Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
FASEB J ; 38(7): e23579, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38568838

RESUMEN

Lifestyle interventions remain the treatment of choice for patients with obesity and metabolic complications, yet are difficult to maintain and often lead to cycles of weight loss and regain (weight cycling). Literature on weight cycling remains controversial and we therefore investigated the association between weight cycling and metabolic complications using preexistent obese mice. Ldlr-/-.Leiden mice received a high-fat diet (HFD) for 20 weeks to induce obesity. Subsequently, weight-cycled mice were switched between the healthy chow diet and HFD for four 2-week periods and compared to mice that received HFD for the total study period. Repeated weight cycling tended to decrease body weight and significantly reduced fat mass, whereas adipose tissue inflammation was similar relative to HFD controls. Weight cycling did not significantly affect blood glucose or plasma insulin levels yet significantly reduced plasma free fatty acid and alanine transaminase/aspartate transaminase levels. Hepatic macrovesicular steatosis was similar and microvesicular steatosis tended to be increased upon weight cycling. Weight cycling resulted in a robust decrease in hepatic inflammation compared to HFD controls while hepatic fibrosis and atherosclerosis development were not affected. These results argue against the postulate that repeated weight cycling leads to unfavorable metabolic effects, when compared to a continuous unhealthy lifestyle, and in fact revealed beneficial effects on hepatic inflammation, an important hallmark of non-alcoholic steatohepatitis.


Asunto(s)
Hígado , Enfermedad del Hígado Graso no Alcohólico , Humanos , Ratones , Animales , Hígado/metabolismo , Ratones Obesos , Ciclo del Peso , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Obesidad/complicaciones , Inflamación/metabolismo , Dieta Alta en Grasa/efectos adversos , Ratones Endogámicos C57BL
2.
Int J Mol Sci ; 24(9)2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37175538

RESUMEN

Patients with metabolic syndrome are often prescribed statins to prevent the development of cardiovascular disease. Conversely, data on their effects on non-alcoholic steatohepatitis (NASH) are lacking. We evaluated these effects by feeding APOE*3-Leiden mice a Western-type diet (WTD) with or without atorvastatin to induce NASH and hepatic fibrosis. Besides the well-known plasma cholesterol lowering (-30%) and anti-atherogenic effects (severe lesion size -48%), atorvastatin significantly reduced hepatic steatosis (-22%), the number of aggregated inflammatory cells in the liver (-80%) and hepatic fibrosis (-92%) compared to WTD-fed mice. Furthermore, atorvastatin-treated mice showed less immunohistochemically stained areas of inflammation markers. Atorvastatin prevented accumulation of free cholesterol in the form of cholesterol crystals (-78%). Cholesterol crystals are potent inducers of the NLRP3 inflammasome pathway and atorvastatin prevented its activation, which resulted in reduced expression of the pro-inflammatory cytokines interleukin (IL)-1ß (-61%) and IL-18 (-26%). Transcriptome analysis confirmed strong reducing effects of atorvastatin on inflammatory mediators, including NLRP3, NFκB and TLR4. The present study demonstrates that atorvastatin reduces hepatic steatosis, inflammation and fibrosis and prevents cholesterol crystal formation, thereby precluding NLRP3 inflammasome activation. This may render atorvastatin treatment as an attractive approach to reduce NAFLD and prevent progression into NASH in dyslipidemic patients.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/inducido químicamente , Atorvastatina/efectos adversos , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Hígado/metabolismo , Cirrosis Hepática/metabolismo , Inflamación/metabolismo , Colesterol/metabolismo , Dieta , Apolipoproteínas E/metabolismo , Ratones Endogámicos C57BL
3.
Int J Mol Sci ; 24(10)2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37239841

RESUMEN

Semaglutide, a glucagon-like peptide-1 receptor agonist, is an antidiabetic medication that has recently been approved for the treatment of obesity as well. Semaglutide is postulated to be a promising candidate for the treatment of non-alcoholic steatohepatitis (NASH). Here, Ldlr-/-.Leiden mice received a fast-food diet (FFD) for 25 weeks, followed by another 12 weeks on FFD with daily subcutaneous injections of semaglutide or vehicle (control). Plasma parameters were evaluated, livers and hearts were examined, and hepatic transcriptome analysis was performed. In the liver, semaglutide significantly reduced macrovesicular steatosis (-74%, p < 0.001) and inflammation (-73%, p < 0.001) and completely abolished microvesicular steatosis (-100%, p < 0.001). Histological and biochemical assessment of hepatic fibrosis showed no significant effects of semaglutide. However, digital pathology revealed significant improvements in the degree of collagen fiber reticulation (-12%, p < 0.001). Semaglutide did not affect atherosclerosis relative to controls. Additionally, we compared the transcriptome profile of FFD-fed Ldlr-/-.Leiden mice with a human gene set that differentiates human NASH patients with severe fibrosis from those with mild fibrosis. In FFD-fed Ldlr-/-.Leiden control mice, this gene set was upregulated as well, while semaglutide predominantly reversed this gene expression. Using a translational model with advanced NASH, we demonstrated that semaglutide is a promising candidate with particular potential for the treatment of hepatic steatosis and inflammation, while for the reversal of advanced fibrosis, combinations with other NASH agents may be necessary.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Hígado/metabolismo , Cirrosis Hepática/metabolismo , Fibrosis , Inflamación/metabolismo , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
4.
J Lipid Res ; 63(11): 100293, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36209894

RESUMEN

Proprotein convertase subtilisin kexin type 9 (PCSK9) inhibits the clearance of low-density lipoprotein (LDL) cholesterol (LDL-C) from plasma by directly binding with the LDL receptor (LDLR) and sending the receptor for lysosomal degradation. As the interaction promotes elevated plasma LDL-C levels, and therefore a predisposition to cardiovascular disease, PCSK9 has attracted intense interest as a therapeutic target. Despite this interest, an orally bioavailable small-molecule inhibitor of PCSK9 with extensive lipid-lowering activity is yet to enter the clinic. We report herein the discovery of NYX-PCSK9i, an orally bioavailable small-molecule inhibitor of PCSK9 with significant cholesterol-lowering activity in hyperlipidemic APOE∗3-Leiden.CETP mice. NYX-PCSK9i emerged from a medicinal chemistry campaign demonstrating potent disruption of the PCSK9-LDLR interaction in vitro and functional protection of the LDLR of human lymphocytes from PCSK9-directed degradation ex vivo. APOE∗3-Leiden.CETP mice orally treated with NYX-PCSK9i demonstrated a dose-dependent decrease in plasma total cholesterol of up to 57%, while its combination with atorvastatin additively suppressed plasma total cholesterol levels. Importantly, the majority of cholesterol lowering by NYX-PCSK9i was in non-HDL fractions. A concomitant increase in total plasma PCSK9 levels and significant increase in hepatic LDLR protein expression strongly indicated on-target function by NYX-PCSK9i. Determinations of hepatic lipid and fecal cholesterol content demonstrated depletion of liver cholesteryl esters and promotion of fecal cholesterol elimination with NYX-PCSK9i treatment. All measured in vivo biomarkers of health indicate that NYX-PCSK9i has a good safety profile. NYX-PCSK9i is a potential new therapy for hypercholesterolemia with the capacity to further enhance the lipid-lowering activities of statins.


Asunto(s)
Anticolesterolemiantes , Hiperlipidemias , Inhibidores de PCSK9 , Receptores de LDL , Animales , Humanos , Ratones , Apolipoproteínas E , Colesterol , LDL-Colesterol , Receptores de LDL/genética , Receptores de LDL/metabolismo , Inhibidores de PCSK9/farmacología , Hiperlipidemias/tratamiento farmacológico , Anticolesterolemiantes/farmacología
5.
Crit Rev Toxicol ; 51(2): 141-164, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33853480

RESUMEN

Associations between per- and polyfluoroalkyl substances (PFASs) and increased blood lipids have been repeatedly observed in humans, but a causal relation has been debated. Rodent studies show reverse effects, i.e. decreased blood cholesterol and triglycerides, occurring however at PFAS serum levels at least 100-fold higher than those in humans. This paper aims to present the main issues regarding the modulation of lipid homeostasis by the two most common PFASs, PFOS and PFOA, with emphasis on the underlying mechanisms relevant for humans. Overall, the apparent contrast between human and animal data may be an artifact of dose, with different molecular pathways coming into play upon exposure to PFASs at very low versus high levels. Altogether, the interpretation of existing rodent data on PFOS/PFOA-induced lipid perturbations with respect to the human situation is complex. From a mechanistic perspective, research on human liver cells shows that PFOS/PFOA activate the PPARα pathway, whereas studies on the involvement of other nuclear receptors, like PXR, are less conclusive. Other data indicate that suppression of the nuclear receptor HNF4α signaling pathway, as well as perturbations of bile acid metabolism and transport might be important cellular events that require further investigation. Future studies with human-relevant test systems would help to obtain more insight into the mechanistic pathways pertinent for humans. These studies shall be designed with a careful consideration of appropriate dosing and toxicokinetics, so as to enable biologically plausible quantitative extrapolations. Such research will increase the understanding of possible perturbed lipid homeostasis related to PFOS/ PFOA exposure and the potential implications for human health.


Asunto(s)
Exposición a Riesgos Ambientales , Contaminantes Ambientales , Fluorocarburos , Ácidos Alcanesulfónicos , Caprilatos , Humanos
6.
J Lipid Res ; 61(3): 365-375, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31843957

RESUMEN

Atherosclerosis-related CVD causes nearly 20 million deaths annually. Most patients are treated after plaques develop, so therapies must regress existing lesions. Current therapies reduce plaque volume, but targeting all apoB-containing lipoproteins with intensive combinations that include alirocumab or evinacumab, monoclonal antibodies against cholesterol-regulating proprotein convertase subtilisin/kexin type 9 and angiopoietin-like protein 3, may provide more benefit. We investigated the effect of such lipid-lowering interventions on atherosclerosis in APOE*3-Leiden.CETP mice, a well-established model for hyperlipidemia. Mice were fed a Western-type diet for 13 weeks and thereafter matched into a baseline group (euthanized at 13 weeks) and five groups that received diet alone (control) or with treatment [atorvastatin; atorvastatin and alirocumab; atorvastatin and evinacumab; or atorvastatin, alirocumab, and evinacumab (triple therapy)] for 25 weeks. We measured effects on cholesterol levels, plaque composition and morphology, monocyte adherence, and macrophage proliferation. All interventions reduced plasma total cholesterol (37% with atorvastatin to 80% with triple treatment; all P < 0.001). Triple treatment decreased non-HDL-C to 1.0 mmol/l (91% difference from control; P < 0.001). Atorvastatin reduced atherosclerosis progression by 28% versus control (P < 0.001); double treatment completely blocked progression and diminished lesion severity. Triple treatment regressed lesion size versus baseline in the thoracic aorta by 50% and the aortic root by 36% (both P < 0.05 vs. baseline), decreased macrophage accumulation through reduced proliferation, and abated lesion severity. Thus, high-intensive cholesterol-lowering triple treatment targeting all apoB-containing lipoproteins regresses atherosclerotic lesion area and improves lesion composition in mice, making it a promising potential approach for treating atherosclerosis.


Asunto(s)
Anticuerpos Monoclonales Humanizados/uso terapéutico , Anticuerpos Monoclonales/uso terapéutico , Anticolesterolemiantes/uso terapéutico , Atorvastatina/uso terapéutico , Placa Aterosclerótica/tratamiento farmacológico , Administración Oral , Animales , Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Monoclonales Humanizados/administración & dosificación , Anticolesterolemiantes/administración & dosificación , Atorvastatina/administración & dosificación , Quimioterapia Combinada , Femenino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Placa Aterosclerótica/inducido químicamente , Placa Aterosclerótica/patología
7.
N Engl J Med ; 377(3): 211-221, 2017 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-28538136

RESUMEN

BACKGROUND: Loss-of-function variants in the angiopoietin-like 3 gene (ANGPTL3) have been associated with decreased plasma levels of triglycerides, low-density lipoprotein (LDL) cholesterol, and high-density lipoprotein (HDL) cholesterol. It is not known whether such variants or therapeutic antagonism of ANGPTL3 are associated with a reduced risk of atherosclerotic cardiovascular disease. METHODS: We sequenced the exons of ANGPTL3 in 58,335 participants in the DiscovEHR human genetics study. We performed tests of association for loss-of-function variants in ANGPTL3 with lipid levels and with coronary artery disease in 13,102 case patients and 40,430 controls from the DiscovEHR study, with follow-up studies involving 23,317 case patients and 107,166 controls from four population studies. We also tested the effects of a human monoclonal antibody, evinacumab, against Angptl3 in dyslipidemic mice and against ANGPTL3 in healthy human volunteers with elevated levels of triglycerides or LDL cholesterol. RESULTS: In the DiscovEHR study, participants with heterozygous loss-of-function variants in ANGPTL3 had significantly lower serum levels of triglycerides, HDL cholesterol, and LDL cholesterol than participants without these variants. Loss-of-function variants were found in 0.33% of case patients with coronary artery disease and in 0.45% of controls (adjusted odds ratio, 0.59; 95% confidence interval, 0.41 to 0.85; P=0.004). These results were confirmed in the follow-up studies. In dyslipidemic mice, inhibition of Angptl3 with evinacumab resulted in a greater decrease in atherosclerotic lesion area and necrotic content than a control antibody. In humans, evinacumab caused a dose-dependent placebo-adjusted reduction in fasting triglyceride levels of up to 76% and LDL cholesterol levels of up to 23%. CONCLUSIONS: Genetic and therapeutic antagonism of ANGPTL3 in humans and of Angptl3 in mice was associated with decreased levels of all three major lipid fractions and decreased odds of atherosclerotic cardiovascular disease. (Funded by Regeneron Pharmaceuticals and others; ClinicalTrials.gov number, NCT01749878 .).


Asunto(s)
Angiopoyetinas/antagonistas & inhibidores , Anticuerpos Monoclonales/administración & dosificación , Aterosclerosis/tratamiento farmacológico , Enfermedad de la Arteria Coronaria/genética , Dislipidemias/tratamiento farmacológico , Lípidos/sangre , Mutación , Anciano , Proteína 3 Similar a la Angiopoyetina , Proteínas Similares a la Angiopoyetina , Angiopoyetinas/genética , Animales , Anticuerpos Monoclonales/efectos adversos , Anticuerpos Monoclonales/farmacología , Aterosclerosis/metabolismo , Enfermedades Cardiovasculares/prevención & control , Enfermedad de la Arteria Coronaria/metabolismo , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Método Doble Ciego , Dislipidemias/sangre , Femenino , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos , Persona de Mediana Edad
8.
Basic Res Cardiol ; 115(6): 78, 2020 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-33296022

RESUMEN

Statins induce plaque regression characterized by reduced macrophage content in humans, but the underlying mechanisms remain speculative. Studying the translational APOE*3-Leiden.CETP mouse model with a humanized lipoprotein metabolism, we find that systemic cholesterol lowering by oral atorvastatin or dietary restriction inhibits monocyte infiltration, and reverses macrophage accumulation in atherosclerotic plaques. Contrary to current believes, none of (1) reduced monocyte influx (studied by cell fate mapping in thorax-shielded irradiation bone marrow chimeras), (2) enhanced macrophage egress (studied by fluorescent bead labeling and transfer), or (3) atorvastatin accumulation in murine or human plaque (assessed by mass spectrometry) could adequately account for the observed loss in macrophage content in plaques that undergo phenotypic regression. Instead, suppression of local proliferation of macrophages dominates phenotypic plaque regression in response to cholesterol lowering: the lower the levels of serum LDL-cholesterol and lipid contents in murine aortic and human carotid artery plaques, the lower the rates of in situ macrophage proliferation. Our study identifies macrophage proliferation as the predominant turnover determinant and an attractive target for inducing plaque regression.


Asunto(s)
Aterosclerosis/terapia , Atorvastatina/farmacología , Proliferación Celular/efectos de los fármacos , LDL-Colesterol/sangre , Dieta con Restricción de Grasas , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Macrófagos/efectos de los fármacos , Placa Aterosclerótica , Animales , Apolipoproteína E3/genética , Aterosclerosis/genética , Aterosclerosis/metabolismo , Aterosclerosis/patología , Biomarcadores/sangre , Proteínas de Transferencia de Ésteres de Colesterol/genética , Modelos Animales de Enfermedad , Regulación hacia Abajo , Femenino , Humanos , Macrófagos/metabolismo , Macrófagos/patología , Ratones Endogámicos C57BL , Ratones Noqueados para ApoE , Receptores de LDL/genética
9.
Liver Int ; 40(11): 2860-2876, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32841505

RESUMEN

BACKGROUND & AIMS: While fibrosis stage predicts liver-associated mortality, cardiovascular disease (CVD) is still the major overall cause of mortality in patients with NASH. Novel NASH drugs should thus ideally reduce both liver fibrosis and CVD. Icosabutate is a semi-synthetic, liver-targeted eicosapentaenoic acid (EPA) derivative in clinical development for NASH. The primary aims of the current studies were to establish both the anti-fibrotic and anti-atherogenic efficacy of icosabutate in conjunction with changes in lipotoxic and atherogenic lipids in liver and plasma respectively. METHODS: The effects of icosabutate on fibrosis progression and lipotoxicity were investigated in amylin liver NASH (AMLN) diet (high fat, cholesterol and fructose) fed ob/ob mice with biopsy-confirmed steatohepatitis and fibrosis and compared with the activity of obeticholic acid. APOE*3Leiden.CETP mice, a translational model for hyperlipidaemia and atherosclerosis, were used to evaluate the mechanisms underlying the lipid-lowering effect of icosabutate and its effect on atherosclerosis. RESULTS: In AMLN ob/ob mice, icosabutate significantly reduced hepatic fibrosis and myofibroblast content in association with downregulation of the arachidonic acid cascade and a reduction in both hepatic oxidised phospholipids and apoptosis. In APOE*3Leiden.CETP mice, icosabutate reduced plasma cholesterol and TAG levels via increased hepatic uptake, upregulated hepatic lipid metabolism and downregulated inflammation pathways, and effectively decreased atherosclerosis development. CONCLUSIONS: Icosabutate, a structurally engineered EPA derivative, effectively attenuates both hepatic fibrosis and atherogenesis and offers an attractive therapeutic approach to both liver- and CV-related morbidity and mortality in NASH patients.


Asunto(s)
Aterosclerosis , Enfermedad del Hígado Graso no Alcohólico , Animales , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/patología , Aterosclerosis/prevención & control , Butiratos , Modelos Animales de Enfermedad , Ácido Eicosapentaenoico/farmacología , Humanos , Hígado/patología , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/patología , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/patología
10.
Amino Acids ; 50(7): 799-821, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29728915

RESUMEN

We recently found that renal carbonic anhydrase (CA) is involved in the reabsorption of inorganic nitrite (NO2-), an abundant reservoir of nitric oxide (NO) in tissues and cells. Impaired NO synthesis in the endothelium and decreased NO bioavailability in the circulation are considered major contributors to the development and progression of renal and cardiovascular diseases in different conditions including diabetes. Isolated human and bovine erythrocytic CAII and CAIV can convert nitrite to nitrous acid (HONO) and its anhydride N2O3 which, in the presence of thiols (RSH), are further converted to S-nitrosothiols (RSNO) and NO. Thus, CA may be responsible both for the homeostasis of nitrite and for its bioactivation to RSNO/NO. We hypothesized that enhanced excretion of nitrite in the urine may contribute to NO-related dysfunctions in the renal and cardiovascular systems, and proposed the urinary nitrate-to-nitrite molar ratio, i.e., UNOxR, as a measure of renal CA-dependent excretion of nitrite. Based on results from clinical and experimental animal studies, here, we report on a first evaluation of UNOxR. We determined UNOxR values in preterm neonates, healthy children, and adults, in children suffering from type 1 diabetes mellitus (T1DM) or Duchenne muscular dystrophy (DMD), in elderly subjects suffering from chronic rheumatic diseases, type 2 diabetes mellitus (T2DM), coronary artery disease (CAD), or peripheral arterial occlusive disease (PAOD). We also determined UNOxR values in healthy young men who ingested isosorbide dinitrate (ISDN), pentaerythrityl tetranitrate (PETN), or inorganic nitrate. In addition, we tested the utility of UNOxR in two animal models, i.e., the LEW.1AR1-iddm rat, an animal model of human T1DM, and the APOE*3-Leiden.CETP mice, a model of human dyslipidemia. Mean UNOxR values were lower in adult patients with rheumatic diseases (187) and in T2DM patients of the DALI study (74) as compared to healthy elderly adults (660) and healthy young men (1500). The intra- and inter-variabilities of UNOxR were of the order of 50% in young and elderly healthy subjects. UNOxR values were lower in black compared to white boys (314 vs. 483, P = 0.007), which is in line with reported lower NO bioavailability in black ethnicity. Mean UNOxR values were lower in DMD (424) compared to healthy (730) children, but they were higher in T1DM children (1192). ISDN (3 × 30 mg) decreased stronger UNOxR compared to PETN (3 × 80 mg) after 1 day (P = 0.046) and after 5 days (P = 0.0016) of oral administration of therapeutically equivalent doses. In healthy young men who ingested NaNO3 (0.1 mmol/kg/d), UNOxR was higher than in those who ingested the same dose of NaCl (1709 vs. 369). In LEW.1AR1-iddm rats, mean UNOxR values were lower than in healthy rats (198 vs. 308) and comparable to those in APOE*3-Leiden.CETP mice (151).


Asunto(s)
Diabetes Mellitus Tipo 1/orina , Diabetes Mellitus Tipo 2/orina , Riñón/metabolismo , Nitratos/orina , Nitritos/orina , Enfermedades Reumáticas/orina , Animales , Arteriopatías Oclusivas/sangre , Arteriopatías Oclusivas/orina , Anhidrasas Carbónicas/metabolismo , Bovinos , Enfermedad de la Arteria Coronaria/sangre , Enfermedad de la Arteria Coronaria/orina , Diabetes Mellitus Tipo 1/sangre , Diabetes Mellitus Tipo 2/sangre , Ratones , Distrofia Muscular de Duchenne/sangre , Distrofia Muscular de Duchenne/orina , Óxido Nítrico/sangre , Ratas , Enfermedades Reumáticas/sangre
11.
Eur Heart J ; 38(32): 2499-2507, 2017 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-28637178

RESUMEN

AIMS: Proprotein convertase subtilisin/kexin type 9 (PCSK9) has emerged as a promising therapeutic target for the treatment of hypercholesterolaemia and atherosclerosis. PCSK9 binds to the low density lipoprotein receptor and enhances its degradation, which leads to the reduced clearance of low density lipoprotein cholesterol (LDLc) and a higher risk of atherosclerosis. In this study, the AT04A anti-PCSK9 vaccine was evaluated for its therapeutic potential in ameliorating or even preventing coronary heart disease in the atherogenic APOE*3Leiden.CETP mouse model. METHODS AND RESULTS: Control and AT04A vaccine-treated mice were fed western-type diet for 18 weeks. Antibody titres, plasma lipids, and inflammatory markers were monitored by ELISA, FPLC, and multiplexed immunoassay, respectively. The progression of atherosclerosis was evaluated by histological analysis of serial cross-sections from the aortic sinus. The AT04A vaccine induced high and persistent antibody levels against PCSK9, causing a significant reduction in plasma total cholesterol (-53%, P < 0.001) and LDLc compared with controls. Plasma inflammatory markers such as serum amyloid A (SAA), macrophage inflammatory protein-1ß (MIP-1ß/CCL4), macrophage-derived chemokine (MDC/CCL22), cytokine stem cell factor (SCF), and vascular endothelial growth factor A (VEGF-A) were significantly diminished in AT04A-treated mice. As a consequence, treatment with the AT04A vaccine resulted in a decrease in atherosclerotic lesion area (-64%, P = 0.004) and aortic inflammation as well as in more lesion-free aortic segments (+119%, P = 0.026), compared with control. CONCLUSIONS: AT04A vaccine induces an effective immune response against PCSK9 in APOE*3Leiden.CETP mice, leading to a significant reduction of plasma lipids, systemic and vascular inflammation, and atherosclerotic lesions in the aorta.


Asunto(s)
Aterosclerosis/prevención & control , Inhibidores de PCSK9 , Vacunas de Subunidad/inmunología , Animales , Anticuerpos/metabolismo , Enfermedades de la Aorta/prevención & control , Apolipoproteína E3/deficiencia , Biomarcadores/metabolismo , HDL-Colesterol/metabolismo , Enfermedad Coronaria/prevención & control , Modelos Animales de Enfermedad , Femenino , Hipercolesterolemia/inmunología , Hipercolesterolemia/prevención & control , Molécula 1 de Adhesión Intercelular/metabolismo , Ratones Transgénicos , Proteína con Dominio Pirina 3 de la Familia NLR/inmunología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Placa Aterosclerótica/prevención & control , Proproteína Convertasa 9/inmunología , Vacunas de Subunidad/administración & dosificación , Vasculitis/inmunología , Vasculitis/prevención & control
12.
Eur Heart J ; 36(1): 39-48, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25142968

RESUMEN

BACKGROUND: The residual risk that remains after statin treatment supports the addition of other LDL-C-lowering agents and has stimulated the search for secondary treatment targets. Epidemiological studies propose HDL-C as a possible candidate. Cholesteryl ester transfer protein (CETP) transfers cholesteryl esters from atheroprotective HDL to atherogenic (V)LDL. The CETP inhibitor anacetrapib decreases (V)LDL-C by ∼15-40% and increases HDL-C by ∼40-140% in clinical trials. We evaluated the effects of a broad dose range of anacetrapib on atherosclerosis and HDL function, and examined possible additive/synergistic effects of anacetrapib on top of atorvastatin in APOE*3Leiden.CETP mice. METHODS AND RESULTS: Mice were fed a diet without or with ascending dosages of anacetrapib (0.03; 0.3; 3; 30 mg/kg/day), atorvastatin (2.4 mg/kg/day) alone or in combination with anacetrapib (0.3 mg/kg/day) for 21 weeks. Anacetrapib dose-dependently reduced CETP activity (-59 to -100%, P < 0.001), thereby decreasing non-HDL-C (-24 to -45%, P < 0.001) and increasing HDL-C (+30 to +86%, P < 0.001). Anacetrapib dose-dependently reduced the atherosclerotic lesion area (-41 to -92%, P < 0.01) and severity, increased plaque stability index and added to the effects of atorvastatin by further decreasing lesion size (-95%, P < 0.001) and severity. Analysis of covariance showed that both anacetrapib (P < 0.05) and non-HDL-C (P < 0.001), but not HDL-C (P = 0.76), independently determined lesion size. CONCLUSION: Anacetrapib dose-dependently reduces atherosclerosis, and adds to the anti-atherogenic effects of atorvastatin, which is mainly ascribed to a reduction in non-HDL-C. In addition, anacetrapib improves lesion stability.


Asunto(s)
Anticolesterolemiantes/farmacología , Aterosclerosis/prevención & control , Ácidos Heptanoicos/farmacología , Oxazolidinonas/farmacología , Pirroles/farmacología , Animales , Atorvastatina , Proteínas de Transferencia de Ésteres de Colesterol/metabolismo , HDL-Colesterol/efectos de los fármacos , HDL-Colesterol/fisiología , Progresión de la Enfermedad , Combinación de Medicamentos , Femenino , Ácidos Heptanoicos/administración & dosificación , Ratones Transgénicos , Oxazolidinonas/administración & dosificación , Pirroles/administración & dosificación , Proteína Amiloide A Sérica/metabolismo
13.
J Lipid Res ; 56(11): 2085-93, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26342106

RESUMEN

Recently, we showed in APOE*3-Leiden cholesteryl ester transfer protein (E3L.CETP) mice that anacetrapib attenuated atherosclerosis development by reducing (V)LDL cholesterol [(V)LDL-C] rather than by raising HDL cholesterol. Here, we investigated the mechanism by which anacetrapib reduces (V)LDL-C and whether this effect was dependent on the inhibition of CETP. E3L.CETP mice were fed a Western-type diet alone or supplemented with anacetrapib (30 mg/kg body weight per day). Microarray analyses of livers revealed downregulation of the cholesterol biosynthesis pathway (P < 0.001) and predicted downregulation of pathways controlled by sterol regulatory element-binding proteins 1 and 2 (z-scores -2.56 and -2.90, respectively; both P < 0.001). These data suggest increased supply of cholesterol to the liver. We found that hepatic proprotein convertase subtilisin/kexin type 9 (Pcsk9) expression was decreased (-28%, P < 0.01), accompanied by decreased plasma PCSK9 levels (-47%, P < 0.001) and increased hepatic LDL receptor (LDLr) content (+64%, P < 0.01). Consistent with this, anacetrapib increased the clearance and hepatic uptake (+25%, P < 0.001) of [(14)C]cholesteryl oleate-labeled VLDL-mimicking particles. In E3L mice that do not express CETP, anacetrapib still decreased (V)LDL-C and plasma PCSK9 levels, indicating that these effects were independent of CETP inhibition. We conclude that anacetrapib reduces (V)LDL-C by two mechanisms: 1) inhibition of CETP activity, resulting in remodeled VLDL particles that are more susceptible to hepatic uptake; and 2) a CETP-independent reduction of plasma PCSK9 levels that has the potential to increase LDLr-mediated hepatic remnant clearance.


Asunto(s)
VLDL-Colesterol/sangre , Dislipidemias/sangre , Hipolipemiantes/farmacología , Oxazolidinonas/farmacología , Proproteína Convertasas/sangre , Serina Endopeptidasas/sangre , Animales , Enfermedades Cardiovasculares/prevención & control , Proteínas de Transferencia de Ésteres de Colesterol/antagonistas & inhibidores , Proteínas de Transferencia de Ésteres de Colesterol/metabolismo , Regulación hacia Abajo , Evaluación Preclínica de Medicamentos , Dislipidemias/tratamiento farmacológico , Dislipidemias/enzimología , Femenino , Expresión Génica/efectos de los fármacos , Redes Reguladoras de Genes , Hipolipemiantes/uso terapéutico , Metabolismo de los Lípidos/efectos de los fármacos , Redes y Vías Metabólicas , Ratones Transgénicos , Oxazolidinonas/uso terapéutico , Proproteína Convertasa 9
15.
Pharmacol Res ; 94: 1-8, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25662039

RESUMEN

The present study describes the effects of atorvastatin on whole body synthesis of nitric oxide (NO), prostacyclin (PGI2), and thromboxane A2 (TxA2), on oxidative stress and nitrite/nitrate-related renal carbonic anhydrase (CA) activity in patients with type 2 diabetes mellitus (T2DM). A double-blind, randomized, placebo-controlled parallel-group trial (the DALI study group) on 217 patients with T2DM and dyslipidemia was performed. Urinary samples were collected before and after administration of a standard dose (10 mg/d, n=73), a maximal dose atorvastatin (80 mg/d, n=72) or placebo (n=72) for 30 weeks. Urinary nitrite and nitrate were measured to assess whole body NO synthesis. The urinary molar ratio of nitrate to nitrite (UNOxR) served as a measure of renal CA activity. Free radical- and cyclooxygenase (COX)-catalyzed lipid peroxidation was estimated by measuring urinary 8-iso-prostaglandin F2α (8-iso-PGF2α). In subgroups, systemic PGI2 and TxA2 synthesis was assessed by measuring their major urinary metabolites 2,3-dinor-6-keto-prostaglandin F1α and 2,3-dinor-thromboxane B2, respectively. All biochemical parameters were measured by GC-MS and GC-MS/MS methods. T2DM patients had elevated levels of nitrate, nitrite, UNOxR, and 8-iso-PGF2α compared to healthy non-diabetic and normolipidemic subjects. Thirty-week treatment with atorvastatin (10 or 80 mg/d) did not significantly alter NO, PGI2, TxA2 and 8-iso-PGF2α synthesis and did not improve the renal reabsorption of nitrite which is considered an important reservoir of NO. Our study suggests that atorvastatin (10 or 80 mg/d) does not provide cardiovascular benefit beyond its cholesterol lowering effect in patients with T2DM.


Asunto(s)
Atorvastatina/farmacología , Diabetes Mellitus Tipo 2/metabolismo , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Óxido Nítrico/biosíntesis , Estrés Oxidativo/efectos de los fármacos , Prostaglandinas I/biosíntesis , Tromboxanos/biosíntesis , 6-Cetoprostaglandina F1 alfa/metabolismo , Anciano , Creatinina/metabolismo , Dinoprost/análogos & derivados , Dinoprost/orina , Relación Dosis-Respuesta a Droga , Método Doble Ciego , Femenino , Humanos , Masculino , Persona de Mediana Edad
16.
J Lipid Res ; 55(10): 2103-12, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25139399

RESUMEN

Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibition is a potential novel strategy for treatment of CVD. Alirocumab is a fully human PCSK9 monoclonal antibody in phase 3 clinical development. We evaluated the antiatherogenic potential of alirocumab in APOE*3Leiden.CETP mice. Mice received a Western-type diet and were treated with alirocumab (3 or 10 mg/kg, weekly subcutaneous dosing) alone and in combination with atorvastatin (3.6 mg/kg/d) for 18 weeks. Alirocumab alone dose-dependently decreased total cholesterol (-37%; -46%, P < 0.001) and TGs (-36%; -39%, P < 0.001) and further decreased cholesterol in combination with atorvastatin (-48%; -58%, P < 0.001). Alirocumab increased hepatic LDL receptor protein levels but did not affect hepatic cholesterol and TG content. Fecal output of bile acids and neutral sterols was not changed. Alirocumab dose-dependently decreased atherosclerotic lesion size (-71%; -88%, P < 0.001) and severity and enhanced these effects when added to atorvastatin (-89%; -98%, P < 0.001). Alirocumab reduced monocyte recruitment and improved the lesion composition by increasing the smooth muscle cell and collagen content and decreasing the macrophage and necrotic core content. Alirocumab dose-dependently decreases plasma lipids and, as a result, atherosclerosis development, and it enhances the beneficial effects of atorvastatin in APOE*3Leiden.CETP mice. In addition, alirocumab improves plaque morphology.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Aterosclerosis/tratamiento farmacológico , Colesterol/metabolismo , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Macrófagos/metabolismo , Monocitos/metabolismo , Animales , Anticuerpos Monoclonales Humanizados , Aterosclerosis/genética , Aterosclerosis/metabolismo , Aterosclerosis/patología , Colesterol/genética , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Femenino , Humanos , Macrófagos/patología , Ratones , Ratones Transgénicos , Monocitos/patología
17.
J Lipid Res ; 55(11): 2370-9, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25258384

RESUMEN

LDL cholesterol (LDL-C) contributes to coronary heart disease. Proprotein convertase subtilisin/kexin type 9 (PCSK9) increases LDL-C by inhibiting LDL-C clearance. The therapeutic potential for PCSK9 inhibitors is highlighted by the fact that PCSK9 loss-of-function carriers exhibit 15-30% lower circulating LDL-C and a disproportionately lower risk (47-88%) of experiencing a cardiovascular event. Here, we utilized pcsk9(-/-) mice and an anti-PCSK9 antibody to study the role of the LDL receptor (LDLR) and ApoE in PCSK9-mediated regulation of plasma cholesterol and atherosclerotic lesion development. We found that circulating cholesterol and atherosclerotic lesions were minimally modified in pcsk9(-/-) mice on either an LDLR- or ApoE-deficient background. Acute administration of an anti-PCSK9 antibody did not reduce circulating cholesterol in an ApoE-deficient background, but did reduce circulating cholesterol (-45%) and TGs (-36%) in APOE*3Leiden.cholesteryl ester transfer protein (CETP) mice, which contain mouse ApoE, human mutant APOE3*Leiden, and a functional LDLR. Chronic anti-PCSK9 antibody treatment in APOE*3Leiden.CETP mice resulted in a significant reduction in atherosclerotic lesion area (-91%) and reduced lesion complexity. Taken together, these results indicate that both LDLR and ApoE are required for PCSK9 inhibitor-mediated reductions in atherosclerosis, as both are needed to increase hepatic LDLR expression.


Asunto(s)
Apolipoproteínas E/deficiencia , Aterosclerosis/metabolismo , Colesterol/sangre , Hígado/metabolismo , Proproteína Convertasas/metabolismo , Receptores de LDL/metabolismo , Serina Endopeptidasas/metabolismo , Animales , Anticuerpos/inmunología , Aterosclerosis/sangre , Aterosclerosis/enzimología , Aterosclerosis/genética , Proteínas de Transferencia de Ésteres de Colesterol/metabolismo , Femenino , Técnicas de Inactivación de Genes , Humanos , Hígado/efectos de los fármacos , Ratones , Proproteína Convertasa 9 , Proproteína Convertasas/deficiencia , Proproteína Convertasas/genética , Proproteína Convertasas/inmunología , Serina Endopeptidasas/deficiencia , Serina Endopeptidasas/genética , Serina Endopeptidasas/inmunología
18.
Toxicol Sci ; 198(2): 191-209, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38243716

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) are used in various household and industrial products. In humans, positive associations were reported between PFAS, including perfluorsulfonic acid and perfluorooctanoic acid, and cholesterol, a cardiometabolic risk factor. Animal studies show the opposite. Human-centered approaches are needed to better understand the effects of PFAS mixtures on cholesterol. Here, a systems toxicology approach is described, using a gene-centered cholesterol biokinetic model. PFAS exposure-gene expression relations from published data were introduced into the model. An existing PFAS physiologically based kinetic model was augmented with lung and dermal compartments and integrated with the cholesterol model to enable exposure-effect modeling. The final model was populated with data reflecting lifetime mixture exposure from: tolerable weekly intake values; the environment; high occupational exposures (ski waxing, PFAS industry). Results indicate that low level exposures (tolerable weekly intake, environmental) did not change cholesterol. In contrast, occupational exposures clearly resulted in internal PFAS exposure and disruption of cholesterol homeostasis, largely in line with epidemiological observations. Despite model limitations (eg, dynamic range, directionality), changes in cholesterol homeostasis were predicted for ski waxers, hitherto unknown from epidemiological studies. Here, future studies involving lipid metabolism could improve risk assessment.


Asunto(s)
Ácidos Alcanesulfónicos , Contaminantes Ambientales , Fluorocarburos , Exposición Profesional , Animales , Humanos , Metabolismo de los Lípidos , Fluorocarburos/toxicidad , Cinética , Homeostasis , Ácidos Alcanesulfónicos/toxicidad , Contaminantes Ambientales/toxicidad
19.
Br J Pharmacol ; 179(19): 4709-4721, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35751904

RESUMEN

BACKGROUND AND PURPOSE: Tyrosine kinase inhibitors (TKI) used to treat chronic myeloid leukaemia (CML) have been associated with cardiovascular side effects, including reports of calcific aortic valve stenosis. The aim of this study was to establish the effects of first and second generation TKIs in aortic valve stenosis and to determine the associated molecular mechanisms. EXPERIMENTAL APPROACH: Hyperlipidemic APOE*3Leiden.CETP transgenic mice were treated with nilotinib, imatinib or vehicle. Human valvular interstitial cells (VICs) were isolated and studied in vitro. Gene expression analysis was perfromed in aortic valves from 64 patients undergoing aortic valve replacement surgery. KEY RESULTS: Nilotinib increased murine aortic valve thickness. Nilotinib, but not imatinib, promoted calcification and osteogenic activation and decreased autophagy in human VICs. Differential tyrosine kinase expression was detected between healthy and calcified valve tissue. Transcriptomic target identification revealed that the discoidin domain receptor DDR2, which is preferentially inhibited by nilotinib, was predominantly expressed in human aortic valves but markedly downregulated in calcified valve tissue. Nilotinib and selective DDR2 targeting in VICs induced a similar osteogenic activation, which was blunted by increasing the DDR2 ligand, collagen. CONCLUSIONS AND IMPLICATIONS: These findings suggest that inhibition of DDR2 by nilotinib promoted aortic valve thickening and VIC calcification, with possible translational implications for cardiovascular surveillance and possible personalized medicine in CML patients.


Asunto(s)
Estenosis de la Válvula Aórtica , Calcinosis , Receptor con Dominio Discoidina 2 , Animales , Válvula Aórtica/metabolismo , Válvula Aórtica/patología , Estenosis de la Válvula Aórtica/tratamiento farmacológico , Estenosis de la Válvula Aórtica/genética , Estenosis de la Válvula Aórtica/metabolismo , Calcinosis/tratamiento farmacológico , Calcinosis/genética , Calcinosis/metabolismo , Células Cultivadas , Receptor con Dominio Discoidina 2/metabolismo , Receptores con Dominio Discoidina/metabolismo , Humanos , Mesilato de Imatinib , Ratones , Inhibidores de Proteínas Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Pirimidinas
20.
J Biol Chem ; 285(33): 25168-75, 2010 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-20501652

RESUMEN

The peroxisome proliferator-activated receptor alpha (PPARalpha) activator fenofibrate efficiently decreases plasma triglycerides (TG), which is generally attributed to enhanced very low density lipoprotein (VLDL)-TG clearance and decreased VLDL-TG production. However, because data on the effect of fenofibrate on VLDL production are controversial, we aimed to investigate in (more) detail the mechanism underlying the TG-lowering effect by studying VLDL-TG production and clearance using APOE*3-Leiden.CETP mice, a unique mouse model for human-like lipoprotein metabolism. Male mice were fed a Western-type diet for 4 weeks, followed by the same diet without or with fenofibrate (30 mg/kg bodyweight/day) for 4 weeks. Fenofibrate strongly lowered plasma cholesterol (-38%) and TG (-60%) caused by reduction of VLDL. Fenofibrate markedly accelerated VLDL-TG clearance, as judged from a reduced plasma half-life of glycerol tri[(3)H]oleate-labeled VLDL-like emulsion particles (-68%). This was associated with an increased post-heparin lipoprotein lipase (LPL) activity (+110%) and an increased uptake of VLDL-derived fatty acids by skeletal muscle, white adipose tissue, and liver. Concomitantly, fenofibrate markedly increased the VLDL-TG production rate (+73%) but not the VLDL-apolipoprotein B (apoB) production rate. Kinetic studies using [(3)H]palmitic acid showed that fenofibrate increased VLDL-TG production by equally increasing incorporation of re-esterified plasma fatty acids and liver TG into VLDL, which was supported by hepatic gene expression profiling data. We conclude that fenofibrate decreases plasma TG by enhancing LPL-mediated VLDL-TG clearance, which results in a compensatory increase in VLDL-TG production by the liver.


Asunto(s)
Fenofibrato/farmacología , Lipoproteínas VLDL/metabolismo , Triglicéridos/sangre , Animales , Apolipoproteínas B/metabolismo , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Lipoproteínas HDL/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Ratones Transgénicos , Triglicéridos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA