Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35131944

RESUMEN

The troposphere constitutes the final frontier of global ecosystem research due to technical challenges arising from its size, low biomass, and gaseous state. Using a vertical testing array comprising a meteorological tower and a research aircraft, we conducted synchronized measurements of meteorological parameters and airborne biomass (n = 480) in the vertical air column up to 3,500 m. The taxonomic analysis of metagenomic data revealed differing patterns of airborne microbial community composition with respect to time of day and height above ground. The temporal and spatial resolution of our study demonstrated that the diel cycle of airborne microorganisms is a ground-based phenomenon that is entirely absent at heights >1,000 m. In an integrated analysis combining meteorological and biological data, we demonstrate that atmospheric turbulence, identified by potential temperature and high-frequency three-component wind measurements, is the key driver of bioaerosol dynamics in the lower troposphere. Multivariate regression analysis shows that at least 50% of identified airborne microbial taxa (n = ∼10,000) are associated with either ground or height, allowing for an understanding of dispersal patterns of microbial taxa in the vertical air column. Due to the interconnectedness of atmospheric turbulence and temperature, the dynamics of microbial dispersal are likely to be impacted by rising global temperatures, thereby also affecting ecosystems on the planetary surface.


Asunto(s)
Microbiología del Aire , Bacterias/clasificación , Bacterias/aislamiento & purificación , Aerosoles , Altitud , Atmósfera , Humanos
2.
Proc Natl Acad Sci U S A ; 116(46): 23299-23308, 2019 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-31659049

RESUMEN

The atmosphere is vastly underexplored as a habitable ecosystem for microbial organisms. In this study, we investigated 795 time-resolved metagenomes from tropical air, generating 2.27 terabases of data. Despite only 9 to 17% of the generated sequence data currently being assignable to taxa, the air harbored a microbial diversity that rivals the complexity of other planetary ecosystems. The airborne microbial organisms followed a clear diel cycle, possibly driven by environmental factors. Interday taxonomic diversity exceeded day-to-day and month-to-month variation. Environmental time series revealed the existence of a large core of microbial taxa that remained invariable over 13 mo, thereby underlining the long-term robustness of the airborne community structure. Unlike terrestrial or aquatic environments, where prokaryotes are prevalent, the tropical airborne biomass was dominated by DNA from eukaryotic phyla. Specific fungal and bacterial species were strongly correlated with temperature, humidity, and CO2 concentration, making them suitable biomarkers for studying the bioaerosol dynamics of the atmosphere.


Asunto(s)
Microbiología del Aire , Microbiota , Clima Tropical , Contaminantes Atmosféricos/análisis , Ritmo Circadiano , Ecosistema , Metagenoma , Modelos Biológicos , Singapur
3.
PLoS One ; 18(3): e0275734, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36943839

RESUMEN

The analysis of phyllosphere microbiomes traditionally relied on DNA extracted from whole leaves. To investigate the microbial communities on the adaxial (upper) and abaxial (lower) leaf surfaces, swabs were collected from both surfaces of two garden plants, Rhapis excelsa and Cordyline fruticosa. Samples were collected at noon and midnight and at five different locations to investigate if the phyllosphere microbial communities change with time and location. The abaxial surface of Rhapis excelsa and Cordyline fruticosa had fewer bacteria in contrast to its adaxial counterpart. This observation was consistent between noon and midnight and across five different locations. Our co-occurrence network analysis further showed that bacteria were found almost exclusively on the adaxial surface while only a small group of leaf blotch fungi thrived on the abaxial surface. There are higher densities of stomata on the abaxial surface and these openings are vulnerable ports of entry into the plant host. While one might argue about the settling of dust particles and microorganisms on the adaxial surface, we detected differences in reactive chemical activities and microstructures between the adaxial and abaxial surfaces. Our results further suggest that both plant species deploy different defence strategies to deter invading pathogens on the abaxial surface. We hypothesize that chemical and mechanical defence strategies evolved independently for harnessing and controlling phyllosphere microbiomes. Our findings have also advanced our understanding that the abaxial leaf surface is distinct from the adaxial surface and that the reduced microbial diversity is likely a consequence of plant-microbe interactions.


Asunto(s)
Hojas de la Planta , Hojas de la Planta/química
4.
PNAS Nexus ; 1(2): pgac043, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-36713329

RESUMEN

Recent developments in aerobiology have enabled the investigation of airborne biomass with high temporal and taxonomic resolution. In this study, we assess the contributions of local sources to ambient air within a 160,000 m2 tropical avian park (AP). We sequenced and analyzed 120 air samples from seven locations situated 160 to 400 m apart, representing distinct microhabitats. Each microhabitat contained a characteristic air microbiome, defined by the abundance and richness of its airborne microbial community members, supported by both, PCoA and Random Forest analysis. Each outdoor microhabitat contained 1% to 18.6% location-specific taxa, while a core microbiome of 27.1% of the total taxa was shared. To identify and assess local sources, we compared the AP dataset with a DVE reference dataset from a location 2 km away, collected during a year-round sampling campaign. Intersection of data from the two sites demonstrated 61.6% of airborne species originated from local sources of the AP, 34.5% from ambient air background, and only 3.9% of species were specific to the DVE reference site. In-depth taxonomic analysis demonstrated association of bacteria-dominated air microbiomes with indoor spaces, while fungi-dominated airborne microbial biomass was predominant in outdoor settings with ample vegetation. The approach presented here demonstrates an ability to identify local source contributions against an ambient air background, despite the prevailing mixing of air masses caused by atmospheric turbulences.

5.
Gut Pathog ; 13(1): 6, 2021 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-33516253

RESUMEN

BACKGROUND: Bacillus cereus is ubiquitous in nature, found in environments such as soil, plants, air, and part of the insect and human gut microbiome. The ability to produce endospores and biofilms contribute to their pathogenicity, classified in two types of food poisoning: diarrheal and emetic syndromes. Here we report gap-free, whole-genome sequences of two B. cereus strains isolated from air samples and analyse their emetic and diarrheal potential. RESULTS: Genome assemblies of the B. cereus strains consist of one chromosome and seven plasmids each. The genome size of strain SGAir0260 is 6.30-Mb with 6590 predicted coding sequences (CDS) and strain SGAir0263 is 6.47-Mb with 6811 predicted CDS. Macrosynteny analysis showed 99% collinearity between the strains isolated from air and 90.2% with the reference genome. Comparative genomics with 57 complete B. cereus genomes suggests these strains from air are closely associated with strains isolated from foodborne illnesses outbreaks. Due to virulence potential of B. cereus and its reported involvement in nosocomial infections, antibiotic resistance analyses were performed and confirmed resistance to ampicillin and fosfomycin, with susceptibility to ciprofloxacin, tetracycline and vancomycin in both strains. CONCLUSION: Phylogenetic analysis combined with detection of haemolytic (hblA, hblC, and hblD) and non-haemolytic (nheA, nheB, and nheC) enterotoxin genes in both air-isolated strains point to the diarrheic potential of the air isolates, though not emetic. Characterization of these airborne strains and investigation of their potential disease-causing genes could facilitate identification of environmental sources of contamination leading to foodborne illnesses and nosocomial infections transported by air.

6.
NPJ Biofilms Microbiomes ; 7(1): 37, 2021 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-33863892

RESUMEN

Investigation of the microbial ecology of terrestrial, aquatic and atmospheric ecosystems requires specific sampling and analytical technologies, owing to vastly different biomass densities typically encountered. In particular, the ultra-low biomass nature of air presents an inherent analytical challenge that is confounded by temporal fluctuations in community structure. Our ultra-low biomass pipeline advances the field of bioaerosol research by significantly reducing sampling times from days/weeks/months to minutes/hours, while maintaining the ability to perform species-level identification through direct metagenomic sequencing. The study further addresses all experimental factors contributing to analysis outcome, such as amassment, storage and extraction, as well as factors that impact on nucleic acid analysis. Quantity and quality of nucleic acid extracts from each optimisation step are evaluated using fluorometry, qPCR and sequencing. Both metagenomics and marker gene amplification-based (16S and ITS) sequencing are assessed with regard to their taxonomic resolution and inter-comparability. The pipeline is robust across a wide range of climatic settings, ranging from arctic to desert to tropical environments. Ultimately, the pipeline can be adapted to environmental settings, such as dust and surfaces, which also require ultra-low biomass analytics.


Asunto(s)
Biomasa , Ecosistema , Microbiología Ambiental , Microbiota , Microbiología del Aire , Monitoreo del Ambiente , Metagenoma , Metagenómica/métodos , Microbiología del Suelo , Microbiología del Agua
7.
Sci Rep ; 10(1): 21515, 2020 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-33299064

RESUMEN

Here, we describe taxonomical composition, as well as seasonal and diel dynamics of airborne microbial communities in West Siberia. A total of 78 airborne biomass samples from 39 time intervals were analysed, within a temperature range of 48 °C (26 °C to - 22 °C). We observed a 5-170-fold decrease in DNA yield extracted from the airborne biomass in winter compared to summer, nevertheless, yielding sufficient material for metagenomic analysis. The airborne microbial communities included Actinobacteria and Proteobacteria, Ascomycota and Basidiomycota fungi as major components, as well as some Streptophyta plants. In summer, bacterial and fungal plant pathogens, and wood-rotting saprophytes were predominant. In winter, Ascomycota moulds and cold-related or stress environment bacterial species were enriched, while the fraction of wood-rotting and mushroom-forming Basidiomycota fungi was largely reduced. As recently reported for the tropical climate, the airborne microbial communities performed a diel cycle in summer, however, in winter diel dynamics were not observed.


Asunto(s)
Microbiología del Aire , Aire/análisis , Monitoreo del Ambiente/métodos , Actinobacteria/genética , Ascomicetos/genética , Bacterias/genética , Basidiomycota/genética , Ecosistema , Hongos/genética , Microbiota , Proteobacteria/genética , Estaciones del Año , Siberia
8.
Gut Pathog ; 12: 12, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32127921

RESUMEN

BACKGROUND: Enterobacter cloacae complex (ECC) bacteria, such as E. cloacae, E. sichuanensis, E. kobei, and E. roggenkampii, have been emerging as nosocomial pathogens. Many strains isolated from medical clinics were found to be resistant to antibiotics, and in the worst cases, acquired multidrug resistance. We present the whole genome sequence of SGAir0282, isolated from the outdoor air in Singapore, and its relevance to other ECC bacteria by in silico genomic analysis. RESULTS: Complete genome assembly of E. sichuanensis strain SGAir0282 was generated using PacBio RSII and Illumina MiSeq platforms, and the datasets were used for de novo assembly using Hierarchical Genome Assembly Process (HGAP) and error corrected with Pilon. The genome assembly consisted of a single contig of 4.71 Mb and with a G+C content of 55.5%. No plasmid was detected in the assembly. The genome contained 4371 coding genes, 83 tRNA and 25 rRNA genes, as predicted by NCBI's Prokaryotic Genome Annotation Pipeline (PGAP). Among the genes, the antibiotic resistance related genes were included: Streptothricin acetdyltransferase (SatA), fosfomycin resistance protein (FosA) and metal-dependent hydrolases of the beta-lactamase superfamily I (BLI). CONCLUSION: Based on whole genome alignment and phylogenetic analysis, the strain SGAir0282 was identified to be Enterobacter sichuanensis. The strain possesses gene clusters for virulence, disease and defence, that can also be found in other multidrug resistant ECC type strains.

9.
Microbiol Resour Announc ; 8(35)2019 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-31467108

RESUMEN

Streptomyces sp. strain SGAir0924 was isolated from outdoor air collected in Singapore. Its genome was assembled using long reads generated by single-molecule real-time sequencing. The final assembly had one chromosome of 7.65 Mb and three plasmids with an average length of 142 kb. The genome contained 6,825 protein-coding genes, 68 tRNAs, and 18 rRNAs.

10.
Microbiol Resour Announc ; 8(40)2019 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-31582433

RESUMEN

The complete genome sequence of Rhodococcus sp. strain SGAir0479 is presented here. This organism was isolated from an air sample collected in an indoor location in Singapore. The consensus assembly generated one chromosome of 4.86 Mb (G+C content of 69.8%) and one plasmid of 104,493 bp.

11.
Microbiol Resour Announc ; 8(41)2019 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-31601656

RESUMEN

Micrococcus luteus strain SGAir0127 was isolated from indoor air samples collected in Singapore. The assembly, based on single-molecule real-time sequencing reads, resulted in two contigs, one chromosomal contig with a length of 2.57 Mbp and one nonchromosomal contig of 8.68 kbp. The genome has a total of 2,564 genes.

12.
Microbiol Resour Announc ; 8(31)2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31371539

RESUMEN

Brevundimonas sp. strain SGAir0440 was isolated from indoor air samples collected in Singapore. Its genome was assembled using single-molecule real-time sequencing data, resulting in one circular chromosome with a length of 3.1 Mbp. The genome consists of 3,033 protein-coding genes, 48 tRNAs, and 6 rRNA operons.

13.
Microbiol Resour Announc ; 8(33)2019 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-31416866

RESUMEN

Enterococcus faecalis strain SGAir0397 was isolated from a tropical air sample collected in Singapore. Its genome was assembled using single-molecule real-time sequencing data and comprises one circular chromosome with a length of 2.69 Mbp. The genome contains 2,595 protein-coding genes, 59 tRNAs, and 12 rRNAs.

14.
Microbiol Resour Announc ; 8(37)2019 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-31515336

RESUMEN

Citricoccus sp. strain SGAir0253 was isolated from indoor air collected in Singapore. Its genome sequence was assembled using single-molecule real-time sequencing. It comprises one chromosome of 3.32 Mb and two plasmids of 137 kb and 99 kb. The genome consists of 2,950 protein-coding genes, 49 tRNAs, and 9 rRNAs.

15.
Microbiol Resour Announc ; 8(47)2019 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-31753940

RESUMEN

Curtobacterium sp. strain SGAir0471 was isolated from tropical air samples collected in Singapore. The genome was assembled using PacBio RS II long reads and Illumina MiSeq short paired-end reads. The complete genome measures 3.53 Mb and consists of 3,151 protein-coding genes, 49 tRNAs, and 12 rRNAs.

16.
Microbiol Resour Announc ; 8(50)2019 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-31831612

RESUMEN

Bacillus megaterium strain SGAir0080 was isolated from a tropical air sample in Singapore. Its genome was assembled using single-molecule real-time (SMRT) sequencing and MiSeq reads. It has one chromosome of 5.06 Mbp and seven plasmids (average length, 62.8 kbp). It possesses 5,339 protein-coding genes, 130 tRNAs, and 35 rRNAs.

17.
Microbiol Resour Announc ; 8(38)2019 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-31537660

RESUMEN

Lysinibacillus sp. strain SGAir0095 was isolated from tropical air samples collected in Singapore, and its complete genome was sequenced with a hybrid strategy using single-molecule real-time sequencing and short reads. The genome consists of one chromosome of 4.14 Mbp and encompasses 3,885 protein-coding genes, 39 rRNAs, and 101 tRNAs.

18.
Microbiol Resour Announc ; 8(32)2019 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-31395634

RESUMEN

Nissabacter sp. strain SGAir0207 was isolated from a tropical air sample collected in Singapore. Its genome was assembled using a hybrid approach with long and short reads, resulting in one chromosome of 3.9 Mb and 7 plasmids. The complete genome consists of 4,403 protein-coding, 84 tRNA, and 22 rRNA genes.

19.
Microbiol Resour Announc ; 8(32)2019 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-31395638

RESUMEN

Brachybacterium sp. strain SGAir0954 was isolated from tropical air collected in Singapore, and its genome was sequenced and assembled using long reads generated by single-molecule real-time (SMRT) sequencing. The complete genome has a size of 3.41 Mb and consists of 2,955 protein coding genes, 50 tRNAs, and 9 rRNAs.

20.
Microbiol Resour Announc ; 8(32)2019 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-31395637

RESUMEN

Agrococcus sp. strain SGAir0287 was isolated from tropical air samples collected in Singapore. Assembled using single-molecule real-time (SMRT) sequencing and MiSeq reads, the genome consists of one circular chromosome of 3,084,767 bp. The entire genome has 2,870 protein-coding genes, 45 tRNAs, and 3 rRNAs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA