Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
J Pharmacol Exp Ther ; 374(3): 500-511, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32532853

RESUMEN

High-throughput cell-based fluorescent imaging assays often require removal of background fluorescent signal to obtain robust measurements. Processing high-density microplates to remove background signal is challenging because of equipment requirements and increasing variation after multiple plate wash steps. Here, we present the development of a wash-free cell-based fluorescence assay method for high-throughput screening using a laser scanning fluorescence plate cytometer. The cytometry data consisted of cell count and fluorescent intensity measurements for phenotypic screening. We obtained robust screening results by applying this assay methodology to the lysosomal storage disease Niemann-Pick disease type A. We further demonstrated that this cytometry method can be applied to the detection of cholesterol in Niemann-Pick disease type C. Lastly, we used the Mirrorball method to obtain preliminary results for the detection of Zika and Dengue viral envelope protein. The advantages of this assay format include 1) no plate washing, 2) 4-fold faster plate scan and analysis time, 3) high throughput, and 4) >10-fold smaller direct data files. In contrast, traditional imaging assays require multiple plate washes to remove the background signal, long plate scan and data analysis times, and large data files. Therefore, this versatile and broadly applicable Mirrorball-based method greatly improves the throughput and data quality of image-based screening by increasing sensitivity and efficiency while reducing assay artifacts. SIGNIFICANCE STATEMENT: This work has resulted in the development of broadly applicable cell-based fluorescence imaging assays without the requirement of washing out reagents to reduce background signal, which effectively decreases the need for extensive plate processing by the researcher. We demonstrate this high-throughput method for drug screening against lysosomal storage diseases and a commonly used viral titer assay.


Asunto(s)
Bioensayo/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Células Cultivadas , Dengue/virología , Virus del Dengue/metabolismo , Evaluación Preclínica de Medicamentos/métodos , Fluorescencia , Humanos , Proteínas del Envoltorio Viral/metabolismo , Virus Zika/metabolismo , Infección por el Virus Zika/virología
2.
PLoS One ; 18(10): e0292926, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37862312

RESUMEN

The ability to model human neurological tissues in vitro has been a major hurdle to effective drug development for neurological disorders. iPSC-derived brain organoids have emerged as a compelling solution to this problem as they have the potential to relevantly model the protein expression pattern and physiology of specific brain regions. Although many protocols now exist for the production of brain organoids, few attempts have been made to do an in-depth kinetic evaluation of expression of mature regiospecific markers of brain organoids. To address this, we differentiated midbrain-specific brain organoids from iPSC-lines derived from three apparently healthy individuals using a matrix-free, bioreactor method. We monitored the expression of midbrain-specific neuronal markers from 7 to 90-days using immunofluorescence and immunohistology. The organoids were further characterized using electron microscopy and RNA-seq. In addition to serving as a potential benchmark for the future evaluation of other differentiation protocols, the markers observed in this study can be useful as control parameters to identify and evaluate the disease phenotypes in midbrain organoid derived from patient iPSC-lines with genetic neurological disorders.


Asunto(s)
Células Madre Pluripotentes Inducidas , Enfermedades del Sistema Nervioso , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Mesencéfalo , Encéfalo , Organoides/metabolismo , Enfermedades del Sistema Nervioso/metabolismo , Diferenciación Celular
3.
Front Cell Dev Biol ; 11: 1039182, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36875753

RESUMEN

NGLY1 deficiency is an ultra-rare, autosomal recessive genetic disease caused by mutations in the NGLY1 gene encoding N-glycanase one that removes N-linked glycan. Patients with pathogenic mutations in NGLY1 have complex clinical symptoms including global developmental delay, motor disorder and liver dysfunction. To better understand the disease pathogenesis and the neurological symptoms of the NGLY1 deficiency we generated and characterized midbrain organoids using patient-derived iPSCs from two patients with distinct disease-causing mutations-one homozygous for p. Q208X, the other compound heterozygous for p. L318P and p. R390P and CRISPR generated NGLY1 knockout iPSCs. We demonstrate that NGLY1 deficient midbrain organoids show altered neuronal development compared to one wild type (WT) organoid. Both neuronal (TUJ1) and astrocytic glial fibrillary acid protein markers were reduced in NGLY1 patient-derived midbrain organoids along with neurotransmitter GABA. Interestingly, staining for dopaminergic neuronal marker, tyrosine hydroxylase, revealed a significant reduction in patient iPSC derived organoids. These results provide a relevant NGLY1 disease model to investigate disease mechanisms and evaluate therapeutics for treatments of NGLY1 deficiency.

4.
Sci Transl Med ; 15(708): eabn7491, 2023 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-37556558

RESUMEN

There is an urgent need to develop therapeutics for inflammatory bowel disease (IBD) because up to 40% of patients with moderate-to-severe IBD are not adequately controlled with existing drugs. Glutamate carboxypeptidase II (GCPII) has emerged as a promising therapeutic target. This enzyme is minimally expressed in normal ileum and colon, but it is markedly up-regulated in biopsies from patients with IBD and preclinical colitis models. Here, we generated a class of GCPII inhibitors designed to be gut-restricted for oral administration, and we interrogated efficacy and mechanism using in vitro and in vivo models. The lead inhibitor, (S)-IBD3540, was potent (half maximal inhibitory concentration = 4 nanomolar), selective, gut-restricted (AUCcolon/plasma > 50 in mice with colitis), and efficacious in acute and chronic rodent colitis models. In dextran sulfate sodium-induced colitis, oral (S)-IBD3540 inhibited >75% of colon GCPII activity, dose-dependently improved gross and histologic disease, and markedly attenuated monocytic inflammation. In spontaneous colitis in interleukin-10 (IL-10) knockout mice, once-daily oral (S)-IBD3540 initiated after disease onset improved disease, normalized colon histology, and attenuated inflammation as evidenced by reduced fecal lipocalin 2 and colon pro-inflammatory cytokines/chemokines, including tumor necrosis factor-α and IL-17. Using primary human colon epithelial air-liquid interface monolayers to interrogate the mechanism, we further found that (S)-IBD3540 protected against submersion-induced oxidative stress injury by decreasing barrier permeability, normalizing tight junction protein expression, and reducing procaspase-3 activation. Together, this work demonstrated that local inhibition of dysregulated gastrointestinal GCPII using the gut-restricted, orally active, small-molecule (S)-IBD3540 is a promising approach for IBD treatment.


Asunto(s)
Colitis , Glutamato Carboxipeptidasa II , Enfermedades Inflamatorias del Intestino , Animales , Humanos , Ratones , Colitis/tratamiento farmacológico , Colitis/metabolismo , Colon/patología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Glutamato Carboxipeptidasa II/antagonistas & inhibidores , Inflamación/patología , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/patología , Ratones Endogámicos C57BL
5.
Adv Ther (Weinh) ; 5(11)2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36589922

RESUMEN

There are many neurological rare diseases where animal models have proven inadequate or do not currently exist. NGLY1 Deficiency, a congenital disorder of deglycosylation, is a rare disease that predominantly affects motor control, especially control of neuromuscular action. In this study, NGLY1-deficient, patient-derived induced pluripotent stem cells (iPSCs) were differentiated into motoneurons (MNs) to identify disease phenotypes analogous to clinical disease pathology with significant deficits apparent in the NGLY1-deficient lines compared to the control. A neuromuscular junction (NMJ) model was developed using patient and wild type (WT) MNs to study functional differences between healthy and diseased NMJs. Reduced axon length, increased and shortened axon branches, MN action potential (AP) bursting and decreased AP firing rate and amplitude were observed in the NGLY1-deficient MNs in monoculture. When transitioned to the NMJ-coculture system, deficits in NMJ number, stability, failure rate, and synchronicity with indirect skeletal muscle (SkM) stimulation were observed. This project establishes a phenotypic NGLY1 model for investigation of possible therapeutics and investigations into mechanistic deficits in the system.

6.
SLAS Discov ; 27(2): 86-94, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35086793

RESUMEN

Effective small molecule therapies to combat the SARS-CoV-2 infection are still lacking as the COVID-19 pandemic continues globally. High throughput screening assays are needed for lead discovery and optimization of small molecule SARS-CoV-2 inhibitors. In this work, we have applied viral pseudotyping to establish a cell-based SARS-CoV-2 entry assay. Here, the pseudotyped particles (PP) contain SARS-CoV-2 spike in a membrane enveloping both the murine leukemia virus (MLV) gag-pol polyprotein and luciferase reporter RNA. Upon addition of PP to HEK293-ACE2 cells, the SARS-CoV-2 spike protein binds to the ACE2 receptor on the cell surface, resulting in priming by host proteases to trigger endocytosis of these particles, and membrane fusion between the particle envelope and the cell membrane. The internalized luciferase reporter gene is then expressed in cells, resulting in a luminescent readout as a surrogate for spike-mediated entry into cells. This SARS-CoV-2 PP entry assay can be executed in a biosafety level 2 containment lab for high throughput screening. From a collection of 5,158 approved drugs and drug candidates, our screening efforts identified 7 active compounds that inhibited the SARS-CoV-2-S PP entry. Of these seven, six compounds were active against live replicating SARS-CoV-2 virus in a cytopathic effect assay. Our results demonstrated the utility of this assay in the discovery and development of SARS-CoV-2 entry inhibitors as well as the mechanistic study of anti-SARS-CoV-2 compounds. Additionally, particles pseudotyped with spike proteins from SARS-CoV-2 B.1.1.7 and B.1.351 variants were prepared and used to evaluate the therapeutic effects of viral entry inhibitors.


Asunto(s)
Antivirales/farmacología , Ensayos Analíticos de Alto Rendimiento/métodos , SARS-CoV-2/efectos de los fármacos , Internalización del Virus/efectos de los fármacos , Células HEK293 , Humanos
7.
bioRxiv ; 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34729560

RESUMEN

Neutralizing antibodies targeting the SARS-CoV-2 spike protein have shown a great preventative/therapeutic potential. Here, we report a rapid and efficient strategy for the development and design of SARS-CoV-2 neutralizing humanized nanobody constructs with sub-nanomolar affinities and nanomolar potencies. CryoEM-based structural analysis of the nanobodies in complex with spike revealed two distinct binding modes. The most potent nanobody, RBD-1-2G(NCATS-BL8125), tolerates the N501Y RBD mutation and remains capable of neutralizing the B.1.1.7 (Alpha) variant. Molecular dynamics simulations provide a structural basis for understanding the neutralization process of nanobodies exclusively focused on the spike-ACE2 interface with and without the N501Y mutation on RBD. A primary human airway air-lung interface (ALI) ex vivo model showed that RBD-1-2G-Fc antibody treatment was effective at reducing viral burden following WA1 and B.1.1.7 SARS-CoV-2 infections. Therefore, this presented strategy will serve as a tool to mitigate the threat of emerging SARS-CoV-2 variants.

8.
PLoS One ; 17(8): e0272364, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35947606

RESUMEN

Neutralizing antibodies targeting the SARS-CoV-2 spike protein have shown a great preventative/therapeutic potential. Here, we report a rapid and efficient strategy for the development and design of SARS-CoV-2 neutralizing humanized nanobody constructs with sub-nanomolar affinities and nanomolar potencies. CryoEM-based structural analysis of the nanobodies in complex with spike revealed two distinct binding modes. The most potent nanobody, RBD-1-2G(NCATS-BL8125), tolerates the N501Y RBD mutation and remains capable of neutralizing the B.1.1.7 (Alpha) variant. Molecular dynamics simulations provide a structural basis for understanding the neutralization process of nanobodies exclusively focused on the spike-ACE2 interface with and without the N501Y mutation on RBD. A primary human airway air-lung interface (ALI) ex vivo model showed that RBD-1-2G-Fc antibody treatment was effective at reducing viral burden following WA1 and B.1.1.7 SARS-CoV-2 infections. Therefore, this presented strategy will serve as a tool to mitigate the threat of emerging SARS-CoV-2 variants.


Asunto(s)
Bacteriófagos , COVID-19 , Anticuerpos de Dominio Único , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Bacteriófagos/metabolismo , Humanos , Unión Proteica , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus
9.
Stem Cell Res ; 54: 102400, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34051448

RESUMEN

NGLY1 deficiency is a rare disorder caused by mutations in the NGLY1 gene which codes for the highly conserved N-glycanase1 (NGLY1). This enzyme functions in cytosolic deglycosylation of N- linked glycoproteins. An induced pluripotent stem cell (iPSC) line was generated from the dermal fibroblasts of a 2-year-old patient carrying compound heterozygous mutations, p.R390P and p.L318P in the NGLY1 gene. This cell-based iPSC disease model provides a resource to study disease pathophysiology and to develop a cell-based disease model for drug development for NGLY1 patients.


Asunto(s)
Células Madre Pluripotentes Inducidas , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/genética , Línea Celular , Preescolar , Glicoproteínas , Heterocigoto , Humanos , Mutación
10.
Stem Cell Res ; 54: 102447, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34198154

RESUMEN

Alagille syndrome (ALGS) is a rare autosomal dominant disorder caused by disruption of the Notch signaling pathway due to mutations in either JAGGED1 (JAG1) (ALGS type 1) or NOTCH2 (ALGS type 2). Loss of this signaling interferes with the development of many organs, but especially the liver. A human induced pluripotent stem cell (iPSC) line was generated from the fibroblasts of a patient with a p. C312X (c. 936 T > A) variant in JAG1. This iPSC line offers a valuable resource to study the disease pathophysiology and develop therapeutics to treat patients with ALGS.


Asunto(s)
Síndrome de Alagille , Células Madre Pluripotentes Inducidas , Síndrome de Alagille/genética , Heterocigoto , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Mutación/genética
11.
bioRxiv ; 2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34642691

RESUMEN

Effective small molecule therapies to combat the SARS-CoV-2 infection are still lacking as the COVID-19 pandemic continues globally. High throughput screening assays are needed for lead discovery and optimization of small molecule SARS-CoV-2 inhibitors. In this work, we have applied viral pseudotyping to establish a cell-based SARS-CoV-2 entry assay. Here, the pseudotyped particles (PP) contain SARS-CoV-2 spike in a membrane enveloping both the murine leukemia virus (MLV) gag-pol polyprotein and luciferase reporter RNA. Upon addition of PP to HEK293-ACE2 cells, the SARS-CoV-2 spike protein binds to the ACE2 receptor on the cell surface, resulting in priming by host proteases to trigger endocytosis of these particles, and membrane fusion between the particle envelope and the cell membrane. The internalized luciferase reporter gene is then expressed in cells, resulting in a luminescent readout as a surrogate for spike-mediated entry into cells. This SARS-CoV-2 PP entry assay can be executed in a biosafety level 2 containment lab for high throughput screening. From a collection of 5,158 approved drugs and drug candidates, our screening efforts identified 7 active compounds that inhibited the SARS-CoV-2-S PP entry. Of these seven, six compounds were active against live replicating SARS-CoV-2 virus in a cytopathic effect assay. Our results demonstrated the utility of this assay in the discovery and development of SARS-CoV-2 entry inhibitors as well as the mechanistic study of anti-SARS-CoV-2 compounds. Additionally, particles pseudotyped with spike proteins from SARS-CoV-2 B.1.1.7 and B.1.351 variants were prepared and used to evaluate the therapeutic effects of viral entry inhibitors.

12.
ACS Infect Dis ; 7(6): 1389-1408, 2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-33346633

RESUMEN

Understanding the SARS-CoV-2 virus' pathways of infection, virus-host-protein interactions, and mechanisms of virus-induced cytopathic effects will greatly aid in the discovery and design of new therapeutics to treat COVID-19. Chloroquine and hydroxychloroquine, extensively explored as clinical agents for COVID-19, have multiple cellular effects including alkalizing lysosomes and blocking autophagy as well as exhibiting dose-limiting toxicities in patients. Therefore, we evaluated additional lysosomotropic compounds to identify an alternative lysosome-based drug repurposing opportunity. We found that six of these compounds blocked the cytopathic effect of SARS-CoV-2 in Vero E6 cells with half-maximal effective concentration (EC50) values ranging from 2.0 to 13 µM and selectivity indices (SIs; SI = CC50/EC50) ranging from 1.5- to >10-fold. The compounds (1) blocked lysosome functioning and autophagy, (2) prevented pseudotyped particle entry, (3) increased lysosomal pH, and (4) reduced (ROC-325) viral titers in the EpiAirway 3D tissue model. Consistent with these findings, the siRNA knockdown of ATP6V0D1 blocked the HCoV-NL63 cytopathic effect in LLC-MK2 cells. Moreover, an analysis of SARS-CoV-2 infected Vero E6 cell lysate revealed significant dysregulation of autophagy and lysosomal function, suggesting a contribution of the lysosome to the life cycle of SARS-CoV-2. Our findings suggest the lysosome as a potential host cell target to combat SARS-CoV-2 infections and inhibitors of lysosomal function could become an important component of drug combination therapies aimed at improving treatment and outcomes for COVID-19.


Asunto(s)
COVID-19 , SARS-CoV-2 , Antivirales/farmacología , Antivirales/uso terapéutico , Reposicionamiento de Medicamentos , Humanos , Lisosomas
13.
Stem Cell Res ; 49: 102011, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33038742

RESUMEN

Expanded human skin fibroblast cells from four different aged healthy individuals, 11-year-old female, 1-year-old male, 2-month-old male, and 8-year-old male, were used to generate integration-free induced pluripotent stem cell (iPSC) lines TRNDi021-C, TRNDi023-D, TRNDi024-D, and TRNDi025-A, respectively, by exogenous expression of four reprogramming factors, human SXO2, OCT3/4, C-MYC, KLF4. The authenticity of established iPSC lines was confirmed by the expressions of stem cell markers, karyotype analysis, and teratoma formation. These iPSC lines could serve as young healthy controls for the studies involving patient-specific iPSCs.


Asunto(s)
Células Madre Pluripotentes Inducidas , Teratoma , Anciano , Diferenciación Celular , Reprogramación Celular , Niño , Femenino , Fibroblastos , Humanos , Lactante , Cariotipo , Cariotipificación , Factor 4 Similar a Kruppel , Masculino
14.
ACS Nano ; 14(9): 12234-12247, 2020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-32845122

RESUMEN

The first step of SARS-CoV-2 infection is binding of the spike protein's receptor binding domain to the host cell's ACE2 receptor on the plasma membrane. Here, we have generated a versatile imaging probe using recombinant Spike receptor binding domain conjugated to fluorescent quantum dots (QDs). This probe is capable of engaging in energy transfer quenching with ACE2-conjugated gold nanoparticles to enable monitoring of the binding event in solution. Neutralizing antibodies and recombinant human ACE2 blocked quenching, demonstrating a specific binding interaction. In cells transfected with ACE2-GFP, we observed immediate binding of the probe on the cell surface followed by endocytosis. Neutralizing antibodies and ACE2-Fc fully prevented binding and endocytosis with low nanomolar potency. Importantly, we will be able to use this QD nanoparticle probe to identify and validate inhibitors of the SARS-CoV-2 Spike and ACE2 receptor binding in human cells. This work enables facile, rapid, and high-throughput cell-based screening of inhibitors for coronavirus Spike-mediated cell recognition and entry.


Asunto(s)
Endocitosis , Nanopartículas del Metal/química , Peptidil-Dipeptidasa A/metabolismo , Puntos Cuánticos/química , Glicoproteína de la Espiga del Coronavirus/metabolismo , Enzima Convertidora de Angiotensina 2 , Betacoronavirus/metabolismo , COVID-19 , Infecciones por Coronavirus/metabolismo , Oro , Humanos , Pandemias , Peptidil-Dipeptidasa A/fisiología , Neumonía Viral/metabolismo , Unión Proteica , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/química , Virión
15.
Stem Cell Res ; 44: 101737, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32114296

RESUMEN

Niemann-Pick disease, type C (NPC) is a rare autosomal recessive genetic disease caused by mutations in either NPC1 or NPC2, which encodes an intracellular cholesterol-binding protein in lysosome. Deficiency of either NPC1 or NPC2 protein results in malfunction of intracellular cholesterol trafficking and lysosomal accumulation of unesterified cholesterols. A human induced pluripotent stem cell (iPSC) line was generated from dermal fibroblasts of a male patient that has a homozygous p.I1061T missense mutation in NPC1 using a non-integrating Sendai virus technique. This NPC1 iPSC line offers a useful resource for disease modeling and drug development.


Asunto(s)
Línea Celular , Células Madre Pluripotentes Inducidas , Enfermedad de Niemann-Pick Tipo A , Enfermedades de Niemann-Pick , Colesterol , Humanos , Péptidos y Proteínas de Señalización Intracelular , Masculino , Mutación/genética , Proteína Niemann-Pick C1
16.
bioRxiv ; 2020 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-32766575

RESUMEN

Neurological complications are common in patients with COVID-19. While SARS-CoV-2, the causal pathogen of COVID-19, has been detected in some patient brains, its ability to infect brain cells and impact their function are not well understood, and experimental models using human brain cells are urgently needed. Here we investigated the susceptibility of human induced pluripotent stem cell (hiPSC)-derived monolayer brain cells and region-specific brain organoids to SARS-CoV-2 infection. We found modest numbers of infected neurons and astrocytes, but greater infection of choroid plexus epithelial cells. We optimized a protocol to generate choroid plexus organoids from hiPSCs, which revealed productive SARS-CoV-2 infection that leads to increased cell death and transcriptional dysregulation indicative of an inflammatory response and cellular function deficits. Together, our results provide evidence for SARS-CoV-2 neurotropism and support use of hiPSC-derived brain organoids as a platform to investigate the cellular susceptibility, disease mechanisms, and treatment strategies for SARS-CoV-2 infection.

17.
bioRxiv ; 2020 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-32839777

RESUMEN

While vaccine development will hopefully quell the global pandemic of COVID-19 caused by SARS-CoV-2, small molecule drugs that can effectively control SARS-CoV-2 infection are urgently needed. Here, inhibitors of spike (S) mediated cell entry were identified in a high throughput screen of an approved drugs library with SARS-S and MERS-S pseudotyped particle entry assays. We discovered six compounds (cepharanthine, abemaciclib, osimertinib, trimipramine, colforsin, and ingenol) to be broad spectrum inhibitors for spike-mediated entry. This work should contribute to the development of effective treatments against the initial stage of viral infection, thus reducing viral burden in COVID-19 patients.

18.
bioRxiv ; 2020 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-32699847

RESUMEN

The cell entry of SARS-CoV-2 has emerged as an attractive drug repurposing target for COVID-19. Here we combine genetics and chemical perturbation to demonstrate that ACE2-mediated entry of SARS-CoV and CoV-2 requires the cell surface heparan sulfate (HS) as an assisting cofactor: ablation of genes involved in HS biosynthesis or incubating cells with a HS mimetic both inhibit Spike-mediated viral entry. We show that heparin/HS binds to Spike directly, facilitates the attachment of viral particles to the cell surface to promote cell entry. We screened approved drugs and identified two classes of inhibitors that act via distinct mechanisms to target this entry pathway. Among the drugs characterized, Mitoxantrone is a potent HS inhibitor, while Sunitinib and BNTX disrupt the actin network to indirectly abrogate HS-assisted viral entry. We further show that drugs of the two classes can be combined to generate a synergized activity against SARS-CoV-2-induced cytopathic effect. Altogether, our study establishes HS as an attachment factor that assists SARS coronavirus cell entry, and reveals drugs capable of targeting this important step in the viral life cycle.

19.
Cell Discov ; 6(1): 80, 2020 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-33298900

RESUMEN

The cell entry of SARS-CoV-2 has emerged as an attractive drug repurposing target for COVID-19. Here we combine genetics and chemical perturbation to demonstrate that ACE2-mediated entry of SARS-Cov and CoV-2 requires the cell surface heparan sulfate (HS) as an assisting cofactor: ablation of genes involved in HS biosynthesis or incubating cells with a HS mimetic both inhibit Spike-mediated viral entry. We show that heparin/HS binds to Spike directly, and facilitates the attachment of Spike-bearing viral particles to the cell surface to promote viral entry. We screened approved drugs and identified two classes of inhibitors that act via distinct mechanisms to target this entry pathway. Among the drugs characterized, Mitoxantrone is a potent HS inhibitor, while Sunitinib and BNTX disrupt the actin network to indirectly abrogate HS-assisted viral entry. We further show that drugs of the two classes can be combined to generate a synergized activity against SARS-CoV-2-induced cytopathic effect. Altogether, our study establishes HS as an attachment factor that assists SARS coronavirus cell entry and reveals drugs capable of targeting this important step in the viral life cycle.

20.
ACS Pharmacol Transl Sci ; 3(6): 1165-1175, 2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33330839

RESUMEN

While vaccine development will hopefully quell the global pandemic of COVID-19 caused by SARS-CoV-2, small molecule drugs that can effectively control SARS-CoV-2 infection are urgently needed. Here, inhibitors of spike (S) mediated cell entry were identified in a high throughput screen of an approved drugs library with SARS-S and MERS-S pseudotyped particle entry assays. We discovered six compounds (cepharanthine, abemaciclib, osimertinib, trimipramine, colforsin, and ingenol) to be broad spectrum inhibitors for spike-mediated entry. This work could contribute to the development of effective treatments against the initial stage of viral infection and provide mechanistic information that might aid the design of new drug combinations for clinical trials for COVID-19 patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA