Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(17): e2217396120, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37068235

RESUMEN

Octopamine is a well-established invertebrate neurotransmitter involved in fight or flight responses. In mammals, its function was replaced by epinephrine. Nevertheless, it is present at trace amounts and can modulate the release of monoamine neurotransmitters by a yet unidentified mechanism. Here, through a multidisciplinary approach utilizing in vitro and in vivo models of α-synucleinopathy, we uncovered an unprecedented role for octopamine in driving the conversion from toxic to neuroprotective astrocytes in the cerebral cortex by fostering aerobic glycolysis. Physiological levels of neuron-derived octopamine act on astrocytes via a trace amine-associated receptor 1-Orai1-Ca2+-calcineurin-mediated signaling pathway to stimulate lactate secretion. Lactate uptake in neurons via the monocarboxylase transporter 2-calcineurin-dependent pathway increases ATP and prevents neurodegeneration. Pathological increases of octopamine caused by α-synuclein halt lactate production in astrocytes and short-circuits the metabolic communication to neurons. Our work provides a unique function of octopamine as a modulator of astrocyte metabolism and subsequent neuroprotection with implications to α-synucleinopathies.


Asunto(s)
Octopamina , alfa-Sinucleína , Animales , alfa-Sinucleína/metabolismo , Astrocitos/metabolismo , Calcineurina/metabolismo , Lactatos/metabolismo , Mamíferos/metabolismo , Neuroprotección , Neurotransmisores/metabolismo , Octopamina/metabolismo
2.
Arterioscler Thromb Vasc Biol ; 44(4): 772-783, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38385293

RESUMEN

Airway epithelial cells play an indispensable role in protecting the lung from inhaled pathogens and allergens by releasing an array of mediators that orchestrate inflammatory and immune responses when confronted with harmful environmental triggers. While this process is undoubtedly important for containing the effects of various harmful insults, dysregulation of the inflammatory response can cause lung diseases including asthma, chronic obstructive pulmonary disease, and pulmonary fibrosis. A key cellular mechanism that underlies the inflammatory responses in the airway is calcium signaling, which stimulates the production and release of chemokines, cytokines, and prostaglandins from the airway epithelium. In this review, we discuss the role of major Ca2+ signaling pathways found in airway epithelial cells and their contributions to airway inflammation, mucociliary clearance, and surfactant production. We highlight the importance of store-operated Ca2+ entry as a major signaling hub in these processes and discuss therapeutic implications of targeting Ca2+ signaling for airway inflammation.


Asunto(s)
Asma , Señalización del Calcio , Humanos , Asma/metabolismo , Pulmón , Células Epiteliales/metabolismo , Inflamación/metabolismo
3.
J Physiol ; 602(8): 1449-1462, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37029630

RESUMEN

Store operated Ca2+ entry (SOCE) is a ubiquitous signalling module with established roles in the immune system, secretion and muscle development. Recent evidence supports a complex role for SOCE in the nervous system. In this review we present an update of the current knowledge on SOCE function in the brain with a focus on its role as a regulator of brain activity and excitability.

4.
J Immunol ; 208(10): 2390-2402, 2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35459743

RESUMEN

Respiratory viruses stimulate the release of antiviral IFNs from the airway epithelium. Previous studies have shown that asthmatic patients show diminished release of type I and type III IFNs from bronchial epithelia. However, the mechanism of this suppression is not understood. In this study, we report that extracellular nucleotides and histamine, which are elevated in asthmatic airways, strongly inhibit release of type I and type III IFNs from human bronchial airway epithelial cells (AECs). Specifically, ATP, UTP, and histamine all inhibited the release of type I and type III IFNs from AECs induced by activation of TLR3, retinoic acid-inducible gene I (RIG-I), or cyclic GMP-AMP synthase-STING. This inhibition was at least partly mediated by Gq signaling through purinergic P2Y2 and H1 receptors, but it did not involve store-operated calcium entry. Pharmacological blockade of protein kinase C partially reversed inhibition of IFN production. Conversely, direct activation of protein kinase C with phorbol esters strongly inhibited TLR3- and RIG-I-mediated IFN production. Inhibition of type I and type III IFNs by ATP, UTP, histamine, and the proteinase-activated receptor 2 (PAR2) receptor agonist SLIGKV also occurred in differentiated AECs grown at an air-liquid interface, indicating that the suppression is conserved following mucociliary differentiation. Importantly, histamine and, more strikingly, ATP inhibited type I IFN release from human airway cells infected with live influenza A virus or rhinovirus 1B. These results reveal an important role for extracellular nucleotides and histamine in attenuating the induction of type I and III IFNs from AECs and help explain the molecular basis of the suppression of IFN responses in asthmatic patients.


Asunto(s)
Proteína 58 DEAD Box , Histamina , Interferones , Nucleótidos , Receptores Inmunológicos , Mucosa Respiratoria , Receptor Toll-Like 3 , Adenosina Trifosfato/inmunología , Proteína 58 DEAD Box/inmunología , Células Epiteliales/inmunología , Histamina/inmunología , Humanos , Interferones/inmunología , Nucleótidos/inmunología , Proteína Quinasa C/inmunología , Receptores Inmunológicos/inmunología , Mucosa Respiratoria/inmunología , Receptor Toll-Like 3/inmunología , Uridina Trifosfato/metabolismo , Uridina Trifosfato/farmacología
5.
J Biol Chem ; 298(8): 102157, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35724962

RESUMEN

Stromal interaction molecule 1 (STIM1) is a widely expressed protein that functions as the endoplasmic reticulum (ER) Ca2+ sensor and activator of Orai1 channels. In resting cells with replete Ca2+ stores, an inhibitory clamp formed by the coiled-coil 1 (CC1) domain interacting with the CRAC-activation domain (CAD) of STIM1 helps keep STIM1 in a quiescent state. Following depletion of ER Ca2+ stores, the brake is released, allowing CAD to extend away from the ER membrane and enabling it to activate Orai1 channels. However, the molecular determinants of CC1-CAD interactions that enforce the inhibitory clamp are incompletely understood. Here, we performed Ala mutagenesis in conjunction with live-cell FRET analysis to examine residues in CC1 and CAD that regulate the inhibitory clamp. Our results indicate that in addition to previously identified hotspots in CC1⍺1 and CC3, several hydrophobic residues in CC2 and the apex region of CAD are critical for CC1-CAD interactions. Mutations in these residues loosen the CC1-CAD inhibitory clamp to release CAD from CC1 in cells with replete Ca2+ stores. By contrast, altering the hydrophobic residues L265 and L273 strengthens the clamp to prevent STIM1 activation. Inclusion of the inactivation domain of STIM1 helps stabilize CC1-CAD interaction in several mutants to prevent spontaneous STIM1 activation. In addition, R426C, a human disease-linked mutation in CC3, affects the clamp but also impairs Orai1 binding to inhibit CRAC channel activation. These results identify the CC2, apex, and inactivation domain regions of STIM1 as important determinants of STIM1 activation.


Asunto(s)
Señalización del Calcio , Retículo Endoplásmico , Molécula de Interacción Estromal 1 , Calcio/metabolismo , Canales de Calcio/metabolismo , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Humanos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Dominios Proteicos , Molécula de Interacción Estromal 1/genética , Molécula de Interacción Estromal 1/metabolismo
6.
J Immunol ; 207(5): 1275-1287, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34389624

RESUMEN

The airway epithelial cells (AECs) lining the conducting passageways of the lung secrete a variety of immunomodulatory factors. Among these, PGE2 limits lung inflammation and promotes bronchodilation. By contrast, IL-6 drives intense airway inflammation, remodeling, and fibrosis. The signaling that differentiates the production of these opposing mediators is not understood. In this study, we find that the production of PGE2 and IL-6 following stimulation of human AECs by the damage-associated molecular pattern extracellular ATP shares a common requirement for Ca2+ release-activated Ca2+ (CRAC) channels. ATP-mediated synthesis of PGE2 required activation of metabotropic P2Y2 receptors and CRAC channel-mediated cytosolic phospholipase A2 signaling. By contrast, ATP-evoked synthesis of IL-6 occurred via activation of ionotropic P2X receptors and CRAC channel-mediated calcineurin/NFAT signaling. In contrast to ATP, which elicited the production of both PGE2 and IL-6, the uridine nucleotide, UTP, stimulated PGE2 but not IL-6 production. These results reveal that human AECs employ unique receptor-specific signaling mechanisms with CRAC channels as a signaling nexus to regulate release of opposing immunomodulatory mediators. Collectively, our results identify P2Y2 receptors, CRAC channels, and P2X receptors as potential intervention targets for airway diseases.


Asunto(s)
Dinoprostona/metabolismo , Inflamación/inmunología , Interleucina-6/metabolismo , Mucosa Respiratoria/metabolismo , Adenosina Trifosfato/farmacocinética , Alarminas/metabolismo , Canales de Calcio Activados por la Liberación de Calcio/metabolismo , Células Cultivadas , Humanos , Inmunomodulación , Interleucina-6/genética , Factores de Transcripción NFATC/metabolismo , Fosfolipasas A2/metabolismo , Receptores Purinérgicos P2X/metabolismo , Mucosa Respiratoria/patología , Transducción de Señal , Nucleótidos de Uracilo/metabolismo
7.
Physiol Rev ; 95(4): 1383-436, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26400989

RESUMEN

Store-operated calcium channels (SOCs) are a major pathway for calcium signaling in virtually all metozoan cells and serve a wide variety of functions ranging from gene expression, motility, and secretion to tissue and organ development and the immune response. SOCs are activated by the depletion of Ca(2+) from the endoplasmic reticulum (ER), triggered physiologically through stimulation of a diverse set of surface receptors. Over 15 years after the first characterization of SOCs through electrophysiology, the identification of the STIM proteins as ER Ca(2+) sensors and the Orai proteins as store-operated channels has enabled rapid progress in understanding the unique mechanism of store-operate calcium entry (SOCE). Depletion of Ca(2+) from the ER causes STIM to accumulate at ER-plasma membrane (PM) junctions where it traps and activates Orai channels diffusing in the closely apposed PM. Mutagenesis studies combined with recent structural insights about STIM and Orai proteins are now beginning to reveal the molecular underpinnings of these choreographic events. This review describes the major experimental advances underlying our current understanding of how ER Ca(2+) depletion is coupled to the activation of SOCs. Particular emphasis is placed on the molecular mechanisms of STIM and Orai activation, Orai channel properties, modulation of STIM and Orai function, pharmacological inhibitors of SOCE, and the functions of STIM and Orai in physiology and disease.


Asunto(s)
Canales de Calcio/metabolismo , Calcio/metabolismo , Animales , Señalización del Calcio/fisiología , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Humanos
8.
Immunity ; 38(2): 225-36, 2013 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-23415911

RESUMEN

It is widely appreciated that T cells increase glycolytic flux during activation, but the role of mitochondrial flux is unclear. Here, we have shown that mitochondrial metabolism in the absence of glucose metabolism is sufficient to support interleukin-2 (IL-2) induction. Furthermore, we used mice with reduced mitochondrial reactive oxygen species (mROS) production in T cells (T-Uqcrfs(-/-) mice) to show that mitochondria are required for T cell activation to produce mROS for activation of nuclear factor of activated T cells (NFAT) and subsequent IL-2 induction. These mice could not induce antigen-specific expansion of T cells in vivo, but Uqcrfs1(-/-) T cells retained the ability to proliferate in vivo under lymphopenic conditions. This suggests that Uqcrfs1(-/-) T cells were not lacking bioenergetically but rather lacked specific ROS-dependent signaling events needed for antigen-specific expansion. Thus, mitochondrial metabolism is a critical component of T cell activation through the production of complex III ROS.


Asunto(s)
Mitocondrias/metabolismo , Factores de Transcripción NFATC/genética , Linfocitos T/metabolismo , Miembro 7 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/genética , Animales , Proliferación Celular , Complejo III de Transporte de Electrones/metabolismo , Femenino , Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/inmunología , Interleucina-2/biosíntesis , Interleucina-2/inmunología , Proteínas Hierro-Azufre/deficiencia , Proteínas Hierro-Azufre/genética , Activación de Linfocitos , Linfopenia/inmunología , Linfopenia/metabolismo , Ratones , Ratones Noqueados , Mitocondrias/genética , Mitocondrias/inmunología , Factores de Transcripción NFATC/inmunología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Linfocitos T/inmunología , Miembro 7 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/inmunología
9.
Proc Natl Acad Sci U S A ; 115(22): E5193-E5202, 2018 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-29760086

RESUMEN

Store-operated Orai1 channels are activated through a unique inside-out mechanism involving binding of the endoplasmic reticulum Ca2+ sensor STIM1 to cytoplasmic sites on Orai1. Although atomic-level details of Orai structure, including the pore and putative ligand binding domains, are resolved, how the gating signal is communicated to the pore and opens the gate is unknown. To address this issue, we used scanning mutagenesis to identify 15 residues in transmembrane domains (TMs) 1-4 whose perturbation activates Orai1 channels independently of STIM1. Cysteine accessibility analysis and molecular-dynamics simulations indicated that constitutive activation of the most robust variant, H134S, arises from a pore conformational change that opens a hydrophobic gate to augment pore hydration, similar to gating evoked by STIM1. Mutational analysis of this locus suggests that H134 acts as steric brake to stabilize the closed state of the channel. In addition, atomic packing analysis revealed distinct functional contacts between the TM1 pore helix and the surrounding TM2/3 helices, including one set mediated by a cluster of interdigitating hydrophobic residues and another by alternative ridges of polar and hydrophobic residues. Perturbing these contacts via mutagenesis destabilizes STIM1-mediated Orai1 channel gating, indicating that these bridges between TM1 and the surrounding TM2/3 ring are critical for conveying the gating signal to the pore. These findings help develop a framework for understanding the global conformational changes and allosteric interactions between topologically distinct domains that are essential for activation of Orai1 channels.


Asunto(s)
Calcio/química , Calcio/metabolismo , Proteína ORAI1/química , Proteína ORAI1/metabolismo , Humanos , Simulación de Dinámica Molecular , Proteína ORAI1/genética , Dominios Proteicos
10.
J Physiol ; 598(9): 1707-1723, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-30950063

RESUMEN

Store-operated Ca2+ entry through Orai1 channels is a primary mechanism for Ca2+ entry in many cells and mediates numerous cellular effector functions ranging from gene transcription to exocytosis. Orai1 channels are amongst the most Ca2+ -selective channels known and are activated by direct physical interactions with the endoplasmic reticulum Ca2+ sensor stromal interaction molecule 1 (STIM1) in response to store depletion triggered by stimulation of a variety of cell surface G-protein coupled and tyrosine kinase receptors. Work in the last decade has revealed that the Orai1 gating process is highly cooperative and strongly allosteric, likely driven by a wave of interdependent conformational changes throughout the protein originating in the peripheral C-terminal ligand binding site and culminating in pore opening. In this review, we survey the structural and molecular features in Orai1 that contribute to channel gating and consider how they give rise to the unique biophysical fingerprint of Orai1 currents.


Asunto(s)
Canales de Calcio , Activación del Canal Iónico , Calcio/metabolismo , Canales de Calcio/metabolismo , Proteínas de la Membrana/metabolismo , Proteína ORAI1 , Molécula de Interacción Estromal 1
11.
J Physiol ; 598(23): 5391-5409, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32851638

RESUMEN

KEY POINTS: Temporal lobe epilepsy is a complex neurological disease caused by imbalance of excitation and inhibition in the brain. Growing literature implicates altered Ca2+ signalling in many aspects of epilepsy but the diversity of Ca2+ channels that regulate this syndrome are not well-understood. Here, we report that mice lacking the store-operated Ca2+ channel, Orai1, in the brain show markedly stronger seizures in response to the chemoconvulsants, kainic acid and pilocarpine. Electrophysiological analysis reveals that selective deletion of Orai1 channels in inhibitory neurons disables chemoconvulsant-induced excitation of GABAergic neurons in the CA1 hippocampus. Likewise, deletion of Orai1 in GABAergic neurons abrogates the chemoconvulsant-induced burst of spontaneous inhibitory postsynaptic currents (sIPSCs) on CA1 pyramidal neurons in the hippocampus. This loss of chemoconvulsant inhibition likely aggravates status epilepticus in Orai1 KO mice. These results identify Orai1 channels as regulators of hippocampal interneuron excitability and seizures. ABSTRACT: Store-operated Orai1 channels are a major mechanism for Ca2+ entry in many cells and mediate numerous functions including gene expression, cytokine production and gliotransmitter release. Orai1 is expressed in many regions of the mammalian brain; however, its role in regulating neuronal excitability, synaptic function and brain disorders has only now begun to be investigated. To investigate a potential role of Orai1 channels in status epilepticus induced by chemoconvulsants, we examined acute seizures evoked by intraperitoneal injections of kainic acid (KA) and pilocarpine in mice with a conditional deletion of Orai1 (or its activator STIM1) in the brain. Brain-specific Orai1 and STIM1 knockout (KO) mice exhibited significantly stronger seizures (P = 0.00003 and P < 0.00001), and higher chemoconvulsant-induced mortality (P = 0.02) compared with wildtype (WT) littermates. Electrophysiological recordings in hippocampal brain slices revealed that KA stimulated the activity of inhibitory interneurons in the CA1 hippocampus (P = 0.04) which failed to occur in Orai1 KO mice. Further, KA and pilocarpine increased the frequency of spontaneous IPSCs in CA1 pyramidal neurons >twofold (KA: P = 0.04; pilocarpine: P = 0.0002) which was abolished in Orai1 KO mice. Mice with selective deletion of Orai1 in GABAergic neurons alone also showed stronger seizures to KA (P = 0.001) and pilocarpine (P < 0.00001) and loss of chemoconvulsant-induced increases in sIPSC responses compared with WT controls. We conclude that Orai1 channels regulate chemoconvulsant-induced excitation in GABAergic neurons and that destabilization of the excitatory/inhibitory balance in Orai1 KO mice aggravates chemoconvulsant-mediated seizures. These results identify Orai1 channels as novel molecular regulators of hippocampal neuronal excitability and seizures.


Asunto(s)
Hipocampo , Convulsiones , Animales , Ácido Kaínico/toxicidad , Ratones , Proteína ORAI1/genética , Pilocarpina/toxicidad , Células Piramidales , Convulsiones/inducido químicamente
12.
Nat Immunol ; 9(4): 432-43, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18327260

RESUMEN

Store-operated Ca2+ entry through calcium release-activated calcium channels is the chief mechanism for increasing intracellular Ca2+ in immune cells. Here we show that mouse T cells and fibroblasts lacking the calcium sensor STIM1 had severely impaired store-operated Ca2+ influx, whereas deficiency in the calcium sensor STIM2 had a smaller effect. However, T cells lacking either STIM1 or STIM2 had much less cytokine production and nuclear translocation of the transcription factor NFAT. T cell-specific ablation of both STIM1 and STIM2 resulted in a notable lymphoproliferative phenotype and a selective decrease in regulatory T cell numbers. We conclude that both STIM1 and STIM2 promote store-operated Ca2+ entry into T cells and fibroblasts and that STIM proteins are required for the development and function of regulatory T cells.


Asunto(s)
Retículo Endoplásmico/metabolismo , Tolerancia Inmunológica , Activación de Linfocitos/inmunología , Glicoproteínas de Membrana/fisiología , Linfocitos T Reguladores/inmunología , Secuencia de Aminoácidos , Animales , Transporte Biológico Activo/genética , Transporte Biológico Activo/inmunología , Calcio/metabolismo , Canales de Calcio , Línea Celular , Línea Celular Transformada , Células Cultivadas , Retículo Endoplásmico/fisiología , Humanos , Tolerancia Inmunológica/genética , Activación de Linfocitos/genética , Glicoproteínas de Membrana/deficiencia , Glicoproteínas de Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Datos de Secuencia Molecular , Molécula de Interacción Estromal 1 , Molécula de Interacción Estromal 2
13.
Nature ; 482(7384): 241-5, 2012 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-22278058

RESUMEN

Two defining functional features of ion channels are ion selectivity and channel gating. Ion selectivity is generally considered an immutable property of the open channel structure, whereas gating involves transitions between open and closed channel states, typically without changes in ion selectivity. In store-operated Ca(2+) release-activated Ca(2+) (CRAC) channels, the molecular mechanism of channel gating by the CRAC channel activator, stromal interaction molecule 1 (STIM1), remains unknown. CRAC channels are distinguished by a very high Ca(2+) selectivity and are instrumental in generating sustained intracellular calcium concentration elevations that are necessary for gene expression and effector function in many eukaryotic cells. Here we probe the central features of the STIM1 gating mechanism in the human CRAC channel protein, ORAI1, and identify V102, a residue located in the extracellular region of the pore, as a candidate for the channel gate. Mutations at V102 produce constitutively active CRAC channels that are open even in the absence of STIM1. Unexpectedly, although STIM1-free V102 mutant channels are not Ca(2+)-selective, their Ca(2+) selectivity is dose-dependently boosted by interactions with STIM1. Similar enhancement of Ca(2+) selectivity is also seen in wild-type ORAI1 channels by increasing the number of STIM1 activation domains that are directly tethered to ORAI1 channels, or by increasing the relative expression of full-length STIM1. Thus, exquisite Ca(2+) selectivity is not an intrinsic property of CRAC channels but rather a tuneable feature that is bestowed on otherwise non-selective ORAI1 channels by STIM1. Our results demonstrate that STIM1-mediated gating of CRAC channels occurs through an unusual mechanism in which permeation and gating are closely coupled.


Asunto(s)
Canales de Calcio/metabolismo , Activación del Canal Iónico , Proteínas de la Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Canales de Calcio/química , Canales de Calcio/genética , Células HEK293 , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Modelos Moleculares , Mutación/genética , Proteínas de Neoplasias/química , Proteínas de Neoplasias/deficiencia , Proteínas de Neoplasias/genética , Proteína ORAI1 , Molécula de Interacción Estromal 1 , Relación Estructura-Actividad
14.
Proc Natl Acad Sci U S A ; 112(19): 6206-11, 2015 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-25918394

RESUMEN

Store-operated Ca(2+) entry (SOCE) is a universal Ca(2+) influx pathway that is important for the function of many cell types. SOCE occurs upon depletion of endoplasmic reticulum (ER) Ca(2+) stores and relies on a complex molecular interplay between the plasma membrane (PM) Ca(2+) channel ORAI1 and the ER Ca(2+) sensor stromal interaction molecule (STIM) 1. Patients with null mutations in ORAI1 or STIM1 genes present with severe combined immunodeficiency (SCID)-like disease. Here, we describe the molecular mechanisms by which a loss-of-function STIM1 mutation (R429C) in human patients abolishes SOCE. R429 is located in the third coiled-coil (CC3) domain of the cytoplasmic C terminus of STIM1. Mutation of R429 destabilizes the CC3 structure and alters the conformation of the STIM1 C terminus, thereby releasing a polybasic domain that promotes STIM1 recruitment to ER-PM junctions. However, the mutation also impairs cytoplasmic STIM1 oligomerization and abolishes STIM1-ORAI1 interactions. Thus, despite its constitutive localization at ER-PM junctions, mutant STIM1 fails to activate SOCE. Our results demonstrate multifunctional roles of the CC3 domain in regulating intra- and intermolecular STIM1 interactions that control (i) transition of STIM1 from a quiescent to an active conformational state, (ii) cytoplasmic STIM1 oligomerization, and (iii) STIM1-ORAI1 binding required for ORAI1 activation.


Asunto(s)
Síndromes de Inmunodeficiencia/genética , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Mutación Missense , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Calcio/química , Canales de Calcio/metabolismo , Citoplasma/metabolismo , Dimerización , Retículo Endoplásmico/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Genes Recesivos , Células HEK293 , Homocigoto , Humanos , Microscopía Confocal , Proteína ORAI1 , Estructura Terciaria de Proteína , Molécula de Interacción Estromal 1
15.
J Immunol ; 195(5): 2122-33, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26238490

RESUMEN

The G-protein-coupled protease-activated receptor 2 (PAR2) plays an important role in the pathogenesis of various inflammatory and auto-immune disorders. In airway epithelial cells (AECs), stimulation of PAR2 by allergens and proteases triggers the release of a host of inflammatory mediators to regulate bronchomotor tone and immune cell recruitment. Activation of PAR2 turns on several cell signaling pathways of which the mobilization of cytosolic Ca(2+) is likely a critical but poorly understood event. In this study, we show that Ca(2+) release-activated Ca(2+) (CRAC) channels encoded by stromal interaction molecule 1 and Orai1 are a major route of Ca(2+) entry in primary human AECs and drive the Ca(2+) elevations seen in response to PAR2 activation. Activation of CRAC channels induces the production of several key inflammatory mediators from AECs including thymic stromal lymphopoietin, IL-6, and PGE2, in part through stimulation of gene expression via nuclear factor of activated T cells (NFAT). Furthermore, PAR2 stimulation induces the production of many key inflammatory mediators including PGE2, IL-6, IL-8, and GM-CSF in a CRAC channel-dependent manner. These findings indicate that CRAC channels are the primary mechanism for Ca(2+) influx in AECs and a vital checkpoint for the induction of PAR2-induced proinflammatory cytokines.


Asunto(s)
Canales de Calcio/metabolismo , Calcio/metabolismo , Citocinas/metabolismo , Células Epiteliales/metabolismo , Receptor PAR-2/metabolismo , Western Blotting , Bronquios/citología , Canales de Calcio/genética , Señalización del Calcio/efectos de los fármacos , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Línea Celular , Línea Celular Tumoral , Células Cultivadas , Retículo Endoplásmico/metabolismo , Células Epiteliales/efectos de los fármacos , Humanos , Mediadores de Inflamación/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Factores de Transcripción NFATC/genética , Factores de Transcripción NFATC/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteína ORAI1 , Oligopéptidos/metabolismo , Oligopéptidos/farmacología , Interferencia de ARN , Receptor PAR-2/agonistas , Molécula de Interacción Estromal 1 , Molécula de Interacción Estromal 2 , Tripsina/metabolismo
16.
J Neurosci ; 34(27): 9107-23, 2014 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-24990931

RESUMEN

Calcium signals regulate many critical processes during vertebrate brain development including neurogenesis, neurotransmitter specification, and axonal outgrowth. However, the identity of the ion channels mediating Ca(2+) signaling in the developing nervous system is not well defined. Here, we report that embryonic and adult mouse neural stem/progenitor cells (NSCs/NPCs) exhibit store-operated Ca(2+) entry (SOCE) mediated by Ca(2+) release-activated Ca(2+) (CRAC) channels. SOCE in NPCs was blocked by the CRAC channel inhibitors La(3+), BTP2, and 2-APB and Western blots revealed the presence of the canonical CRAC channel proteins STIM1 and Orai1. Knock down of STIM1 or Orai1 significantly diminished SOCE in NPCs, and SOCE was lost in NPCs from transgenic mice lacking Orai1 or STIM1 and in knock-in mice expressing the loss-of-function Orai1 mutant, R93W. Therefore, STIM1 and Orai1 make essential contributions to SOCE in NPCs. SOCE in NPCs was activated by epidermal growth factor and acetylcholine, the latter occurring through muscarinic receptors. Activation of SOCE stimulated gene transcription through calcineurin/NFAT (nuclear factor of activated T cells) signaling through a mechanism consistent with local Ca(2+) signaling by Ca(2+) microdomains near CRAC channels. Importantly, suppression or deletion of STIM1 and Orai1 expression significantly attenuated proliferation of embryonic and adult NPCs cultured as neurospheres and, in vivo, in the subventricular zone of adult mice. These findings show that CRAC channels serve as a major route of Ca(2+) entry in NPCs and regulate key effector functions including gene expression and proliferation, indicating that CRAC channels are important regulators of mammalian neurogenesis.


Asunto(s)
Células Madre Adultas/metabolismo , Canales de Calcio/fisiología , Señalización del Calcio/fisiología , Calcio/metabolismo , Células Madre Embrionarias/metabolismo , Regulación de la Expresión Génica/fisiología , Glicoproteínas de Membrana/fisiología , Células-Madre Neurales/metabolismo , Neurogénesis/fisiología , Animales , Apoptosis , Calcineurina/fisiología , Canales de Calcio/deficiencia , Canales de Calcio/genética , División Celular , Células Cultivadas , Factor de Crecimiento Epidérmico/farmacología , Transporte Iónico , Glicoproteínas de Membrana/deficiencia , Glicoproteínas de Membrana/genética , Ratones , Ratones Endogámicos C57BL , Muscarina/farmacología , Factores de Transcripción NFATC/metabolismo , Neurogénesis/genética , Proteína ORAI1 , Interferencia de ARN , ARN Interferente Pequeño/farmacología , Molécula de Interacción Estromal 1
17.
18.
Nature ; 454(7203): 538-42, 2008 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-18596693

RESUMEN

Ca(2+)-release-activated Ca(2+) (CRAC) channels generate sustained Ca(2+) signals that are essential for a range of cell functions, including antigen-stimulated T lymphocyte activation and proliferation. Recent studies have revealed that the depletion of Ca(2+) from the endoplasmic reticulum (ER) triggers the oligomerization of stromal interaction molecule 1 (STIM1), the ER Ca(2+) sensor, and its redistribution to ER-plasma membrane (ER-PM) junctions where the CRAC channel subunit ORAI1 accumulates in the plasma membrane and CRAC channels open. However, how the loss of ER Ca(2+) sets into motion these coordinated molecular rearrangements remains unclear. Here we define the relationships among [Ca(2+)](ER), STIM1 redistribution and CRAC channel activation and identify STIM1 oligomerization as the critical [Ca(2+)](ER)-dependent event that drives store-operated Ca(2+) entry. In human Jurkat leukaemic T cells expressing an ER-targeted Ca(2+) indicator, CRAC channel activation and STIM1 redistribution follow the same function of [Ca(2+)](ER), reaching half-maximum at approximately 200 microM with a Hill coefficient of approximately 4. Because STIM1 binds only a single Ca(2+) ion, the high apparent cooperativity suggests that STIM1 must first oligomerize to enable its accumulation at ER-PM junctions. To assess directly the causal role of STIM1 oligomerization in store-operated Ca(2+) entry, we replaced the luminal Ca(2+)-sensing domain of STIM1 with the 12-kDa FK506- and rapamycin-binding protein (FKBP12, also known as FKBP1A) or the FKBP-rapamycin binding (FRB) domain of the mammalian target of rapamycin (mTOR, also known as FRAP1). A rapamycin analogue oligomerizes the fusion proteins and causes them to accumulate at ER-PM junctions and activate CRAC channels without depleting Ca(2+) from the ER. Thus, STIM1 oligomerization is the critical transduction event through which Ca(2+) store depletion controls store-operated Ca(2+) entry, acting as a switch that triggers the self-organization and activation of STIM1-ORAI1 clusters at ER-PM junctions.


Asunto(s)
Canales de Calcio/metabolismo , Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Membrana Celular/metabolismo , Humanos , Células Jurkat , Proteínas de la Membrana/genética , Proteínas de Neoplasias/genética
19.
Neuron ; 112(2): 247-263.e6, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-37924811

RESUMEN

Oligodendrocytes are the primary producers of many extracellular matrix (ECM)-related proteins found in the CNS. Therefore, oligodendrocytes play a critical role in the determination of brain stiffness, node of Ranvier formation, perinodal ECM deposition, and perineuronal net formation, all of which depend on the ECM. Nevertheless, the transcription factors that control ECM-related gene expression in oligodendrocytes remain unknown. Here, we found that the transcription factor Osterix (also known as Sp7) binds in proximity to genes important for CNS ECM and node of Ranvier formation and mediates their expression. Oligodendrocyte-specific ablation of Sp7 changes ECM composition and brain stiffness and results in aberrant node of Ranvier formation. Sp7 is known to control osteoblast maturation and bone formation. Our comparative analyses suggest that Sp7 plays a conserved biological role in oligodendrocytes and in bone-forming cells, where it mediates brain and bone tissue stiffness by controlling expression of ECM components.


Asunto(s)
Oligodendroglía , Factores de Transcripción , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Oligodendroglía/fisiología , Matriz Extracelular/metabolismo , Huesos/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Expresión Génica
20.
J Physiol ; 591(11): 2833-50, 2013 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-23613525

RESUMEN

Ca(2+) release-activated Ca(2+) (CRAC) channels are activated through a mechanism wherein depletion of intracellular calcium stores results in the aggregation of stromal interaction molecule 1 (STIM1), the endoplasmic reticulum (ER) Ca(2+) sensor, and Orai1, the CRAC channel protein, at overlapping sites in the ER and plasma membranes (PMs). The redistribution of CRAC channels is driven through direct STIM1-Orai1 binding, an important event that not only controls gating, but also regulates Orai1 ion selectivity. Orai1 harbours two STIM1 binding sites, one each on the intracellular C- and N-termini. Previous studies have proposed modular functions for these sites, with the C-terminal site thought to regulate STIM1-Orai1 binding and trapping of Orai1 at the ER-PM junctions, and the N-terminal site mediating gating. However, here we find that a variety of mutations in the N-terminal site impair the binding of Orai1 to STIM1 and to the soluble CRAC activation domain (CAD). Gating could be restored in several N- and C-terminal point mutants by directly tethering the minimal STIM1 activation domain (S) to Orai1 (Orai1-SS channels), indicating that loss of gating in these mutants by full-length STIM1 results from insufficient ligand binding. By contrast, gating could not be restored in mutant Orai1-SS channels carrying more drastic deletions that removed the STIM1 binding sites (1-85, 73-85, or 272-279 Orai1), suggesting that STIM1 binding to both sites is essential for channel activation. Moreover, analysis of ion selectivity indicated that the molecular requirements for gating and modulation of ion selectivity are similar, yet substantively different from those for Orai1 puncta formation, suggesting that ion selectivity and gating are mechanistically coupled in CRAC channels. Our results indicate that the C- and N-terminal STIM1 binding sites are both essential for multiple aspects of Orai1 function including STIM1-Orai1 association, Orai1 trapping, and channel activation.


Asunto(s)
Canales de Calcio/metabolismo , Activación del Canal Iónico , Glicoproteínas de Membrana/metabolismo , Subunidades de Proteína/metabolismo , Sitios de Unión , Canales de Calcio/química , Canales de Calcio/genética , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Eliminación de Gen , Células HEK293 , Humanos , Mutación Puntual , Unión Proteica , Subunidades de Proteína/química , Subunidades de Proteína/genética , Transporte de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA