Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 181(3): 557-573.e18, 2020 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-32259484

RESUMEN

Central nervous system (CNS) macrophages comprise microglia and border-associated macrophages (BAMs) residing in the meninges, the choroid plexus, and the perivascular spaces. Most CNS macrophages emerge during development, with the exception of choroid plexus and dural macrophages, which are replaced by monocytes in adulthood. Whether microglia and BAMs share a developmental program or arise from separate lineages remains unknown. Here, we identified two phenotypically, transcriptionally, and locally distinct brain macrophages throughout development, giving rise to either microglia or BAMs. Two macrophage populations were already present in the yolk sac suggesting an early segregation. Fate-mapping models revealed that BAMs mostly derived from early erythro-myeloid progenitors in the yolk sac. The development of microglia was dependent on TGF-ß, whereas the genesis of BAMs occurred independently of this cytokine. Collectively, our data show that developing parenchymal and non-parenchymal brain macrophages are separate entities in terms of ontogeny, gene signature, and requirement for TGF-ß.


Asunto(s)
Encéfalo/citología , Macrófagos/citología , Microglía/citología , Animales , Encéfalo/metabolismo , Linaje de la Célula , Ratones , Monocitos , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo
2.
Cell ; 167(5): 1385-1397.e11, 2016 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-27863250

RESUMEN

The association of histone modification changes with autism spectrum disorder (ASD) has not been systematically examined. We conducted a histone acetylome-wide association study (HAWAS) by performing H3K27ac chromatin immunoprecipitation sequencing (ChIP-seq) on 257 postmortem samples from ASD and matched control brains. Despite etiological heterogeneity, ≥68% of syndromic and idiopathic ASD cases shared a common acetylome signature at >5,000 cis-regulatory elements in prefrontal and temporal cortex. Similarly, multiple genes associated with rare genetic mutations in ASD showed common "epimutations." Acetylome aberrations in ASD were not attributable to genetic differentiation at cis-SNPs and highlighted genes involved in synaptic transmission, ion transport, epilepsy, behavioral abnormality, chemokinesis, histone deacetylation, and immunity. By correlating histone acetylation with genotype, we discovered >2,000 histone acetylation quantitative trait loci (haQTLs) in human brain regions, including four candidate causal variants for psychiatric diseases. Due to the relative stability of histone modifications postmortem, we anticipate that the HAWAS approach will be applicable to multiple diseases.


Asunto(s)
Trastorno del Espectro Autista/genética , Cerebelo/metabolismo , Código de Histonas , Corteza Prefrontal/metabolismo , Sitios de Carácter Cuantitativo , Lóbulo Temporal/metabolismo , Acetilación , Trastorno del Espectro Autista/metabolismo , Autopsia , Inmunoprecipitación de Cromatina , Elementos de Facilitación Genéticos , Humanos , Regiones Promotoras Genéticas , Factores de Transcripción/metabolismo
3.
Blood ; 141(22): 2738-2755, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36857629

RESUMEN

Primary resistance to tyrosine kinase inhibitors (TKIs) is a significant barrier to optimal outcomes in chronic myeloid leukemia (CML), but factors contributing to response heterogeneity remain unclear. Using single-cell RNA (scRNA) sequencing, we identified 8 statistically significant features in pretreatment bone marrow, which correlated with either sensitivity (major molecular response or MMR) or extreme resistance to imatinib (eventual blast crisis [BC] transformation). Employing machine-learning, we identified leukemic stem cell (LSC) and natural killer (NK) cell gene expression profiles predicting imatinib response with >80% accuracy, including no false positives for predicting BC. A canonical erythroid-specifying (TAL1/KLF1/GATA1) regulon was a hallmark of LSCs from patients with MMR and was associated with erythroid progenitor [ERP] expansion in vivo (P < .05), and a 2- to 10-fold (6.3-fold in group A vs 1.09-fold in group C) erythroid over myeloid bias in vitro. Notably, ERPs demonstrated exquisite TKI sensitivity compared with myeloid progenitors (P < .001). These LSC features were lost with progressive resistance, and MYC- and IRF1-driven inflammatory regulons were evident in patients who progressed to transformation. Patients with MMR also exhibited a 56-fold expansion (P < .01) of a normally rare subset of hyperfunctional adaptive-like NK cells, which diminished with progressive resistance, whereas patients destined for BC accumulated inhibitory NKG2A+ NK cells favoring NK cell tolerance. Finally, we developed antibody panels to validate our scRNA-seq findings. These panels may be useful for prospective studies of primary resistance, and in assessing the contribution of predetermined vs acquired factors in TKI response heterogeneity.


Asunto(s)
Leucemia Mielógena Crónica BCR-ABL Positiva , Inhibidores de Proteínas Quinasas , Humanos , Mesilato de Imatinib/farmacología , Mesilato de Imatinib/uso terapéutico , Estudios Prospectivos , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Crisis Blástica , Resistencia a Antineoplásicos/genética
4.
Mol Psychiatry ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844534

RESUMEN

Understanding the shared and divergent mechanisms across antidepressant (AD) classes and probiotics is critical for improving treatment for mood disorders. Here we examine the transcriptomic effects of bupropion (NDRI), desipramine (SNRI), fluoxetine (SSRI) and a probiotic formulation (Lacidofil®) on 10 regions across the mammalian brain. These treatments massively alter gene expression (on average, 2211 differentially expressed genes (DEGs) per region-treatment combination), highlighting the biological complexity of AD and probiotic action. Intersection of DEG sets against neuropsychiatric GWAS loci, sex-specific transcriptomic portraits of major depressive disorder (MDD), and mouse models of stress and depression reveals significant similarities and differences across treatments. Interestingly, molecular responses in the infralimbic cortex, basolateral amygdala and locus coeruleus are region-specific and highly similar across treatments, whilst responses in the Raphe, medial preoptic area, cingulate cortex, prelimbic cortex and ventral dentate gyrus are predominantly treatment-specific. Mechanistically, ADs concordantly downregulate immune pathways in the amygdala and ventral dentate gyrus. In contrast, protein synthesis, metabolism and synaptic signaling pathways are axes of variability among treatments. We use spatial transcriptomics to further delineate layer-specific molecular pathways and DEGs within the prefrontal cortex. Our study reveals complex AD and probiotics action on the mammalian brain and identifies treatment-specific cellular processes and gene targets associated with mood disorders.

5.
Gut ; 72(9): 1651-1663, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36918265

RESUMEN

OBJECTIVE: Gastric cancer (GC) is a leading cause of cancer mortality, with ARID1A being the second most frequently mutated driver gene in GC. We sought to decipher ARID1A-specific GC regulatory networks and examine therapeutic vulnerabilities arising from ARID1A loss. DESIGN: Genomic profiling of GC patients including a Singapore cohort (>200 patients) was performed to derive mutational signatures of ARID1A inactivation across molecular subtypes. Single-cell transcriptomic profiles of ARID1A-mutated GCs were analysed to examine tumour microenvironmental changes arising from ARID1A loss. Genome-wide ARID1A binding and chromatin profiles (H3K27ac, H3K4me3, H3K4me1, ATAC-seq) were generated to identify gastric-specific epigenetic landscapes regulated by ARID1A. Distinct cancer hallmarks of ARID1A-mutated GCs were converged at the genomic, single-cell and epigenomic level, and targeted by pharmacological inhibition. RESULTS: We observed prevalent ARID1A inactivation across GC molecular subtypes, with distinct mutational signatures and linked to a NFKB-driven proinflammatory tumour microenvironment. ARID1A-depletion caused loss of H3K27ac activation signals at ARID1A-occupied distal enhancers, but unexpectedly gain of H3K27ac at ARID1A-occupied promoters in genes such as NFKB1 and NFKB2. Promoter activation in ARID1A-mutated GCs was associated with enhanced gene expression, increased BRD4 binding, and reduced HDAC1 and CTCF occupancy. Combined targeting of promoter activation and tumour inflammation via bromodomain and NFKB inhibitors confirmed therapeutic synergy specific to ARID1A-genomic status. CONCLUSION: Our results suggest a therapeutic strategy for ARID1A-mutated GCs targeting both tumour-intrinsic (BRD4-assocatiated promoter activation) and extrinsic (NFKB immunomodulation) cancer phenotypes.


Asunto(s)
Neoplasias Gástricas , Factores de Transcripción , Humanos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/terapia , Neoplasias Gástricas/patología , Proteínas Nucleares/genética , Epigenómica , Mutación , Microambiente Tumoral/genética , Proteínas de Unión al ADN/genética , Proteínas de Ciclo Celular/genética
6.
Mol Psychiatry ; 27(11): 4510-4525, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36056172

RESUMEN

Depression and anxiety are major global health burdens. Although SSRIs targeting the serotonergic system are prescribed over 200 million times annually, they have variable therapeutic efficacy and side effects, and mechanisms of action remain incompletely understood. Here, we comprehensively characterise the molecular landscape of gene regulatory changes associated with fluoxetine, a widely-used SSRI. We performed multimodal analysis of SSRI response in 27 mammalian brain regions using 310 bulk RNA-seq and H3K27ac ChIP-seq datasets, followed by in-depth characterisation of two hippocampal regions using single-cell RNA-seq (20 datasets). Remarkably, fluoxetine induced profound region-specific shifts in gene expression and chromatin state, including in the nucleus accumbens shell, locus coeruleus and septal areas, as well as in more well-studied regions such as the raphe and hippocampal dentate gyrus. Expression changes were strongly enriched at GWAS loci for depression and antidepressant drug response, stressing the relevance to human phenotypes. We observed differential expression at dozens of signalling receptors and pathways, many of which are previously unknown. Single-cell analysis revealed stark differences in fluoxetine response between the dorsal and ventral hippocampal dentate gyri, particularly in oligodendrocytes, mossy cells and inhibitory neurons. Across diverse brain regions, integrative omics analysis consistently suggested increased energy metabolism via oxidative phosphorylation and mitochondrial changes, which we corroborated in vitro; this may thus constitute a shared mechanism of action of fluoxetine. Similarly, we observed pervasive chromatin remodelling signatures across the brain. Our study reveals unexpected regional and cell type-specific heterogeneity in SSRI action, highlights under-studied brain regions that may play a major role in antidepressant response, and provides a rich resource of candidate cell types, genes, gene regulatory elements and pathways for mechanistic analysis and identifying new therapeutic targets for depression and anxiety.


Asunto(s)
Ensamble y Desensamble de Cromatina , Fluoxetina , Humanos , Antidepresivos/farmacología , Encéfalo/metabolismo , Metabolismo Energético/genética , Fluoxetina/farmacología , Fluoxetina/metabolismo , Mamíferos , Multiómica , Animales
7.
Nucleic Acids Res ; 49(15): 8505-8519, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34320202

RESUMEN

The transcriptomic diversity of cell types in the human body can be analysed in unprecedented detail using single cell (SC) technologies. Unsupervised clustering of SC transcriptomes, which is the default technique for defining cell types, is prone to group cells by technical, rather than biological, variation. Compared to de-novo (unsupervised) clustering, we demonstrate using multiple benchmarks that supervised clustering, which uses reference transcriptomes as a guide, is robust to batch effects and data quality artifacts. Here, we present RCA2, the first algorithm to combine reference projection (batch effect robustness) with graph-based clustering (scalability). In addition, RCA2 provides a user-friendly framework incorporating multiple commonly used downstream analysis modules. RCA2 also provides new reference panels for human and mouse and supports generation of custom panels. Furthermore, RCA2 facilitates cell type-specific QC, which is essential for accurate clustering of data from heterogeneous tissues. We demonstrate the advantages of RCA2 on SC data from human bone marrow, healthy PBMCs and PBMCs from COVID-19 patients. Scalable supervised clustering methods such as RCA2 will facilitate unified analysis of cohort-scale SC datasets.


Asunto(s)
Algoritmos , Análisis por Conglomerados , ARN Citoplasmático Pequeño/genética , RNA-Seq/métodos , Análisis de la Célula Individual/métodos , Animales , Artritis Reumatoide/genética , Células de la Médula Ósea/metabolismo , COVID-19/sangre , COVID-19/patología , Estudios de Cohortes , Conjuntos de Datos como Asunto , Humanos , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/patología , Ratones , Especificidad de Órganos , Control de Calidad , RNA-Seq/normas , Análisis de la Célula Individual/normas , Transcriptoma
8.
Circ Res ; 127(6): 761-777, 2020 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-32529949

RESUMEN

RATIONALE: Identifying genetic markers for heterogeneous complex diseases such as heart failure is challenging and requires prohibitively large cohort sizes in genome-wide association studies to meet the stringent threshold of genome-wide statistical significance. On the other hand, chromatin quantitative trait loci, elucidated by direct epigenetic profiling of specific human tissues, may contribute toward prioritizing subthreshold variants for disease association. OBJECTIVE: Here, we captured noncoding genetic variants by performing epigenetic profiling for enhancer H3K27ac chromatin immunoprecipitation followed by sequencing in 70 human control and end-stage failing hearts. METHODS AND RESULTS: We have mapped a comprehensive catalog of 47 321 putative human heart enhancers and promoters. Three thousand eight hundred ninety-seven differential acetylation peaks (FDR [false discovery rate], 5%) pointed to pathways altered in heart failure. To identify cardiac histone acetylation quantitative trait loci (haQTLs), we regressed out confounding factors including heart failure disease status and used the G-SCI (Genotype-independent Signal Correlation and Imbalance) test1 to call out 1680 haQTLs (FDR, 10%). RNA sequencing performed on the same heart samples proved a subset of haQTLs to have significant association also to gene expression (expression quantitative trait loci), either in cis (180) or through long-range interactions (81), identified by Hi-C (high-throughput chromatin conformation assay) and HiChIP (high-throughput protein centric chromatin) performed on a subset of hearts. Furthermore, a concordant relationship between the gain or disruption of TF (transcription factor)-binding motifs, inferred from alternative alleles at the haQTLs, implied a surprising direct association between these specific TF and local histone acetylation in human hearts. Finally, 62 unique loci were identified by colocalization of haQTLs with the subthreshold loci of heart-related genome-wide association studies datasets. CONCLUSIONS: Disease and phenotype association for 62 unique loci are now implicated. These loci may indeed mediate their effect through modification of enhancer H3K27 acetylation enrichment and their corresponding gene expression differences (bioRxiv: https://doi.org/10.1101/536763). Graphical Abstract: A graphical abstract is available for this article.


Asunto(s)
Epigenoma , Variación Genética , Insuficiencia Cardíaca/genética , Histonas/genética , Acetilación , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Inmunoprecipitación de Cromatina , Bases de Datos Genéticas , Epigénesis Genética , Epigenómica , Femenino , Predisposición Genética a la Enfermedad , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/fisiopatología , Secuenciación de Nucleótidos de Alto Rendimiento , Histonas/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Fenotipo , Sitios de Carácter Cuantitativo
9.
Proc Natl Acad Sci U S A ; 116(19): 9622-9627, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-31015293

RESUMEN

White matter abnormalities are a nearly universal pathological feature of neurodegenerative disorders including Huntington disease (HD). A long-held assumption is that this white matter pathology is simply a secondary outcome of the progressive neuronal loss that manifests with advancing disease. Using a mouse model of HD, here we show that white matter and myelination abnormalities are an early disease feature appearing before the manifestation of any behavioral abnormalities or neuronal loss. We further show that selective inactivation of mutant huntingtin (mHTT) in the NG2+ oligodendrocyte progenitor cell population prevented myelin abnormalities and certain behavioral deficits in HD mice. Strikingly, the improvements in behavioral outcomes were seen despite the continued expression of mHTT in nonoligodendroglial cells including neurons, astrocytes, and microglia. Using RNA-seq and ChIP-seq analyses, we implicate a pathogenic mechanism that involves enhancement of polycomb repressive complex 2 (PRC2) activity by mHTT in the intrinsic oligodendroglial dysfunction and myelination deficits observed in HD. Our findings challenge the long-held dogma regarding the etiology of white matter pathology in HD and highlight the contribution of epigenetic mechanisms to the observed intrinsic oligodendroglial dysfunction. Our results further suggest that ameliorating white matter pathology and oligodendroglial dysfunction may be beneficial for HD.


Asunto(s)
Conducta Animal , Enfermedades Desmielinizantes , Proteína Huntingtina , Enfermedad de Huntington , Mutación , Oligodendroglía , Animales , Enfermedades Desmielinizantes/genética , Enfermedades Desmielinizantes/metabolismo , Enfermedades Desmielinizantes/patología , Modelos Animales de Enfermedad , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Ratones , Ratones Mutantes , Oligodendroglía/metabolismo , Oligodendroglía/patología , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo , Sustancia Blanca/metabolismo , Sustancia Blanca/patología
10.
BMC Bioinformatics ; 22(1): 186, 2021 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-33845760

RESUMEN

BACKGROUND: Clustering is a crucial step in the analysis of single-cell data. Clusters identified in an unsupervised manner are typically annotated to cell types based on differentially expressed genes. In contrast, supervised methods use a reference panel of labelled transcriptomes to guide both clustering and cell type identification. Supervised and unsupervised clustering approaches have their distinct advantages and limitations. Therefore, they can lead to different but often complementary clustering results. Hence, a consensus approach leveraging the merits of both clustering paradigms could result in a more accurate clustering and a more precise cell type annotation. RESULTS: We present SCCONSENSUS, an [Formula: see text] framework for generating a consensus clustering by (1) integrating results from both unsupervised and supervised approaches and (2) refining the consensus clusters using differentially expressed genes. The value of our approach is demonstrated on several existing single-cell RNA sequencing datasets, including data from sorted PBMC sub-populations. CONCLUSIONS: SCCONSENSUS combines the merits of unsupervised and supervised approaches to partition cells with better cluster separation and homogeneity, thereby increasing our confidence in detecting distinct cell types. SCCONSENSUS is implemented in [Formula: see text] and is freely available on GitHub at https://github.com/prabhakarlab/scConsensus .


Asunto(s)
ARN , Análisis de la Célula Individual , Análisis por Conglomerados , Perfilación de la Expresión Génica , Leucocitos Mononucleares , Análisis de Secuencia de ARN
11.
BMC Genomics ; 22(1): 789, 2021 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-34732136

RESUMEN

BACKGROUND: Transposable elements (TE) comprise nearly half of the human genome and their insertions have profound effects to human genetic diversification and as well as disease. Despite their abovementioned significance, there is no consensus on the TE subfamilies that remain active in the human genome. In this study, we therefore developed a novel statistical test for recently mobile subfamilies (RMSs), based on patterns of overlap with > 100,000 polymorphic indels. RESULTS: Our analysis produced a catalogue of 20 high-confidence RMSs, which excludes many false positives in public databases. Intriguingly though, it includes HERV-K, an LTR subfamily previously thought to be extinct. The RMS catalogue is strongly enriched for contributions to germline genetic disorders (P = 1.1e-10), and thus constitutes a valuable resource for diagnosing disorders of unknown aetiology using targeted TE-insertion screens. Remarkably, RMSs are also highly enriched for somatic insertions in diverse cancers (P = 2.8e-17), thus indicating strong correlations between germline and somatic TE mobility. Using CRISPR/Cas9 deletion, we show that an RMS-derived polymorphic TE insertion increased the expression of RPL17, a gene associated with lower survival in liver cancer. More broadly, polymorphic TE insertions from RMSs were enriched near genes with allele-specific expression, suggesting widespread effects on gene regulation. CONCLUSIONS: By using a novel statistical test we have defined a catalogue of 20 recently mobile transposable element subfamilies. We illustrate the gene regulatory potential of RMS-derived polymorphic TE insertions, using CRISPR/Cas9 deletion in vitro on a specific candidate, as well as by genome wide analysis of allele-specific expression. Our study presents novel insights into TE mobility and regulatory potential and provides a key resource for human disease genetics and population history studies.


Asunto(s)
Elementos Transponibles de ADN , Retrovirus Endógenos , Elementos Transponibles de ADN/genética , Regulación de la Expresión Génica , Genoma Humano , Humanos
12.
Hum Mol Genet ; 28(13): 2201-2211, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31220268

RESUMEN

Autism spectrum disorder (ASD) encompasses a collection of complex neuropsychiatric disorders characterized by deficits in social functioning, communication and repetitive behaviour. Building on recent studies supporting a role for developmentally moderated regulatory genomic variation in the molecular aetiology of ASD, we quantified genome-wide patterns of DNA methylation in 223 post-mortem tissues samples isolated from three brain regions [prefrontal cortex, temporal cortex and cerebellum (CB)] dissected from 43 ASD patients and 38 non-psychiatric control donors. We identified widespread differences in DNA methylation associated with idiopathic ASD (iASD), with consistent signals in both cortical regions that were distinct to those observed in the CB. Individuals carrying a duplication on chromosome 15q (dup15q), representing a genetically defined subtype of ASD, were characterized by striking differences in DNA methylationacross a discrete domain spanning an imprinted gene cluster within the duplicated region. In addition to the dramatic cis-effects on DNA methylation observed in dup15q carriers, we identified convergent methylomic signatures associated with both iASD and dup15q, reflecting the findings from previous studies of gene expression and H3K27ac. Cortical co-methylation network analysis identified a number of co-methylated modules significantly associated with ASD that are enriched for genomic regions annotated to genes involved in the immune system, synaptic signalling and neuronal regulation. Our study represents the first systematic analysis of DNA methylation associated with ASD across multiple brain regions, providing novel evidence for convergent molecular signatures associated with both idiopathic and syndromic autism.


Asunto(s)
Trastorno Autístico/genética , Cerebelo/metabolismo , Metilación de ADN , Corteza Prefrontal/metabolismo , Lóbulo Temporal/metabolismo , Trastorno Autístico/metabolismo , Estudios de Casos y Controles , Cerebelo/química , Epigenoma , Femenino , Ontología de Genes , Redes Reguladoras de Genes , Genoma Humano , Humanos , Sistema Inmunológico/metabolismo , Masculino , Vías Nerviosas/fisiología , Corteza Prefrontal/química , Transmisión Sináptica/genética , Transmisión Sináptica/fisiología , Lóbulo Temporal/química
13.
Circulation ; 139(16): 1937-1956, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30717603

RESUMEN

BACKGROUND: The human genome folds in 3 dimensions to form thousands of chromatin loops inside the nucleus, encasing genes and cis-regulatory elements for accurate gene expression control. Physical tethers of loops are anchored by the DNA-binding protein CTCF and the cohesin ring complex. Because heart failure is characterized by hallmark gene expression changes, it was recently reported that substantial CTCF-related chromatin reorganization underpins the myocardial stress-gene response, paralleled by chromatin domain boundary changes observed in CTCF knockout. METHODS: We undertook an independent and orthogonal analysis of chromatin organization with mouse pressure-overload model of myocardial stress (transverse aortic constriction) and cardiomyocyte-specific knockout of Ctcf. We also downloaded published data sets of similar cardiac mouse models and subjected them to independent reanalysis. RESULTS: We found that the cardiomyocyte chromatin architecture remains broadly stable in transverse aortic constriction hearts, whereas Ctcf knockout resulted in ≈99% abolition of global chromatin loops. Disease gene expression changes correlated instead with differential histone H3K27-acetylation enrichment at their respective proximal and distal interacting genomic enhancers confined within these static chromatin structures. Moreover, coregulated genes were mapped out as interconnected gene sets on the basis of their multigene 3D interactions. CONCLUSIONS: This work reveals a more stable genome-wide chromatin framework than previously described. Myocardial stress-gene transcription responds instead through H3K27-acetylation enhancer enrichment dynamics and gene networks of coregulation. Robust and intact CTCF looping is required for the induction of a rapid and accurate stress response.


Asunto(s)
Estenosis de la Válvula Aórtica/genética , Factor de Unión a CCCTC/metabolismo , Cromatina/metabolismo , Insuficiencia Cardíaca/genética , Miocitos Cardíacos/fisiología , Acetilación , Animales , Factor de Unión a CCCTC/genética , Células Cultivadas , Ensamble y Desensamble de Cromatina , Modelos Animales de Enfermedad , Epigénesis Genética , Regulación de la Expresión Génica , Ontología de Genes , Redes Reguladoras de Genes , Histonas/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Estrés Fisiológico
14.
Nucleic Acids Res ; 46(11): 5470-5486, 2018 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-29669022

RESUMEN

FOXA1 is a transcription factor capable to bind silenced chromatin to direct context-dependent cell fate conversion. Here, we demonstrate that a compact palindromic DNA element (termed 'DIV' for its diverging half-sites) induces the homodimerization of FOXA1 with strongly positive cooperativity. Alternative structural models are consistent with either an indirect DNA-mediated cooperativity or a direct protein-protein interaction. The cooperative homodimer formation is strictly constrained by precise half-site spacing. Re-analysis of chromatin immunoprecipitation sequencing data indicates that the DIV is effectively targeted by FOXA1 in the context of chromatin. Reporter assays show that FOXA1-dependent transcriptional activity declines when homodimeric binding is disrupted. In response to phosphatidylinositol-3 kinase inhibition DIV sites pre-bound by FOXA1 such as at the PVT1/MYC locus exhibit a strong increase in accessibility suggesting a role of the DIV configuration in the chromatin closed-open dynamics. Moreover, several disease-associated single nucleotide polymorphisms map to DIV elements and show allelic differences in FOXA1 homodimerization, reporter gene expression and are annotated as quantitative trait loci. This includes the rs541455835 variant at the MAPT locus encoding the Tau protein associated with Parkinson's disease. Collectively, the DIV guides chromatin engagement and regulation by FOXA1 and its perturbation could be linked to disease etiologies.


Asunto(s)
ADN/genética , Elementos de Facilitación Genéticos/genética , Regulación de la Expresión Génica/genética , Factor Nuclear 3-alfa del Hepatocito/metabolismo , Secuencias Invertidas Repetidas/genética , Línea Celular Tumoral , Cromatina/metabolismo , Dimerización , Células HCT116 , Humanos , Células MCF-7 , Inhibidores de las Quinasa Fosfoinosítidos-3 , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo/genética , Tiazoles/farmacología
15.
Genes Dev ; 26(20): 2286-98, 2012 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-23019124

RESUMEN

Embryonic stem cell (ESC) pluripotency depends on a well-characterized gene regulatory network centered on Oct4, Sox2, and Nanog. In contrast, little is known about the identity of the key coregulators and the mechanisms by which they may potentiate transcription in ESCs. Alongside core transcription factors, the orphan nuclear receptor Esrrb (estrogen-related receptor ß) is vital for the maintenance of ESC identity and furthermore is uniquely associated with the basal transcription machinery. Here, we show that Ncoa3, an essential coactivator, is required to mediate Esrrb function in ESCs. Ncoa3 interacts with Esrrb via its ligand-binding domain and bridges Esrrb to RNA polymerase II complexes. Functionally, Ncoa3 is critical for both the induction and maintenance of pluripotency. Through chromatin immunoprecipitation (ChIP) sequencing and microarray experiments, we further demonstrate that Ncoa3 shares overlapping gene regulatory functions with Esrrb and cooperates genome-wide with the Oct4-Sox2-Nanog circuitry at active enhancers to up-regulate genes involved in self-renewal and pluripotency. We propose an integrated model of transcriptional and coactivator control, mediated by Ncoa3, for the maintenance of ESC self-renewal and somatic cell reprogramming.


Asunto(s)
Reprogramación Celular/genética , Células Madre Embrionarias/citología , Coactivador 3 de Receptor Nuclear/metabolismo , Receptores de Estrógenos/metabolismo , Animales , Células COS , Proliferación Celular , Chlorocebus aethiops , Femenino , Regulación del Desarrollo de la Expresión Génica , Genoma/genética , Células HEK293 , Humanos , Masculino , Ratones , Receptores de Estrógenos/genética
16.
Genome Res ; 26(5): 612-23, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26957309

RESUMEN

Although over 35 different histone acetylation marks have been described, the overwhelming majority of regulatory genomics studies focus exclusively on H3K27ac and H3K9ac. In order to identify novel epigenomic traits of regulatory elements, we constructed a benchmark set of validated enhancers by performing 140 enhancer assays in human T cells. We tested 40 chromatin signatures on this unbiased enhancer set and identified H2BK20ac, a little-studied histone modification, as the most predictive mark of active enhancers. Notably, we detected a novel class of functionally distinct enhancers enriched in H2BK20ac but lacking H3K27ac, which was present in all examined cell lines and also in embryonic forebrain tissue. H2BK20ac was also unique in highlighting cell-type-specific promoters. In contrast, other acetylation marks were present in all active promoters, regardless of cell-type specificity. In stimulated microglial cells, H2BK20ac was more correlated with cell-state-specific expression changes than H3K27ac, with TGF-beta signaling decoupling the two acetylation marks at a subset of regulatory elements. In summary, our study reveals a previously unknown connection between histone acetylation and cell-type-specific gene regulation and indicates that H2BK20ac profiling can be used to uncover new dimensions of gene regulation.


Asunto(s)
Elementos de Facilitación Genéticos , Histonas/metabolismo , Regiones Promotoras Genéticas , Procesamiento Proteico-Postraduccional , Acetilación , Línea Celular , Humanos
17.
Development ; 143(6): 950-61, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26893351

RESUMEN

An association between impaired fetal growth and the postnatal development of obesity has been established. Here, by comparing adipocytes differentiated from mesenchymal stem cells (MSCs) taken from the umbilical cord and derived from normal and growth-restricted neonates, we identified the transcription factor SOX6 as highly expressed only in growth-restricted individuals. We found that SOX6 regulates adipogenesis in vertebrate species by activating adipogenic regulators including PPARγ, C/EBPα and MEST. We further show that SOX6 interacts with ß-catenin in adipocytes, suggesting an inhibition of WNT/ß-catenin signaling, thereby promoting adipogenesis. The upstream regulatory region of the MEST gene in MSCs from growth-restricted subjects harbors hypomethylated CpGs next to SOX6 binding motifs, and we found that SOX6 binding is impaired by adjacent CpG methylation. In summary, we report that SOX6 is a novel regulator of adipogenesis synergizing with epigenetic mechanisms.


Asunto(s)
Adipogénesis , Obesidad/genética , Factores de Transcripción SOXD/metabolismo , Células 3T3 , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Adipogénesis/efectos de los fármacos , Adipogénesis/genética , Animales , Sitios de Unión , Diferenciación Celular , Islas de CpG/genética , Metilación de ADN/genética , Regulación hacia Abajo/efectos de los fármacos , Humanos , Recién Nacido , Recién Nacido Pequeño para la Edad Gestacional/metabolismo , Larva/efectos de los fármacos , Metabolismo de los Lípidos/genética , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos , Oligonucleótidos Antisentido/farmacología , Unión Proteica/efectos de los fármacos , Proteínas/genética , Triglicéridos/metabolismo , Vía de Señalización Wnt/efectos de los fármacos , Vía de Señalización Wnt/genética , Pez Cebra
18.
Clin Chem ; 65(2): 272-281, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30523199

RESUMEN

BACKGROUND: The comeasurement of both genomic and transcriptomic signatures in single cells is of fundamental importance to accurately assess how the genetic information correlates with the transcriptomic phenotype. However, existing technologies have low throughput and laborious work flows. METHODS: We developed a new method for concurrent sequencing of the transcriptome and targeted genomic regions (CORTAD-seq) within the same single cell on an automated microfluidic platform. The method was compatible with the downstream library preparation, allowing easy integration into existing next-generation sequencing work flows. We incorporated a single-cell bioinformatics pipeline for transcriptome and mutation analysis. RESULTS: As proof of principle, we applied CORTAD-seq to lung cancer cell lines to dissect the cellular consequences of mutations that result in resistance to targeted therapy. We obtained a mean detection of 6000 expressed genes and an exonic rate of 50%. The targeted DNA-sequencing data achieved a 97.8% detection rate for mutations and allowed for the identification of copy number variations and haplotype construction. We detected expression signatures of tyrosine kinase inhibitor (TKI) resistance, epidermal growth factor receptor (EGFR) amplification, and expansion of the T790M mutation among resistant cells. We also identified characteristics for TKI resistance that were independent of EGFR T790M, indicating that other alterations are required for resistance in this context. CONCLUSIONS: CORTAD-seq allows assessment of the interconnection between genetic and transcriptomic changes in single cells. It is operated on an automated, commercially available single-cell isolation platform, making its implementation straightforward.


Asunto(s)
Genómica , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , ARN/química , Análisis de Secuencia de ADN/métodos , Automatización , Línea Celular Tumoral , Variaciones en el Número de Copia de ADN , Resistencia a Antineoplásicos/genética , Receptores ErbB/genética , Biblioteca de Genes , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Microfluídica , Inhibidores de Proteínas Quinasas/uso terapéutico , ARN/metabolismo , Análisis de la Célula Individual , Transcriptoma
19.
Semin Cell Dev Biol ; 57: 51-56, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27174439

RESUMEN

Barbara McClintock discovered the existence of transposable elements (TEs) in the late 1940s and initially proposed that they contributed to the gene regulatory program of higher organisms. This controversial idea gained acceptance only much later in the 1990s, when the first examples of TE-derived promoter sequences were uncovered. It is now known that half of the human genome is recognizably derived from TEs. It is thus important to understand the scope and nature of their contribution to gene regulation. Here, we provide a timeline of major discoveries in this area and discuss how transposons have revolutionized our understanding of mammalian genomes, with a special emphasis on the massive contribution of TEs to primate evolution. Our analysis of primate-specific functional elements supports a simple model for the rate at which new functional elements arise in unique and TE-derived DNA. Finally, we discuss some of the challenges and unresolved questions in the field, which need to be addressed in order to fully characterize the impact of TEs on gene regulation, evolution and disease processes.


Asunto(s)
Elementos Transponibles de ADN/genética , Mamíferos/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Animales , Genoma , Humanos , Modelos Genéticos , Filogenia
20.
EMBO J ; 33(11): 1271-83, 2014 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-24802670

RESUMEN

Several transcription factors (TFs) have been implicated in neuroectoderm (NE) development, and recently, the TF PAX6 was shown to be critical for human NE specification. However, microRNA networks regulating human NE development have been poorly documented. We hypothesized that microRNAs activated by PAX6 should promote NE development. Using a genomics approach, we identified PAX6 binding sites and active enhancers genome-wide in an in vitro model of human NE development that was based on neural differentiation of human embryonic stem cells (hESC). PAX6 binding to active enhancers was found in the proximity of several microRNAs, including hsa-miR-135b. MiR-135b was activated during NE development, and ectopic expression of miR-135b in hESC promoted differentiation toward NE. MiR-135b promotes neural conversion by targeting components of the TGF-ß and BMP signaling pathways, thereby inhibiting differentiation into alternate developmental lineages. Our results demonstrate a novel TF-miRNA module that is activated during human neuroectoderm development and promotes the irreversible fate specification of human pluripotent cells toward the neural lineage.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Proteínas del Ojo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/metabolismo , MicroARNs/genética , Factores de Transcripción Paired Box/metabolismo , Proteínas Represoras/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Sitios de Unión , Proteínas Morfogenéticas Óseas/genética , Diferenciación Celular , Línea Celular , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Proteínas del Ojo/genética , Perfilación de la Expresión Génica , Proteínas de Homeodominio/genética , Humanos , MicroARNs/metabolismo , Modelos Moleculares , Mutación , Placa Neural , Factor de Transcripción PAX6 , Factores de Transcripción Paired Box/genética , Proteínas Represoras/genética , Análisis de Secuencia de ADN , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA