Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Metab Eng ; 78: 72-83, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37201565

RESUMEN

Microbial production of valuable bioproducts is a promising route towards green and sustainable manufacturing. The oleaginous yeast, Rhodosporidium toruloides, has emerged as an attractive host for the production of biofuels and bioproducts from lignocellulosic hydrolysates. 3-hydroxypropionic acid (3HP) is an attractive platform molecule that can be used to produce a wide range of commodity chemicals. This study focuses on establishing and optimizing the production of 3HP in R. toruloides. As R. toruloides naturally has a high metabolic flux towards malonyl-CoA, we exploited this pathway to produce 3HP. Upon finding the yeast capable of catabolizing 3HP, we then implemented functional genomics and metabolomic analysis to identify the catabolic pathways. Deletion of a putative malonate semialdehyde dehydrogenase gene encoding an oxidative 3HP pathway was found to significantly reduce 3HP degradation. We further explored monocarboxylate transporters to promote 3HP transport and identified a novel 3HP transporter in Aspergillus pseudoterreus by RNA-seq and proteomics. Combining these engineering efforts with media optimization in a fed-batch fermentation resulted in 45.4 g/L 3HP production. This represents one of the highest 3HP titers reported in yeast from lignocellulosic feedstocks. This work establishes R. toruloides as a host for 3HP production from lignocellulosic hydrolysate at high titers, and paves the way for further strain and process optimization towards enabling industrial production of 3HP in the future.


Asunto(s)
Lignina , Ingeniería Metabólica , Ingeniería Metabólica/métodos , Lignina/metabolismo
2.
Metab Eng ; 66: 229-238, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33964456

RESUMEN

Pseudomonas putida KT2440 is an emerging biomanufacturing host amenable for use with renewable carbon streams including aromatics such as para-coumarate. We used a pooled transposon library disrupting nearly all (4,778) non-essential genes to characterize this microbe under common stirred-tank bioreactor parameters with quantitative fitness assays. Assessing differential fitness values by monitoring changes in mutant strain abundance identified 33 gene mutants with improved fitness across multiple stirred-tank bioreactor formats. Twenty-one deletion strains from this subset were reconstructed, including GacA, a regulator, TtgB, an ABC transporter, and PP_0063, a lipid A acyltransferase. Thirteen deletion strains with roles in varying cellular functions were evaluated for conversion of para-coumarate, to a heterologous bioproduct, indigoidine. Several mutants, such as the ΔgacA strain improved fitness in a bioreactor by 35 fold and showed an 8-fold improvement in indigoidine production (4.5 g/L, 0.29 g/g, 23% of maximum theoretical yield) from para-coumarate as the carbon source.


Asunto(s)
Pseudomonas putida , Reactores Biológicos , Carbono , Biblioteca de Genes , Ensayos Analíticos de Alto Rendimiento , Pseudomonas putida/genética
3.
Biotechnol Bioeng ; 117(5): 1418-1425, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31981215

RESUMEN

Fatty alcohols (FOHs) are important feedstocks in the chemical industry to produce detergents, cosmetics, and lubricants. Microbial production of FOHs has become an attractive alternative to production in plants and animals due to growing energy demands and environmental concerns. However, inhibition of cell growth caused by intracellular FOH accumulation is one major issue that limits FOH titers in microbial hosts. In addition, identification of FOH-specific exporters remains a challenge and previous studies towards this end are limited. To alleviate the toxicity issue, we exploited nonionic surfactants to promote the export of FOHs in Rhodosporidium toruloides, an oleaginous yeast that is considered an attractive next-generation host for the production of fatty acid-derived chemicals. Our results showed FOH export efficiency was dramatically improved and the growth inhibition was alleviated in the presence of small amounts of tergitol and other surfactants. As a result, FOH titers increase by 4.3-fold at bench scale to 352.6 mg/L. With further process optimization in a 2-L bioreactor, the titer was further increased to 1.6 g/L. The method we show here can potentially be applied to other microbial hosts and may facilitate the commercialization of microbial FOH production.


Asunto(s)
Reactores Biológicos/microbiología , Alcoholes Grasos , Ingeniería Metabólica/métodos , Rhodotorula , Tensoactivos/química , Alcoholes Grasos/análisis , Alcoholes Grasos/metabolismo , Rhodotorula/genética , Rhodotorula/metabolismo
4.
Microb Cell Fact ; 19(1): 167, 2020 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-32811554

RESUMEN

BACKGROUND: Despite the latest advancements in metabolic engineering for genome editing and characterization of host performance, the successful development of robust cell factories used for industrial bioprocesses and accurate prediction of the behavior of microbial systems, especially when shifting from laboratory-scale to industrial conditions, remains challenging. To increase the probability of success of a scale-up process, data obtained from thoroughly performed studies mirroring cellular responses to typical large-scale stimuli may be used to derive crucial information to better understand potential implications of large-scale cultivation on strain performance. This study assesses the feasibility to employ a barcoded yeast deletion library to assess genome-wide strain fitness across a simulated industrial fermentation regime and aims to understand the genetic basis of changes in strain physiology during industrial fermentation, and the corresponding roles these genes play in strain performance. RESULTS: We find that mutant population diversity is maintained through multiple seed trains, enabling large scale fermentation selective pressures to act upon the community. We identify specific deletion mutants that were enriched in all processes tested in this study, independent of the cultivation conditions, which include MCK1, RIM11, MRK1, and YGK3 that all encode homologues of mammalian glycogen synthase kinase 3 (GSK-3). Ecological analysis of beta diversity between all samples revealed significant population divergence over time and showed feed specific consequences of population structure. Further, we show that significant changes in the population diversity during fed-batch cultivations reflect the presence of significant stresses. Our observations indicate that, for this yeast deletion collection, the selection of the feeding scheme which affects the accumulation of the fermentative by-product ethanol impacts the diversity of the mutant pool to a higher degree as compared to the pH of the culture broth. The mutants that were lost during the time of most extreme population selection suggest that specific biological processes may be required to cope with these specific stresses. CONCLUSIONS: Our results demonstrate the feasibility of Bar-seq to assess fermentation associated stresses in yeast populations under industrial conditions and to understand critical stages of a scale-up process where variability emerges, and selection pressure gets imposed. Overall our work highlights a promising avenue to identify genetic loci and biological stress responses required for fitness under industrial conditions.


Asunto(s)
Reactores Biológicos/microbiología , Biotecnología/métodos , Fermentación , Saccharomyces cerevisiae/fisiología , Biodiversidad , Eliminación de Gen , Genes Fúngicos , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3/metabolismo , Microbiología Industrial , Ingeniería Metabólica , Estrés Fisiológico/genética
5.
Microb Cell Fact ; 19(1): 24, 2020 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-32024522

RESUMEN

BACKGROUND: Rhodosporidium toruloides has emerged as a promising host for the production of bioproducts from lignocellulose, in part due to its ability to grow on lignocellulosic feedstocks, tolerate growth inhibitors, and co-utilize sugars and lignin-derived monomers. Ent-kaurene derivatives have a diverse range of potential applications from therapeutics to novel resin-based materials. RESULTS: The Design, Build, Test, and Learn (DBTL) approach was employed to engineer production of the non-native diterpene ent-kaurene in R. toruloides. Following expression of kaurene synthase (KS) in R. toruloides in the first DBTL cycle, a key limitation appeared to be the availability of the diterpene precursor, geranylgeranyl diphosphate (GGPP). Further DBTL cycles were carried out to select an optimal GGPP synthase and to balance its expression with KS, requiring two of the strongest promoters in R. toruloides, ANT (adenine nucleotide translocase) and TEF1 (translational elongation factor 1) to drive expression of the KS from Gibberella fujikuroi and a mutant version of an FPP synthase from Gallus gallus that produces GGPP. Scale-up of cultivation in a 2 L bioreactor using a corn stover hydrolysate resulted in an ent-kaurene titer of 1.4 g/L. CONCLUSION: This study builds upon previous work demonstrating the potential of R. toruloides as a robust and versatile host for the production of both mono- and sesquiterpenes, and is the first demonstration of the production of a non-native diterpene in this organism.


Asunto(s)
Diterpenos de Tipo Kaurano/metabolismo , Lignina/metabolismo , Ingeniería Metabólica , Ustilaginales/metabolismo , Animales , Proteínas de Plantas/metabolismo
6.
Microb Cell Fact ; 18(1): 218, 2019 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-31884968

RESUMEN

Following publication of the original article [1], the authors have noted that the standard curve in Additional file 1: Figure S7 is incorrect.

7.
Microb Cell Fact ; 17(1): 193, 2018 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-30545355

RESUMEN

BACKGROUND: Beyond pathway engineering, the metabolic state of the production host is critical in maintaining the efficiency of cellular production. The biotechnologically important yeast Saccharomyces cerevisiae adjusts its energy metabolism based on the availability of oxygen and carbon sources. This transition between respiratory and non-respiratory metabolic state is accompanied by substantial modifications of central carbon metabolism, which impact the efficiency of metabolic pathways and the corresponding final product titers. Non-ribosomal peptide synthetases (NRPS) are an important class of biocatalysts that provide access to a wide array of secondary metabolites. Indigoidine, a blue pigment, is a representative NRP that is valuable by itself as a renewably produced pigment. RESULTS: Saccharomyces cerevisiae was engineered to express a bacterial NRPS that converts glutamine to indigoidine. We characterize carbon source use and production dynamics, and demonstrate that indigoidine is solely produced during respiratory cell growth. Production of indigoidine is abolished during non-respiratory growth even under aerobic conditions. By promoting respiratory conditions via controlled feeding, we scaled the production to a 2 L bioreactor scale, reaching a maximum titer of 980 mg/L. CONCLUSIONS: This study represents the first use of the Streptomyces lavendulae NRPS (BpsA) in a fungal host and its scale-up. The final product indigoidine is linked to the activity of the TCA cycle and serves as a reporter for the respiratory state of S. cerevisiae. Our approach can be broadly applied to investigate diversion of flux from central carbon metabolism for NRPS and other heterologous pathway engineering, or to follow a population switch between respiratory and non-respiratory modes.


Asunto(s)
Ingeniería Metabólica/métodos , Péptido Sintasas/síntesis química , Piperidonas/síntesis química , Saccharomyces cerevisiae/metabolismo
8.
Biotechnol Biofuels ; 14(1): 101, 2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-33883010

RESUMEN

BACKGROUND: Mitigation of climate change requires that new routes for the production of fuels and chemicals be as oil-independent as possible. The microbial conversion of lignocellulosic feedstocks into terpene-based biofuels and bioproducts represents one such route. This work builds upon previous demonstrations that the single-celled carotenogenic basidiomycete, Rhodosporidium toruloides, is a promising host for the production of terpenes from lignocellulosic hydrolysates. RESULTS: This study focuses on the optimization of production of the monoterpene 1,8-cineole and the sesquiterpene α-bisabolene in R. toruloides. The α-bisabolene titer attained in R. toruloides was found to be proportional to the copy number of the bisabolene synthase (BIS) expression cassette, which in turn influenced the expression level of several native mevalonate pathway genes. The addition of more copies of BIS under a stronger promoter resulted in production of α-bisabolene at 2.2 g/L from lignocellulosic hydrolysate in a 2-L fermenter. Production of 1,8-cineole was found to be limited by availability of the precursor geranylgeranyl pyrophosphate (GPP) and expression of an appropriate GPP synthase increased the monoterpene titer fourfold to 143 mg/L at bench scale. Targeted mevalonate pathway metabolite analysis suggested that 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGR), mevalonate kinase (MK) and phosphomevalonate kinase (PMK) may be pathway bottlenecks are were therefore selected as targets for overexpression. Expression of HMGR, MK, and PMK orthologs and growth in an optimized lignocellulosic hydrolysate medium increased the 1,8-cineole titer an additional tenfold to 1.4 g/L. Expression of the same mevalonate pathway genes did not have as large an impact on α-bisabolene production, although the final titer was higher at 2.6 g/L. Furthermore, mevalonate pathway intermediates accumulated in the mevalonate-engineered strains, suggesting room for further improvement. CONCLUSIONS: This work brings R. toruloides closer to being able to make industrially relevant quantities of terpene from lignocellulosic biomass.

9.
Nat Commun ; 11(1): 5385, 2020 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-33097726

RESUMEN

High titer, rate, yield (TRY), and scalability are challenging metrics to achieve due to trade-offs between carbon use for growth and production. To achieve these metrics, we take the minimal cut set (MCS) approach that predicts metabolic reactions for elimination to couple metabolite production strongly with growth. We compute MCS solution-sets for a non-native product indigoidine, a sustainable pigment, in Pseudomonas putida KT2440, an emerging industrial microbe. From the 63 solution-sets, our omics guided process identifies one experimentally feasible solution requiring 14 simultaneous reaction interventions. We implement a total of 14 genes knockdowns using multiplex-CRISPRi. MCS-based solution shifts production from stationary to exponential phase. We achieve 25.6 g/L, 0.22 g/l/h, and ~50% maximum theoretical yield (0.33 g indigoidine/g glucose). These phenotypes are maintained from batch to fed-batch mode, and across scales (100-ml shake flasks, 250-ml ambr®, and 2-L bioreactors).


Asunto(s)
Piperidonas/metabolismo , Pseudomonas putida/metabolismo , Biología Sintética/métodos , Técnicas de Cultivo Celular por Lotes , Biomasa , Reactores Biológicos/microbiología , Carbono/metabolismo , Medios de Cultivo , Fermentación , Técnicas de Inactivación de Genes , Ingeniería Genética , Genoma Bacteriano , Glucosa/metabolismo , Microbiología Industrial , Pseudomonas putida/genética
10.
Biotechnol Biofuels ; 10: 271, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29167701

RESUMEN

BACKGROUND: Lignocellulosic biomass is an important resource for renewable production of biofuels and bioproducts. Enzymes that deconstruct this biomass are critical for the viability of biomass-based biofuel production processes. Current commercial enzyme mixtures have limited thermotolerance. Thermophilic fungi may provide enzyme mixtures with greater thermal stability leading to more robust processes. Understanding the induction of biomass-deconstructing enzymes in thermophilic fungi will provide the foundation for strategies to construct hyper-production strains. RESULTS: Induction of cellulases using xylan was demonstrated during cultivation of the thermophilic fungus Thermoascus aurantiacus. Simulated fed-batch conditions with xylose induced comparable levels of cellulases. These fed-batch conditions were adapted to produce enzymes in 2 and 19 L bioreactors using xylose and xylose-rich hydrolysate from dilute acid pretreatment of corn stover. Enzymes from T. aurantiacus that were produced in the xylose-fed bioreactor demonstrated comparable performance in the saccharification of deacetylated, dilute acid-pretreated corn stover when compared to a commercial enzyme mixture at 50 °C. The T. aurantiacus enzymes retained this activity at of 60 °C while the commercial enzyme mixture was largely inactivated. CONCLUSIONS: Xylose induces both cellulase and xylanase production in T. aurantiacus and was used to produce enzymes at up to the 19 L bioreactor scale. The demonstration of induction by xylose-rich hydrolysate and saccharification of deacetylated, dilute acid-pretreated corn stover suggests a scenario to couple biomass pretreatment with onsite enzyme production in a biorefinery. This work further demonstrates the potential for T. aurantiacus as a thermophilic platform for cellulase development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA