Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell Physiol Biochem ; 54(2): 230-251, 2020 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-32153152

RESUMEN

BACKGROUND/AIMS: Adverse effects of cigarette smoke on health are widely known. Heating rather than combusting tobacco is one of strategies to reduce the formation of toxicants. The sensitive nature of mitochondrial dynamics makes the mitochondria an early indicator of cellular stress. For this reason, we studied the morphology and dynamics of the mitochondrial network in human bronchial epithelial cells (BEAS-2B) exposed to total particulate matter (TPM) generated from 3R4F reference cigarette smoke and from aerosol from a new candidate modified risk tobacco product, the Tobacco Heating System (THS 2.2). METHODS: Cells were subjected to short (1 week) and chronic (12 weeks) exposure to a low (7.5 µg/mL) concentration of 3R4F TPM and low (7.5 µg/mL), medium (37.5 µg/mL), and high (150 µg/mL) concentrations of TPM from THS 2.2. Confocal microscopy was applied to assess cellular and mitochondrial morphology. Cytosolic Ca2+ levels, mitochondrial membrane potential and mitochondrial mass were measured with appropriate fluorescent probes on laser scanning cytometer. The levels of proteins regulating mitochondrial dynamics and biogenesis were determined by Western blot. RESULTS: In BEAS-2B cells exposed for one week to the low concentration of 3R4F TPM and the high concentration of THS 2.2 TPM we observed clear changes in cell morphology, mitochondrial network fragmentation, altered levels of mitochondrial fusion and fission proteins and decreased biogenesis markers. Also cellular proliferation was slowed down. Upon chronic exposure (12 weeks) many parameters were affected in the opposite way comparing to short exposure. We observed strong increase of NRF2 protein level, reorganization of mitochondrial network and activation of the mitochondrial biogenesis process. CONCLUSION: Comparison of the effects of TPMs from 3R4F and from THS 2.2 revealed, that similar extent of alterations in mitochondrial dynamics and biogenesis is observed at 7.5 µg/mL of 3R4F TPM and 150 µg/mL of THS 2.2 TPM. 7 days exposure to the investigated components of cigarette smoke evoke mitochondrial stress, while upon chronic, 12 weeks exposure the hallmarks of cellular adaptation to the stressor were visible. The results also suggest that mitochondrial stress signaling is involved in the process of cellular adaptation under conditions of chronic stress caused by 3R4F and high concentration of THS 2.2.


Asunto(s)
Aerosoles/química , Mitocondrias/metabolismo , Dinámicas Mitocondriales/efectos de los fármacos , Material Particulado/toxicidad , Calcio/metabolismo , Línea Celular , Colorantes Fluorescentes/química , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Microscopía Confocal , Mitocondrias/efectos de los fármacos , Material Particulado/química , Humo/efectos adversos , Factores de Tiempo , Productos de Tabaco/análisis
2.
J Bioenerg Biomembr ; 51(4): 259-276, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31197632

RESUMEN

Mitochondria are multifunctional and dynamic organelles deeply integrated into cellular physiology and metabolism. Disturbances in mitochondrial function are involved in several disorders such as neurodegeneration, cardiovascular diseases, metabolic diseases, and also in the aging process. Nicotine is a natural alkaloid present in the tobacco plant which has been well studied as a constituent of cigarette smoke. It has also been reported to influence mitochondrial function both in vitro and in vivo. This review presents a comprehensive overview of the present knowledge of nicotine action on mitochondrial function. Observed effects of nicotine exposure on the mitochondrial respiratory chain, oxidative stress, calcium homeostasis, mitochondrial dynamics, biogenesis, and mitophagy are discussed, considering the context of the experimental design. The potential action of nicotine on cellular adaptation and cell survival is also examined through its interaction with mitochondria. Although a large number of studies have demonstrated the impact of nicotine on various mitochondrial activities, elucidating its mechanism of action requires further investigation.


Asunto(s)
Fumar Cigarrillos/metabolismo , Mitocondrias/metabolismo , Nicotina , Animales , Calcio/metabolismo , Fumar Cigarrillos/patología , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Humanos , Mitocondrias/patología , Mitofagia/efectos de los fármacos , Nicotina/efectos adversos , Nicotina/farmacocinética , Estrés Oxidativo/efectos de los fármacos
3.
Cancers (Basel) ; 16(19)2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39409944

RESUMEN

This work presents a comprehensive evaluation of the role of p66Shc protein in mitochondrial physiology in MDA-MB-231 breast cancer cells. The use of human breast cancer cell line MDA-MB-231 and its genetically modified clones (obtained with the use of the CRISPR-Cas9 technique), expressing different levels of p66Shc protein, allowed us to demonstrate how the p66Shc protein affects mitochondrial metabolism of human breast cancer cells. Changes in the level of p66Shc (its overexpression, and overexpressing of its Serine 36-mutated version, as well as the knockout of p66Shc) exert different effects in breast cancer cells. Interestingly, knocking out p66Shc caused significant changes observed mostly in mitochondrial bioenergetic parameters. We have shown that an MDA-MB-231 (which is a strong metastatic type of breast cancer) clone lacking p66Shc protein is characterized by a significant shift in the metabolic phenotype in comparison to other MDA-MB-231 clones. Additionally, this clone is significantly more vulnerable to doxorubicin treatment. We have proved that p66Shc adaptor protein in human breast cancer cells may exert a different role than in noncancerous cells (e.g., fibroblasts).

4.
J Clin Med ; 10(10)2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-34065573

RESUMEN

Numerous papers have reported altered expression patterns of Ras and/or ShcA proteins in different types of cancers. Their level can be potentially associated with oncogenic processes. We analyzed samples of pediatric brain tumors reflecting different groups such as choroid plexus tumors, diffuse astrocytic and oligodendroglial tumors, embryonal tumors, ependymal tumors, and other astrocytic tumors as well as tumor malignancy grade, in order to characterize the expression profile of Ras, TrkB, and three isoforms of ShcA, namely, p66Shc, p52Shc, and p46Shc proteins. The main aim of our study was to evaluate the potential correlation between the type of pediatric brain tumors, tumor malignancy grade, and the expression patterns of the investigated proteins.

5.
Food Chem Toxicol ; 154: 112316, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34089800

RESUMEN

Mitochondria are among the first responders to various stress factors that challenge cell and tissue homeostasis. Various plant alkaloids have been investigated for their capacity to modulate mitochondrial activities. In this study, we used isolated mitochondria from mouse brain and liver tissues to assess nicotine, anatabine and anabasine, three alkaloids found in tobacco plant, for potential modulatory activity on mitochondrial bioenergetics parameters. All alkaloids decreased basal oxygen consumption of mouse brain mitochondria in a dose-dependent manner without any effect on the ADP-stimulated respiration. None of the alkaloids, at 1 nM or 1.25 µM concentrations, influenced the maximal rate of swelling of brain mitochondria. In contrast to brain mitochondria, 1.25 µM anatabine, anabasine and nicotine increased maximal rate of swelling of liver mitochondria suggesting a toxic effect. Only at 1 mM concentration, anatabine slowed down the maximal rate of Ca2+-induced swelling and increased the time needed to reach the maximal rate of swelling. The observed mitochondrial bioenergetic effects are probably mediated through a pathway independent of nicotinic acetylcholine receptors, as quantitative proteomic analysis could not confirm their expression in pure mitochondrial fractions isolated from mouse brain tissue.


Asunto(s)
Alcaloides/toxicidad , Mitocondrias/efectos de los fármacos , Plantas/química , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Metabolismo Energético/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Mitocondrias/metabolismo , Proteómica , Receptores Nicotínicos/metabolismo
6.
Food Chem Toxicol ; 115: 1-12, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29448087

RESUMEN

Mitochondrial dysfunction caused by cigarette smoke is involved in the oxidative stress-induced pathology of airway diseases. Reducing the levels of harmful and potentially harmful constituents by heating rather than combusting tobacco may reduce mitochondrial changes that contribute to oxidative stress and cell damage. We evaluated mitochondrial function and oxidative stress in human bronchial epithelial cells (BEAS 2B) following 1- and 12-week exposures to total particulate matter (TPM) from the aerosol of a candidate modified-risk tobacco product, the Tobacco Heating System 2.2 (THS2.2), in comparison with TPM from the 3R4F reference cigarette. After 1-week exposure, 3R4F TPM had a strong inhibitory effect on mitochondrial basal and maximal oxygen consumption rates compared to TPM from THS2.2. Alterations in oxidative phosphorylation were accompanied by increased mitochondrial superoxide levels and increased levels of oxidatively damaged proteins in cells exposed to 7.5 µg/mL of 3R4F TPM or 150 µg/mL of THS2.2 TPM, while cytosolic levels of reactive oxygen species were not affected. In contrast, the 12-week exposure indicated adaptation of BEAS-2B cells to long-term stress. Together, the findings indicate that 3R4F TPM had a stronger effect on oxidative phosphorylation, gene expression and proteins involved in oxidative stress than TPM from the candidate modified-risk tobacco product THS2.2.


Asunto(s)
Bronquios/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Nicotiana/efectos adversos , Material Particulado/efectos adversos , Productos de Tabaco/efectos adversos , Bronquios/citología , Bronquios/metabolismo , Línea Celular , Células Epiteliales/citología , Humanos , Exposición por Inhalación , Mitocondrias/genética , Mitocondrias/metabolismo , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Humo/efectos adversos , Humo/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA