Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Genomics ; 14: 675, 2013 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-24090403

RESUMEN

BACKGROUND: With the price of next generation sequencing steadily decreasing, bacterial genome assembly is now accessible to a wide range of researchers. It is therefore necessary to understand the best methods for generating a genome assembly, specifically, which combination of sequencing and bioinformatics strategies result in the most accurate assemblies. Here, we sequence three E. coli strains on the Illumina MiSeq, Life Technologies Ion Torrent PGM, and Pacific Biosciences RS. We then perform genome assemblies on all three datasets alone or in combination to determine the best methods for the assembly of bacterial genomes. RESULTS: Three E. coli strains - BL21(DE3), Bal225, and DH5α - were sequenced to a depth of 100× on the MiSeq and Ion Torrent machines and to at least 125× on the PacBio RS. Four assembly methods were examined and compared. The previously published BL21(DE3) genome [GenBank:AM946981.2], allowed us to evaluate the accuracy of each of the BL21(DE3) assemblies. BL21(DE3) PacBio-only assemblies resulted in a 90% reduction in contigs versus short read only assemblies, while N50 numbers increased by over 7-fold. Strikingly, the number of SNPs in PacBio-only assemblies were less than half that seen with short read assemblies (~20 SNPs vs. ~50 SNPs) and indels also saw dramatic reductions (~2 indel >5 bp in PacBio-only assemblies vs. ~12 for short-read only assemblies). Assemblies that used a mixture of PacBio and short read data generally fell in between these two extremes. Use of PacBio sequencing reads also allowed us to call covalent base modifications for the three strains. Each of the strains used here had a known covalent base modification genotype, which was confirmed by PacBio sequencing. CONCLUSION: Using data generated solely from the Pacific Biosciences RS, we were able to generate the most complete and accurate de novo assemblies of E. coli strains. We found that the addition of other sequencing technology data offered no improvements over use of PacBio data alone. In addition, the sequencing data from the PacBio RS allowed for sensitive and specific calling of covalent base modifications.


Asunto(s)
Metilación de ADN/genética , Escherichia coli/genética , Genoma Bacteriano/genética , Secuencia de Bases , Análisis de Secuencia de ADN
2.
Mol Plant Microbe Interact ; 21(7): 879-90, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18533829

RESUMEN

The cell-to-cell movement of Turnip crinkle virus (TCV) in Nicotiana benthamiana requires the presence of its coat protein (CP), a known suppressor of RNA silencing. RNA transcripts of a TCV construct containing a reporter gene (green fluorescent protein) (TCV-sGFP) in place of the CP open reading frame generated foci of three to five cells. TCV CP delivered in trans by Agrobacterium tumefaciens infiltration potentiated movement of TCV-sGFP and increased foci diameter, on average, by a factor of four. Deletion of the TCV movement proteins in TCV-sGFP (construct TCVDelta92-sGFP) abolished the movement complementation ability of TCV CP. Other known suppressors of RNA silencing from a wide spectrum of viruses also complemented the movement of TCV-sGFP when delivered in trans by Agrobacterium tumefaciens. These include suppressors from nonplant viruses with no known plant movement function, demonstrating that this assay is based solely on RNA silencing suppression. While the TCV-sGFP construct is primarily used as an infectious RNA transcript, it was also subcloned for direct expression from Agrobacterium tumefaciens for simple quantification of suppressor activity based on fluorescence levels in whole leaves. Thus, this system provides the flexibility to assay for suppressor activity in either the cytoplasm or nucleus, depending on the construct employed.


Asunto(s)
Carmovirus/patogenicidad , Nicotiana/genética , Nicotiana/virología , Interferencia de ARN , Agrobacterium tumefaciens/genética , Arabidopsis/genética , Arabidopsis/virología , Secuencia de Bases , Proteínas de la Cápside/genética , Proteínas de la Cápside/fisiología , Carmovirus/genética , Carmovirus/fisiología , ADN Viral/genética , Genes Reporteros , Prueba de Complementación Genética , Proteínas Fluorescentes Verdes/genética , Interacciones Huésped-Patógeno/genética , Movimiento , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/virología , ARN Viral/genética , Proteínas Recombinantes/genética , Supresión Genética
3.
Genome Med ; 9(1): 86, 2017 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-28954626

RESUMEN

BACKGROUND: The human leukocyte antigen (HLA) system is a genomic region involved in regulating the human immune system by encoding cell membrane major histocompatibility complex (MHC) proteins that are responsible for self-recognition. Understanding the variation in this region provides important insights into autoimmune disorders, disease susceptibility, oncological immunotherapy, regenerative medicine, transplant rejection, and toxicogenomics. Traditional approaches to HLA typing are low throughput, target only a few genes, are labor intensive and costly, or require specialized protocols. RNA sequencing promises a relatively inexpensive, high-throughput solution for HLA calling across all genes, with the bonus of complete transcriptome information and widespread availability of historical data. Existing tools have been limited in their ability to accurately and comprehensively call HLA genes from RNA-seq data. RESULTS: We created HLAProfiler ( https://github.com/ExpressionAnalysis/HLAProfiler ), a k-mer profile-based method for HLA calling in RNA-seq data which can identify rare and common HLA alleles with > 99% accuracy at two-field precision in both biological and simulated data. For 68% of novel alleles not present in the reference database, HLAProfiler can correctly identify the two-field precision or exact coding sequence, a significant advance over existing algorithms. CONCLUSIONS: HLAProfiler allows for accurate HLA calls in RNA-seq data, reliably expanding the utility of these data in HLA-related research and enabling advances across a broad range of disciplines. Additionally, by using the observed data to identify potential novel alleles and update partial alleles, HLAProfiler will facilitate further improvements to the existing database of reference HLA alleles. HLAProfiler is available at https://expressionanalysis.github.io/HLAProfiler/ .


Asunto(s)
Antígenos HLA/genética , Prueba de Histocompatibilidad/métodos , Análisis de Secuencia de ARN , Programas Informáticos , Alelos , Línea Celular , Humanos , Datos de Secuencia Molecular , Valores de Referencia
4.
mBio ; 4(2): e000193, 2013 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-23592263

RESUMEN

UNLABELLED: The question of how HIV-1 interfaces with cellular microRNA (miRNA) biogenesis and effector mechanisms has been highly controversial. Here, we first used deep sequencing of small RNAs present in two different infected cell lines (TZM-bl and C8166) and two types of primary human cells (CD4(+) peripheral blood mononuclear cells [PBMCs] and macrophages) to unequivocally demonstrate that HIV-1 does not encode any viral miRNAs. Perhaps surprisingly, we also observed that infection of T cells by HIV-1 has only a modest effect on the expression of cellular miRNAs at early times after infection. Comprehensive analysis of miRNA binding to the HIV-1 genome using the photoactivatable ribonucleoside-induced cross-linking and immunoprecipitation (PAR-CLIP) technique revealed several binding sites for cellular miRNAs, a subset of which were shown to be capable of mediating miRNA-mediated repression of gene expression. However, the main finding from this analysis is that HIV-1 transcripts are largely refractory to miRNA binding, most probably due to extensive viral RNA secondary structure. Together, these data demonstrate that HIV-1 neither encodes viral miRNAs nor strongly influences cellular miRNA expression, at least early after infection, and imply that HIV-1 transcripts have evolved to avoid inhibition by preexisting cellular miRNAs by adopting extensive RNA secondary structures that occlude most potential miRNA binding sites. IMPORTANCE: MicroRNAs (miRNAs) are a ubiquitous class of small regulatory RNAs that serve as posttranscriptional regulators of gene expression. Previous work has suggested that HIV-1 might subvert the function of the cellular miRNA machinery by expressing viral miRNAs or by dramatically altering the level of cellular miRNA expression. Using very sensitive approaches, we now demonstrate that neither of these ideas is in fact correct. Moreover, HIV-1 transcripts appear to largely avoid regulation by cellular miRNAs by adopting an extensive RNA secondary structure that occludes the ability of cellular miRNAs to interact with viral mRNAs. Together, these data suggest that HIV-1, rather than seeking to control miRNA function in infected cells, has instead evolved a mechanism to become largely invisible to cellular miRNA effector mechanisms.


Asunto(s)
VIH-1/fisiología , Interacciones Huésped-Patógeno , MicroARNs/metabolismo , ARN Viral/metabolismo , Linfocitos T CD4-Positivos/virología , Células Cultivadas , Regulación Viral de la Expresión Génica , VIH-1/patogenicidad , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Macrófagos/virología , MicroARNs/química , MicroARNs/genética , ARN Mensajero/metabolismo
5.
Virology ; 381(2): 277-86, 2008 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-18838152

RESUMEN

The replication complex of Red clover necrotic mosaic virus (RCNMV) has been shown to possess silencing suppression activity. Here a newly developed viral-based assay for the identification of silencing suppression activity was used to provide evidence for a second, mechanistically distinct method of silencing suppression provided for by the RCNMV movement protein (MP). This new assay relies on Turnip crinkle virus with its capsid protein replaced with green fluorescent protein to act as a reporter (TCV-sGFP). In the presence of a protein with silencing suppression activity TCV-sGFP readily moves from cell-to-cell, but in the absence of such a protein TCV-sGFP is confined to small foci of infection. This TCV-sGFP assay was used to identify MP as a suppressor of RNA silencing, to delimit essential amino acids for this activity and uncouple silencing and movement functions.


Asunto(s)
Proteínas de Movimiento Viral en Plantas/metabolismo , Interferencia de ARN , ARN Viral/metabolismo , Tombusviridae/metabolismo , Carmovirus/genética , Carmovirus/metabolismo , Prueba de Complementación Genética , Proteínas Fluorescentes Verdes/metabolismo , ARN Viral/genética , Tombusviridae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA