Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Immunol Cell Biol ; 101(2): 97-103, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36006827

RESUMEN

Kindness in Science is a grassroots initiative to establish a scientific community built on diversity, respect and well-being, which would ultimately lead to happier scientists and better scientific outcomes. We believe that the key areas that we can become kinder as scientists include yourself, each other, the environment and the wider community. Here, we discuss the key barriers to kindness in each of these areas, and ways we can overcome these issues to create kinder, more sustainable and harmonious research teams.

2.
Oncoimmunology ; 13(1): 2345859, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38686178

RESUMEN

Immune checkpoint therapy (ICT) causes durable tumour responses in a subgroup of patients, but it is not well known how T cell receptor beta (TCRß) repertoire dynamics contribute to the therapeutic response. Using murine models that exclude variation in host genetics, environmental factors and tumour mutation burden, limiting variation between animals to naturally diverse TCRß repertoires, we applied TCRseq, single cell RNAseq and flow cytometry to study TCRß repertoire dynamics in ICT responders and non-responders. Increased oligoclonal expansion of TCRß clonotypes was observed in responding tumours. Machine learning identified TCRß CDR3 signatures unique to each tumour model, and signatures associated with ICT response at various timepoints before or during ICT. Clonally expanded CD8+ T cells in responding tumours post ICT displayed effector T cell gene signatures and phenotype. An early burst of clonal expansion during ICT is associated with response, and we report unique dynamics in TCRß signatures associated with ICT response.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Linfocitos Infiltrantes de Tumor , Receptores de Antígenos de Linfocitos T alfa-beta , Animales , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Receptores de Antígenos de Linfocitos T alfa-beta/metabolismo , Ratones , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/efectos de los fármacos , Linfocitos Infiltrantes de Tumor/metabolismo , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/metabolismo , Humanos , Ratones Endogámicos C57BL , Femenino
3.
Front Immunol ; 13: 872295, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35634282

RESUMEN

Antibodies that target immune checkpoints such as cytotoxic T lymphocyte antigen 4 (CTLA-4) and the programmed cell death protein 1/ligand 1 (PD-1/PD-L1) are now a treatment option for multiple cancer types. However, as a monotherapy, objective responses only occur in a minority of patients. Chemotherapy is widely used in combination with immune checkpoint blockade (ICB). Although a variety of isolated immunostimulatory effects have been reported for several classes of chemotherapeutics, it is unclear which chemotherapeutics provide the most benefit when combined with ICB. We investigated 10 chemotherapies from the main canonical classes dosed at the clinically relevant maximum tolerated dose in combination with anti-CTLA-4/anti-PD-L1 ICB. We screened these chemo-immunotherapy combinations in two murine mesothelioma models from two different genetic backgrounds, and identified chemotherapies that produced additive, neutral or antagonistic effects when combined with ICB. Using flow cytometry and bulk RNAseq, we characterized the tumor immune milieu in additive chemo-immunotherapy combinations. 5-fluorouracil (5-FU) or cisplatin were additive when combined with ICB while vinorelbine and etoposide provided no additional benefit when combined with ICB. The combination of 5-FU with ICB augmented an inflammatory tumor microenvironment with markedly increased CD8+ T cell activation and upregulation of IFNγ, TNFα and IL-1ß signaling. The effective anti-tumor immune response of 5-FU chemo-immunotherapy was dependent on CD8+ T cells but was unaffected when TNFα or IL-1ß cytokine signaling pathways were blocked. Our study identified additive and non-additive chemotherapy/ICB combinations and suggests a possible role for increased inflammation in the tumor microenvironment as a basis for effective combination therapy.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Neoplasias , Animales , Linfocitos T CD8-positivos , Fluorouracilo/uso terapéutico , Humanos , Ratones , Neoplasias/terapia , Microambiente Tumoral , Factor de Necrosis Tumoral alfa/uso terapéutico
4.
Cell Rep ; 39(4): 110747, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35476975

RESUMEN

Interferon gamma (IFNγ) is a proinflammatory cytokine implicated in autoimmune diseases. However, deficiency or neutralization of IFNγ is ineffective in reducing disease. We characterize islet antigen-specific T cells in non-obese diabetic (NOD) mice lacking all three IFN receptor genes. Diabetes is minimally affected, but at 125 days of age, antigen-specific CD8+ T cells, quantified using major histocompatibility complex class I tetramers, are present in 10-fold greater numbers in Ifngr-mutant NOD mice. T cells from Ifngr-mutant mice have increased proliferative responses to interleukin-2 (IL-2). They also have reduced phosphorylated STAT1 and its target gene, suppressor of cytokine signaling 1 (SOCS-1). IFNγ controls the expansion of antigen-specific CD8+ T cells by mechanisms which include increased SOCS-1 expression that regulates IL-2 signaling. The expanded CD8+ T cells are likely to contribute to normal diabetes progression despite reduced inflammation in Ifngr-mutant mice.


Asunto(s)
Diabetes Mellitus , Interleucina-2 , Animales , Autoantígenos , Linfocitos T CD8-positivos , Citocinas/metabolismo , Interferón gamma/metabolismo , Interferones/metabolismo , Interleucina-2/metabolismo , Ratones , Ratones Endogámicos NOD , Proteína 1 Supresora de la Señalización de Citocinas/genética , Proteína 1 Supresora de la Señalización de Citocinas/metabolismo , Proteínas Supresoras de la Señalización de Citocinas/metabolismo
5.
Clin Transl Immunology ; 11(11): e1425, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36325490

RESUMEN

Objectives: Immune checkpoint inhibitors have achieved clinical success in cancer treatment, but this treatment causes immune-related adverse events, including type 1 diabetes (T1D). Our aim was to test whether a JAK1/JAK2 inhibitor, effective at treating spontaneous autoimmune diabetes in nonobese diabetic (NOD) mice, can prevent diabetes secondary to PD-L1 blockade. Methods: Anti-PD-L1 antibody was injected into NOD mice to induce diabetes, and JAK1/JAK2 inhibitor LN3103801 was administered by oral gavage to prevent diabetes. Flow cytometry was used to study T cells and beta cells. Mesothelioma cells were inoculated into BALB/c mice to induce a transplantable tumour model. Results: Anti-PD-L1-induced diabetes was associated with increased immune cell infiltration in the islets and upregulated MHC class I on islet cells. Anti-PD-L1 administration significantly increased islet T cell proliferation and islet-specific CD8+ T cell numbers in peripheral lymphoid organs. JAK1/JAK2 inhibitor treatment blocked IFNγ-mediated MHC class I upregulation on beta cells and T cell proliferation mediated by cytokines that use the common γ chain receptor. As a result, anti-PD-L1-induced diabetes was prevented by JAK1/JAK2 inhibitor administered before or after checkpoint inhibitor therapy. Diabetes was also reversed when the JAK1/JAK2 inhibitor was administered after the onset of anti-PD-L1-induced hyperglycaemia. Furthermore, JAK1/JAK2 inhibitor intervention after checkpoint inhibitors did not reverse or abrogate the antitumour effects in a transplantable tumour model. Conclusion: A JAK1/JAK2 inhibitor can prevent and reverse anti-PD-L1-induced diabetes by blocking IFNγ and γc cytokine activities. Our study provides preclinical validation of JAK1/JAK2 inhibitor use in checkpoint inhibitor-induced diabetes.

6.
Cell Rep ; 41(13): 111874, 2022 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-36577370

RESUMEN

While chemotherapy remains the first-line treatment for many cancers, it is still unclear what distinguishes responders from non-responders. Here, we characterize the chemotherapy-responsive tumor microenvironment in mice, using RNA sequencing on tumors before and after cyclophosphamide, and compare the gene expression profiles of responders with progressors. Responsive tumors have an inflammatory and highly immune infiltrated pre-treatment tumor microenvironment characterized by the enrichment of pathways associated with CD4+ T cells, interferons (IFNs), and tumor necrosis factor alpha (TNF-α). The same gene expression profile is associated with response to cyclophosphamide-based chemotherapy in patients with breast cancer. Finally, we demonstrate that tumors can be sensitized to cyclophosphamide and 5-FU chemotherapy by pre-treatment with recombinant TNF-α, IFNγ, and poly(I:C). Thus, a CD4+ T cell-inflamed pre-treatment tumor microenvironment is necessary for response to chemotherapy, and this state can be therapeutically attained by targeted immunotherapy.


Asunto(s)
Neoplasias , Linfocitos T , Animales , Ratones , Factor de Necrosis Tumoral alfa/metabolismo , Microambiente Tumoral , Ciclofosfamida/farmacología , Ciclofosfamida/uso terapéutico , Ciclofosfamida/metabolismo , Neoplasias/patología , Linfocitos T CD4-Positivos/metabolismo
7.
Front Oncol ; 11: 672747, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33987104

RESUMEN

The success of immunotherapy that targets inhibitory T cell receptors for the treatment of multiple cancers has seen the anti-tumor immune response re-emerge as a promising biomarker of response to therapy. Longitudinal characterization of T cells in the tumor microenvironment (TME) helps us understand how to promote effective anti-tumor immunity. However, serial analyses at the tumor site are rarely feasible in clinical practice. Malignant pleural effusions (MPE) associated with thoracic cancers are an abnormal accumulation of fluid in the pleural space that is routinely drained for patient symptom control. This fluid contains tumor cells and immune cells, including lymphocytes, macrophages and dendritic cells, providing a window into the local tumor microenvironment. Recurrent MPE is common, and provides an opportunity for longitudinal analysis of the tumor site in a clinical setting. Here, we review the phenotype of MPE-derived T cells, comparing them to tumor and blood T cells. We discuss the benefits and limitations of their use as potential dynamic biomarkers of response to therapy.

8.
Front Immunol ; 11: 587014, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33163002

RESUMEN

Immunotherapies have revolutionized cancer treatment. In particular, immune checkpoint therapy (ICT) leads to durable responses in some patients with some cancers. However, the majority of treated patients do not respond. Understanding immune mechanisms that underlie responsiveness to ICT will help identify predictive biomarkers of response and develop treatments to convert non-responding patients to responding ones. ICT primarily acts at the level of adaptive immunity. The specificity of adaptive immune cells, such as T and B cells, is determined by antigen-specific receptors. T cell repertoires can be comprehensively profiled by high-throughput sequencing at the bulk and single-cell level. T cell receptor (TCR) sequencing allows for sensitive tracking of dynamic changes in antigen-specific T cells at the clonal level, giving unprecedented insight into the mechanisms by which ICT alters T cell responses. Here, we review how the repertoire influences response to ICT and conversely how ICT affects repertoire diversity. We will also explore how changes to the repertoire in different anatomical locations can better correlate and perhaps predict treatment outcome. We discuss the advantages and limitations of current metrics used to characterize and represent TCR repertoire diversity. Discovery of predictive biomarkers could lie in novel analysis approaches, such as network analysis of amino acids similarities between TCR sequences. Single-cell sequencing is a breakthrough technology that can link phenotype with specificity, identifying T cell clones that are crucial for successful ICT. The field of immuno-sequencing is rapidly developing and cross-disciplinary efforts are required to maximize the analysis, application, and validation of sequencing data. Unravelling the dynamic behavior of the TCR repertoire during ICT will be highly valuable for tracking and understanding anti-tumor immunity, biomarker discovery, and ultimately for the development of novel strategies to improve patient outcomes.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Animales , Humanos , Inmunoterapia/métodos , Neoplasias/inmunología , Neoplasias/terapia
9.
Epigenetics ; 15(1-2): 134-144, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31423932

RESUMEN

Activation of naïve CD8+ T cells stimulates proliferation and differentiation into cytotoxic T-lymphocytes (CTLs). Adoptive T Cell Therapy (ACT) involves multiple rounds of ex vivo activation to generate enough CTLs for reinfusion into patients, but this drives differentiation into terminal effector T cells. Less differentiated CTL populations, such as stem cell memory T cells, are more ideal candidates for ACT because of increased self-renewal and persistent properties. Ex vivo targeting of T cell differentiation with epigenetic modifiers is a potential strategy to improve cytotoxic T-lymphocyte (CTL) generation for ACT. We established a pipeline to assess the effects of epigenetic modifiers on CD8+ T cell proliferation, differentiation, and efficacy in a preclinical melanoma model. Single treatment with epigenetic modifiers inhibited T cell proliferation in vitro, producing CD44hiCD62Lhi effector-like T cells rather than a stem cell memory T cell phenotype. Most epigenetic modifying agents had no significant effect on ACT efficacy with the notable exception of the bromodomain and extraterminal (BET)-inhibitor JQ1 which was associated with a decrease in efficacy compared to unmodified T cells. These findings reveal the complexity of epigenetic targeting of T cell differentiation, highlighting the need to precisely define the epigenetic targeting strategies to improve CTL generation for ACT.


Asunto(s)
Proliferación Celular , Epigénesis Genética , Inmunoterapia Adoptiva/métodos , Melanoma Experimental/terapia , Linfocitos T/efectos de los fármacos , Animales , Azepinas/farmacología , Benzodiazepinas/farmacología , Diferenciación Celular , Línea Celular Tumoral , Células Cultivadas , Indolizinas/farmacología , Ratones , Ratones Endogámicos C57BL , Sulfonas/farmacología , Linfocitos T/citología , Linfocitos T/inmunología , Linfocitos T/fisiología , Triazoles/farmacología
10.
Front Immunol ; 11: 584423, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33262762

RESUMEN

Immune checkpoint therapy (ICT) results in durable responses in individuals with some cancers, but not all patients respond to treatment. ICT improves CD8+ cytotoxic T lymphocyte (CTL) function, but changes in tumor antigen-specific CTLs post-ICT that correlate with successful responses have not been well characterized. Here, we studied murine tumor models with dichotomous responses to ICT. We tracked tumor antigen-specific CTL frequencies and phenotype before and after ICT in responding and non-responding animals. Tumor antigen-specific CTLs increased within tumor and draining lymph nodes after ICT, and exhibited an effector memory-like phenotype, expressing IL-7R (CD127), KLRG1, T-bet, and granzyme B. Responding tumors exhibited higher infiltration of effector memory tumor antigen-specific CTLs, but lower frequencies of regulatory T cells compared to non-responders. Tumor antigen-specific CTLs persisted in responding animals and formed memory responses against tumor antigens. Our results suggest that increased effector memory tumor antigen-specific CTLs, in the presence of reduced immunosuppression within tumors is part of a successful ICT response. Temporal and nuanced analysis of T cell subsets provides a potential new source of immune based biomarkers for response to ICT.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Inhibidores de Puntos de Control Inmunológico/inmunología , Memoria Inmunológica/inmunología , Animales , Antígenos de Neoplasias/inmunología , Biomarcadores/metabolismo , Línea Celular Tumoral , Granzimas/inmunología , Activación de Linfocitos/inmunología , Ratones , Ratones Endogámicos BALB C , Linfocitos T Citotóxicos/inmunología , Linfocitos T Reguladores/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA