Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Plant Physiol ; 179(2): 569-587, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30482788

RESUMEN

Sucrose (Suc) is one of the most important types of sugars in plants, serving inter alia as a long-distance transport molecule, a carbon and energy storage compound, an osmotically active solute, and fuel for many anabolic reactions. Suc biosynthesis and degradation pathways are well known; however, the regulation of Suc intracellular distribution is poorly understood. In particular, the cellular function of chloroplast Suc reserves and the transporters involved in accumulating these substantial Suc levels remain uncharacterized. Here, we characterize the plastidic sugar transporter (pSuT) in Arabidopsis (Arabidopsis thaliana), which belongs to a subfamily of the monosaccharide transporter-like family. Transport analyses with yeast cells expressing a truncated, vacuole-targeted version of pSuT indicate that both glucose and Suc act as substrates, and nonaqueous fractionation supports a role for pSuT in Suc export from the chloroplast. The latter process is required for a correct transition from vegetative to reproductive growth and influences inflorescence architecture. Moreover, pSuT activity affects freezing-induced electrolyte release. These data further underline the central function of the chloroplast for plant development and the modulation of stress tolerance.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Respuesta al Choque por Frío/fisiología , Flores/fisiología , Simportadores/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Cloroplastos/metabolismo , Regulación de la Expresión Génica de las Plantas , Técnicas de Inactivación de Genes , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Monosacáridos/genética , Proteínas de Transporte de Monosacáridos/metabolismo , Mutación , Plantas Modificadas Genéticamente , Plastidios/metabolismo , Dominios Proteicos , Saccharomyces cerevisiae/genética , Sacarosa/metabolismo , Simportadores/química , Simportadores/genética
2.
Plant Cell Physiol ; 54(3): 418-31, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23396601

RESUMEN

It is necessary to use algorithms to analyze gene expression data from DNA microarrays, such as in clustering and machine learning. Previously, we developed the knowledge-based fuzzy adaptive resonance theory (KB-FuzzyART), a clustering algorithm suitable for analyzing gene expression data, to find clues for identifying gene networks. Leaf primordia form around the shoot apical meristem (SAM), which consists of indeterminate stem cells. Upon initiation of leaf development, adaxial-abaxial patterning is crucial for lateral expansion, via cellular proliferation, and the formation of flat symmetric leaves. Many regulatory genes that specify such patterning have been identified. Analysis by the KB-FuzzyART and subsequent molecular and genetic analyses previously showed that ASYMMETRIC LEAVES1 (AS1) and AS2 repress the expression of some abaxial-determinant genes, such as AUXIN RESPONSE FACTOR3 (ARF3)/ETTIN (ETT) and ARF4, which are responsible for defects in leaf adaxial-abaxial polarity in as1 and as2. In the present study, genetic analysis revealed that ARF3/ETT and ARF4 were regulated by modifier genes, BOBBER1 (BOB1) and ELONGATA3 (ELO3), together with AS1-AS2. We analyzed expression arrays with as2 elo3 and as2 bob1, and extracted genes downstream of ARF3/ETT by using KB-FuzzyART and molecular analyses. The results showed that expression of Kip-related protein (KRP) (for inhibitors of cyclin-dependent protein kinases) and Isopentenyltransferase (IPT) (for biosynthesis of cytokinin) genes were controlled by AS1-AS2 through ARF3/ETT and ARF4 functions, which suggests that the AS1-AS2-ETT pathway plays a critical role in controlling the cell division cycle and the biosynthesis of cytokinin around SAM to stabilize leaf development in Arabidopsis thaliana.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/genética , Algoritmos , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Proteínas de Arabidopsis/metabolismo , División Celular , Análisis por Conglomerados , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Perfilación de la Expresión Génica , Ácidos Indolacéticos/metabolismo , Meristema/genética , Meristema/crecimiento & desarrollo , Meristema/fisiología , Modelos Moleculares , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Reguladores del Crecimiento de las Plantas/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , Brotes de la Planta/genética , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA