad , Tonometría Ocular , Proteína 2 Similar a la Angiopoyetina
2.
Ann Surg ; 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38482684

RESUMEN

OBJECTIVE: To evaluate whether a machine learning algorithm (i.e. the "NightSignal" algorithm) can be used for the detection of postoperative complications prior to symptom onset after cardiothoracic surgery. SUMMARY BACKGROUND DATA: Methods that enable the early detection of postoperative complications after cardiothoracic surgery are needed. METHODS: This was a prospective observational cohort study conducted from July 2021 to February 2023 at a single academic tertiary care hospital. Patients aged 18 years or older scheduled to undergo cardiothoracic surgery were recruited. Study participants wore a Fitbit watch continuously for at least 1 week preoperatively and up to 90-days postoperatively. The ability of the NightSignal algorithm-which was previously developed for the early detection of Covid-19-to detect postoperative complications was evaluated. The primary outcomes were algorithm sensitivity and specificity for postoperative event detection. RESULTS: A total of 56 patients undergoing cardiothoracic surgery met inclusion criteria, of which 24 (42.9%) underwent thoracic operations and 32 (57.1%) underwent cardiac operations. The median age was 62 (IQR: 51-68) years and 30 (53.6%) patients were female. The NightSignal algorithm detected 17 of the 21 postoperative events a median of 2 (IQR: 1-3) days prior to symptom onset, representing a sensitivity of 81%. The specificity, negative predictive value, and positive predictive value of the algorithm for the detection of postoperative events were 75%, 97%, and 28%, respectively. CONCLUSIONS: Machine learning analysis of biometric data collected from wearable devices has the potential to detect postoperative complications-prior to symptom onset-after cardiothoracic surgery.

3.
Genome Med ; 16(1): 36, 2024 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-38409176

RESUMEN

Cancer stem cell plasticity refers to the ability of tumour cells to dynamically switch between states-for example, from cancer stem cells to non-cancer stem cell states. Governed by regulatory processes, cells transition through a continuum, with this transition space often referred to as a cell state landscape. Plasticity in cancer cell states leads to divergent biological behaviours, with certain cell states, or state transitions, responsible for tumour progression and therapeutic response. The advent of single-cell assays means these features can now be measured for individual cancer cells and at scale. However, the high dimensionality of this data, complex relationships between genomic features, and a lack of precise knowledge of the genomic profiles defining cancer cell states have opened the door for artificial intelligence methods for depicting cancer cell state landscapes. The contribution of cell state plasticity to cancer phenotypes such as treatment resistance, metastasis, and dormancy has been masked by analysis of 'bulk' genomic data-constituted of the average signal from millions of cells. Single-cell technologies solve this problem by producing a high-dimensional cellular landscape of the tumour ecosystem, quantifying the genomic profiles of individual cells, and creating a more detailed model to investigate cancer plasticity (Genome Res 31:1719, 2021; Semin Cancer Biol 53: 48-58, 2018; Signal Transduct Target Ther 5:1-36, 2020). In conjunction, rapid development in artificial intelligence methods has led to numerous tools that can be employed to study cancer cell plasticity.


Asunto(s)
Transición Epitelial-Mesenquimal , Neoplasias , Humanos , Inteligencia Artificial , Plasticidad de la Célula/genética , Genómica/métodos , Neoplasias/genética , Neoplasias/patología
4.
Nat Genet ; 56(5): 758-766, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38741017

RESUMEN

Human pluripotent stem (hPS) cells can, in theory, be differentiated into any cell type, making them a powerful in vitro model for human biology. Recent technological advances have facilitated large-scale hPS cell studies that allow investigation of the genetic regulation of molecular phenotypes and their contribution to high-order phenotypes such as human disease. Integrating hPS cells with single-cell sequencing makes identifying context-dependent genetic effects during cell development or upon experimental manipulation possible. Here we discuss how the intersection of stem cell biology, population genetics and cellular genomics can help resolve the functional consequences of human genetic variation. We examine the critical challenges of integrating these fields and approaches to scaling them cost-effectively and practically. We highlight two areas of human biology that can particularly benefit from population-scale hPS cell studies, elucidating mechanisms underlying complex disease risk loci and evaluating relationships between common genetic variation and pharmacotherapeutic phenotypes.


Asunto(s)
Genética de Población , Genómica , Humanos , Enfermedad/genética , Variación Genética , Genómica/métodos , Fenotipo , Células Madre Pluripotentes , Análisis de la Célula Individual/métodos
5.
Database (Oxford) ; 20242024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38459946

RESUMEN

Mapping of expression quantitative trait loci (eQTLs) and other molecular QTLs can help characterize the modes of action of disease-associated genetic variants. However, current eQTL databases present data from bulk RNA-seq approaches, which cannot shed light on the cell type- and environment-specific regulation of disease-associated genetic variants. Here, we introduce our Single-cell eQTL Interactive Database which collects single-cell eQTL (sc-eQTL) datasets and provides online visualization of sc-eQTLs across different cell types in a user-friendly manner. Although sc-eQTL mapping is still in its early stage, our database curates the most comprehensive summary statistics of sc-eQTLs published to date. sc-eQTL studies have revolutionized our understanding of gene regulation in specific cellular contexts, and we anticipate that our database will further accelerate the research of functional genomics. Database URL: http://www.sqraolab.com/scqtl.


Asunto(s)
Regulación de la Expresión Génica , Sitios de Carácter Cuantitativo , Humanos , Sitios de Carácter Cuantitativo/genética , RNA-Seq , Genómica , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple
6.
Genome Biol ; 25(1): 94, 2024 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622708

RESUMEN

Recent innovations in single-cell RNA-sequencing (scRNA-seq) provide the technology to investigate biological questions at cellular resolution. Pooling cells from multiple individuals has become a common strategy, and droplets can subsequently be assigned to a specific individual by leveraging their inherent genetic differences. An implicit challenge with scRNA-seq is the occurrence of doublets-droplets containing two or more cells. We develop Demuxafy, a framework to enhance donor assignment and doublet removal through the consensus intersection of multiple demultiplexing and doublet detecting methods. Demuxafy significantly improves droplet assignment by separating singlets from doublets and classifying the correct individual.


Asunto(s)
Análisis de la Célula Individual , Humanos , Análisis de la Célula Individual/métodos , Análisis de Secuencia de ARN/métodos
7.
Aging Cell ; 23(7): e14172, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38747044

RESUMEN

Slowing and/or reversing brain ageing may alleviate cognitive impairments. Previous studies have found that exercise may mitigate cognitive decline, but the mechanisms underlying this remain largely unclear. Here we provide unbiased analyses of single-cell RNA sequencing data, showing the impacts of exercise and ageing on specific cell types in the mouse hippocampus. We demonstrate that exercise has a profound and selective effect on aged microglia, reverting their gene expression signature to that of young microglia. Pharmacologic depletion of microglia further demonstrated that these cells are required for the stimulatory effects of exercise on hippocampal neurogenesis but not cognition. Strikingly, allowing 18-month-old mice access to a running wheel did by and large also prevent and/or revert T cell presence in the ageing hippocampus. Taken together, our data highlight the profound impact of exercise in rejuvenating aged microglia, associated pro-neurogenic effects and on peripheral immune cell presence in the ageing female mouse brain.


Asunto(s)
Envejecimiento , Encéfalo , Microglía , Condicionamiento Físico Animal , Linfocitos T , Animales , Microglía/metabolismo , Condicionamiento Físico Animal/fisiología , Ratones , Femenino , Linfocitos T/inmunología , Linfocitos T/metabolismo , Envejecimiento/fisiología , Encéfalo/metabolismo , Ratones Endogámicos C57BL
8.
medRxiv ; 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38798318

RESUMEN

Understanding the genetic basis of gene expression can help us understand the molecular underpinnings of human traits and disease. Expression quantitative trait locus (eQTL) mapping can help in studying this relationship but have been shown to be very cell-type specific, motivating the use of single-cell RNA sequencing and single-cell eQTLs to obtain a more granular view of genetic regulation. Current methods for single-cell eQTL mapping either rely on the "pseudobulk" approach and traditional pipelines for bulk transcriptomics or do not scale well to large datasets. Here, we propose SAIGE-QTL, a robust and scalable tool that can directly map eQTLs using single-cell profiles without needing aggregation at the pseudobulk level. Additionally, SAIGE-QTL allows for testing the effects of less frequent/rare genetic variation through set-based tests, which is traditionally excluded from eQTL mapping studies. We evaluate the performance of SAIGE-QTL on both real and simulated data and demonstrate the improved power for eQTL mapping over existing pipelines.

9.
Ophthalmol Sci ; 4(4): 100504, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38682030

RESUMEN

Purpose: Genome-wide association studies have recently uncovered many loci associated with variation in intraocular pressure (IOP). Artificial intelligence (AI) can be used to interrogate the effect of specific genetic knockouts on the morphology of trabecular meshwork cells (TMCs) and thus, IOP regulation. Design: Experimental study. Subjects: Primary TMCs collected from human donors. Methods: Sixty-two genes at 55 loci associated with IOP variation were knocked out in primary TMC lines. All cells underwent high-throughput microscopy imaging after being stained with a 5-channel fluorescent cell staining protocol. A convolutional neural network was trained to distinguish between gene knockout and normal control cell images. The area under the receiver operator curve (AUC) metric was used to quantify morphological variation in gene knockouts to identify potential pathological perturbations. Main Outcome Measures: Degree of morphological variation as measured by deep learning algorithm accuracy of differentiation from normal controls. Results: Cells where LTBP2 or BCAS3 had been perturbed demonstrated the greatest morphological variation from normal TMCs (AUC 0.851, standard deviation [SD] 0.030; and AUC 0.845, SD 0.020, respectively). Of 7 multigene loci, 5 had statistically significant differences in AUC (P < 0.05) between genes, allowing for pathological gene prioritization. The mitochondrial channel most frequently showed the greatest degree of morphological variation (33.9% of cell lines). Conclusions: We demonstrate a robust method for functionally interrogating genome-wide association signals using high-throughput microscopy and AI. Genetic variations inducing marked morphological variation can be readily identified, allowing for the gene-based dissection of loci associated with complex traits. Financial Disclosures: Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.

10.
Sci Adv ; 10(2): eadi8287, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38198537

RESUMEN

Parkinson's disease (PD) is characterized pathologically by the loss of dopaminergic (DA) neurons in the substantia nigra (SN). Whether cell types beyond DA neurons in the SN show vulnerability in PD remains unclear. Through transcriptomic profiling of 315,867 high-quality single nuclei in the SN from individuals with and without PD, we identified cell clusters representing various neuron types, glia, endothelial cells, pericytes, fibroblasts, and T cells and investigated cell type-dependent alterations in gene expression in PD. Notably, a unique neuron cluster marked by the expression of RIT2, a PD risk gene, also displayed vulnerability in PD. We validated RIT2-enriched neurons in midbrain organoids and the mouse SN. Our results demonstrated distinct transcriptomic signatures of the RIT2-enriched neurons in the human SN and implicated reduced RIT2 expression in the pathogenesis of PD. Our study sheds light on the diversity of cell types, including DA neurons, in the SN and the complexity of molecular and cellular changes associated with PD pathogenesis.


Asunto(s)
Células Endoteliales , Enfermedad de Parkinson , Humanos , Animales , Ratones , Enfermedad de Parkinson/genética , Sustancia Negra , Neuronas Dopaminérgicas , Neuroglía
11.
bioRxiv ; 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38496508

RESUMEN

Whether neurodegenerative diseases linked to misfolding of the same protein share genetic risk drivers or whether different protein-aggregation pathologies in neurodegeneration are mechanistically related remains uncertain. Conventional genetic analyses are underpowered to address these questions. Through careful selection of patients based on protein aggregation phenotype (rather than clinical diagnosis) we can increase statistical power to detect associated variants in a targeted set of genes that modify proteotoxicities. Genetic modifiers of alpha-synuclein (ɑS) and beta-amyloid (Aß) cytotoxicity in yeast are enriched in risk factors for Parkinson's disease (PD) and Alzheimer's disease (AD), respectively. Here, along with known AD/PD risk genes, we deeply sequenced exomes of 430 ɑS/Aß modifier genes in patients across alpha-synucleinopathies (PD, Lewy body dementia and multiple system atrophy). Beyond known PD genes GBA1 and LRRK2, rare variants AD genes (CD33, CR1 and PSEN2) and Aß toxicity modifiers involved in RhoA/actin cytoskeleton regulation (ARGHEF1, ARHGEF28, MICAL3, PASK, PKN2, PSEN2) were shared risk factors across synucleinopathies. Actin pathology occurred in iPSC synucleinopathy models and RhoA downregulation exacerbated ɑS pathology. Even in sporadic PD, the expression of these genes was altered across CNS cell types. Genome-wide CRISPR screens revealed the essentiality of PSEN2 in both human cortical and dopaminergic neurons, and PSEN2 mutation carriers exhibited diffuse brainstem and cortical synucleinopathy independent of AD pathology. PSEN2 contributes to a common-risk signal in PD GWAS and regulates ɑS expression in neurons. Our results identify convergent mechanisms across synucleinopathies, some shared with AD.

12.
Genet. mol. biol ; 22(4): 461-9, Dec. 1999. ilus, tab, graf
Artículo en Inglés | LILACS | ID: lil-254973

RESUMEN

Diversos estudos sobre afinidades morfológicas extracontinentais de esqueletos paleoíndios, executados independentemente na América do Sul e do Norte, têm indicado uma ocupaçäo inicial do continente americano por näo-mongolóides. Os primeiros sul-americanos demonstram uma clara semelhança com populaçöes sul-pacíficas e africanas, enquanto os primeiros norte-americanos parecem encontrar-se em uma posiçäo indefinida entre sul-pacíficos e europeus. Em nenhuma destas análises os primeiros americanos demonstraram qualquer similaridade com populaçöes modernas do nordeste asiático ou com índios americanos atuais. Até entäo, estes estudos haviam incluído esqueletos datados de 8.000 a 10.000 anos atrás. Neste trabalho, as afinidades extra-continentais de um esqueleto paleoíndio bem contextualizado entre 11.000 e 11.500 anos atrás (Lapa Vermelha IV Hominídeo 1, ou Luzia) säo investigadas, usando como amostras de referência as séries mundiais de Howells (1989) e a coleçäo de fósseis de hominídeos do Pleistoceno tardio de HabGood (1985). A comparaçäo entre Lapa Vermelha IV Hominídeo 1 e as séries de Howells baseou-se em análises de variáveis canônicas incluindo 45 variáveis craniométricas corrigidas quanto ao tamanho, enquanto a comparaçäo com hominídeos fósseis foi baseada em análise de componentes principais incluindo 16 variáveis também corrigidas. No primeiro caso, Lapa Vermelha IV Hominídeo 1 exibiu afinidade morfológica indiscutível, primariamente com africanos e, em seguida, com populaçöes sul-pacíficas. Na segunda comparaçäo, o mais antigo esqueleto americano conhecido apresentou maior similaridade com os primeiros australianos, Zhoukoudian UC103 e Taforalt 18. Os resultados obtidos confirmam claramente a idéia de que o continente americano foi inicialmente colonizado por uma populaçäo de Homo sapiens generalizados que habitaram o leste asiático no final do Pleistoceno, antes da definiçäo da morfologia mongolóide clássica.


Asunto(s)
Humanos , Masculino , Femenino , Adulto , Fósiles , Genética de Población , Hominidae , Antropología , Cefalometría , Análisis Multivariante , América del Norte , Paleontología , América del Sur
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA