Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 218
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 153(5): 1064-79, 2013 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-23706743

RESUMEN

Metabolic adaptation is essential for cell survival during nutrient deprivation. We report that eukaryotic elongation factor 2 kinase (eEF2K), which is activated by AMP-kinase (AMPK), confers cell survival under acute nutrient depletion by blocking translation elongation. Tumor cells exploit this pathway to adapt to nutrient deprivation by reactivating the AMPK-eEF2K axis. Adaptation of transformed cells to nutrient withdrawal is severely compromised in cells lacking eEF2K. Moreover, eEF2K knockdown restored sensitivity to acute nutrient deprivation in highly resistant human tumor cell lines. In vivo, overexpression of eEF2K rendered murine tumors remarkably resistant to caloric restriction. Expression of eEF2K strongly correlated with overall survival in human medulloblastoma and glioblastoma multiforme. Finally, C. elegans strains deficient in efk-1, the eEF2K ortholog, were severely compromised in their response to nutrient depletion. Our data highlight a conserved role for eEF2K in protecting cells from nutrient deprivation and in conferring tumor cell adaptation to metabolic stress. PAPERCLIP:


Asunto(s)
Caenorhabditis elegans/metabolismo , Quinasa del Factor 2 de Elongación/metabolismo , Neoplasias/fisiopatología , Extensión de la Cadena Peptídica de Translación , Transducción de Señal , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Neoplasias Encefálicas/fisiopatología , Caenorhabditis elegans/genética , Supervivencia Celular , Transformación Celular Neoplásica , Quinasa del Factor 2 de Elongación/genética , Privación de Alimentos , Glioblastoma/fisiopatología , Células HeLa , Humanos , Ratones , Ratones Desnudos , Células 3T3 NIH , Trasplante de Neoplasias , Factor 2 de Elongación Peptídica/metabolismo , Trasplante Heterólogo
2.
Blood ; 140(23): 2477-2489, 2022 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-35930749

RESUMEN

The MAPK-interacting kinase (Mnk) family includes Mnk1 and Mnk2, which are phosphorylated and activated in response to extracellular stimuli. Mnk1 contributes to cellular responses by regulating messenger RNA (mRNA) translation, and mRNA translation influences platelet production and function. However, the role of Mnk1 in megakaryocytes and platelets has not previously been studied. The present study investigated Mnk1 in megakaryocytes and platelets using both pharmacological and genetic approaches. We demonstrate that Mnk1, but not Mnk2, is expressed and active in human and murine megakaryocytes and platelets. Stimulating human and murine megakaryocytes and platelets induced Mnk1 activation and phosphorylation of eIF4E, a downstream target of activated Mnk1 that triggers mRNA translation. Mnk1 inhibition or deletion significantly diminished protein synthesis in megakaryocytes as measured by polysome profiling and [35S]-methionine incorporation assays. Depletion of Mnk1 also reduced megakaryocyte ploidy and proplatelet forming megakaryocytes in vitro and resulted in thrombocytopenia. However, Mnk1 deletion did not affect the half-life of circulating platelets. Platelets from Mnk1 knockout mice exhibited reduced platelet aggregation, α granule secretion, and integrin αIIbß3 activation. Ribosomal footprint sequencing indicated that Mnk1 regulates the translation of Pla2g4a mRNA (which encodes cPLA2) in megakaryocytes. Consistent with this, Mnk1 ablation reduced cPLA2 activity and thromboxane generation in platelets and megakaryocytes. In vivo, Mnk1 ablation protected against platelet-dependent thromboembolism. These results provide previously unrecognized evidence that Mnk1 regulates mRNA translation and cellular activation in platelets and megakaryocytes, endomitosis and thrombopoiesis, and thrombosis.


Asunto(s)
ARN Mensajero , Humanos , Animales , Ratones
3.
J Nutr ; 153(5): 1407-1419, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36870538

RESUMEN

BACKGROUND: Alzheimer disease (AD) is a neurodegenerative condition defined by the build-up of amyloid plaques in the brain and intraneuronal tangles of the protein tau. Autophagy is a cellular cleaning process involved in the degradation of proteins, including proteins directly responsible for amyloid plaques, but its activity is compromised in AD. The mechanistic target of rapamycin complex (mTORC) 1 inhibits autophagy when activated by amino acids. OBJECTIVES: We hypothesized that reducing amino acid intake by decreasing dietary protein could promote autophagy, which in turn could prevent amyloid plaque deposition in AD mice. METHODS: Homozygote (2-mo-old) and heterozygote (4-mo-old) amyloid precursor protein NL-G-F mice, a model of brain amyloid deposition, were used in this study to test this hypothesis. Male and female mice were fed with isocaloric low-protein, control, or high-protein diets for 4 mo and killed for analysis. Locomotor performance was measured using the inverted screen test, and body composition was measured using EchoMRI. Samples were analyzed using western blotting, enzyme-linked immunosorbent assay, mass spectrometry, and immunohistochemical staining. RESULTS: mTORC1 activity in the cerebral cortex was inversely covaried with protein consumption in both homozygote and heterozygote mice. Low-protein diet improved metabolic parameters and restored locomotor performance only in male homozygous mice. Dietary protein adjustment did not affect amyloid deposition in homozygous mice. However, in the heterozygous amyloid precursor protein NL-G-F mice, amyloid plaque was lower in male mice consuming the low protein compared with that in mice fed with the control diet. CONCLUSIONS: This study showed that reducing protein intake reduces mTORC1 activity and may prevent amyloid accumulation, at least in male mice. Moreover, dietary protein is a tool that can be used to change mTORC1 activity and amyloid deposition in the mouse brain, and the murine brain's response to dietary protein is sex specific.


Asunto(s)
Enfermedad de Alzheimer , Animales , Femenino , Masculino , Ratones , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/metabolismo , Proteínas en la Dieta/metabolismo , Modelos Animales de Enfermedad , Ratones Transgénicos , Placa Amiloide/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
4.
FASEB J ; 36(2): e22154, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35032419

RESUMEN

Eukaryotic elongation factor 2 kinase (eEF2K) is an atypical protein kinase that controls protein synthesis in cells under stress. Although well studied in cancer, less is known about its roles in chronic inflammatory diseases. Here, we examined its regulation of macrophage cholesterol handling in the context of atherosclerosis. eEF2K mRNA expression and protein activity were upregulated in murine bone marrow-derived macrophages (BMDMs) exposed to oxidized low-density lipoprotein cholesterol (oxLDL). When incubated with oxLDL, BMDMs from eEF2K knockout (Eef2k-/- ) mice formed fewer Oil Red O+ foam cells than Eef2k+/+ BMDMs (12.5% ± 2.3% vs. 32.3% ± 2.0%, p < .01). Treatment with a selective eEF2K inhibitor, JAN-384, also decreased foam cell formation for C57BL/6J BMDMs and human monocyte-derived macrophages. Disabling eEF2K selectively decreased protein expression of the CD36 cholesterol uptake receptor, mediated by a reduction in the proportion of translationally active Cd36 mRNA. Eef2k-/- mice bred onto the Ldlr-/- background developed aortic sinus atherosclerotic plaques that were 30% smaller than Eef2k+/+ -Ldlr-/- mice after 16 weeks of high cholesterol diet (p < .05). Although accompanied by a reduction in plaque CD36+ staining (p < .05) and lower CD36 expression in circulating monocytes (p < .01), this was not associated with reduced lipid content in plaques as measured by oil red O staining. Finally, EEF2K and CD36 mRNA levels were higher in blood mononuclear cells from patients with coronary artery disease and recent myocardial infarction compared to healthy controls without coronary artery disease. These results reveal a new role for eEF2K in translationally regulating CD36 expression and foam cell formation in macrophages. Further studies are required to explore therapeutic targeting of eEF2K in atherosclerosis.


Asunto(s)
Antígenos CD36/metabolismo , Quinasa del Factor 2 de Elongación/metabolismo , Células Espumosas/metabolismo , Animales , Aterosclerosis/metabolismo , Colesterol/metabolismo , Enfermedad de la Arteria Coronaria/metabolismo , Femenino , Humanos , Leucocitos Mononucleares/metabolismo , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Monocitos/metabolismo , Placa Aterosclerótica/metabolismo , ARN Mensajero/metabolismo , Transducción de Señal/fisiología
5.
Biochem J ; 479(10): 1059-1082, 2022 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-35604373

RESUMEN

Control of protein synthesis (mRNA translation) plays key roles in shaping the proteome and in many physiological, including homeostatic, responses. One long-known translational control mechanism involves phosphorylation of initiation factor, eIF2, which is catalysed by any one of four protein kinases, which are generally activated in response to stresses. They form a key arm of the integrated stress response (ISR). Phosphorylated eIF2 inhibits eIF2B (the protein that promotes exchange of eIF2-bound GDP for GTP) and thus impairs general protein synthesis. However, this mechanism actually promotes translation of certain mRNAs by virtue of specific features they possess. Recent work has uncovered many previously unknown features of this regulatory system. Several studies have yielded crucial insights into the structure and control of eIF2, including that eIF2B is regulated by several metabolites. Recent studies also reveal that control of eIF2 and the ISR helps determine organismal lifespan and surprising roles in sensing mitochondrial stresses and in controlling the mammalian target of rapamycin (mTOR). The latter effect involves an unexpected role for one of the eIF2 kinases, HRI. Phosphoproteomic analysis identified new substrates for another eIF2 kinase, Gcn2, which senses the availability of amino acids. Several genetic disorders arise from mutations in genes for eIF2α kinases or eIF2B (i.e. vanishing white matter disease, VWM and microcephaly, epileptic seizures, microcephaly, hypogenitalism, diabetes and obesity, MEHMO). Furthermore, the eIF2-mediated ISR plays roles in cognitive decline associated with Alzheimer's disease. New findings suggest potential therapeutic value in interfering with the ISR in certain settings, including VWM, for example by using compounds that promote eIF2B activity.


Asunto(s)
Factor 2 Eucariótico de Iniciación , Microcefalia , Factor 2 Eucariótico de Iniciación/metabolismo , Factor 2B Eucariótico de Iniciación/química , Factor 2B Eucariótico de Iniciación/genética , Factor 2B Eucariótico de Iniciación/metabolismo , Humanos , Fosforilación , eIF-2 Quinasa/metabolismo
6.
Nucleic Acids Res ; 49(18): e105, 2021 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-34255842

RESUMEN

Translation of eukaryotic mRNAs begins with binding of their m7G cap to eIF4E, followed by recruitment of other translation initiation factor proteins. We describe capCLIP, a novel method to comprehensively capture and quantify the eIF4E (eukaryotic initiation factor 4E) 'cap-ome' and apply it to examine the biological consequences of eIF4E-cap binding in distinct cellular contexts. First, we use capCLIP to identify the eIF4E cap-omes in human cells with/without the mTORC1 (mechanistic target of rapamycin, complex 1) inhibitor rapamycin, there being an emerging consensus that rapamycin inhibits translation of TOP (terminal oligopyrimidine) mRNAs by displacing eIF4E from their caps. capCLIP reveals that the representation of TOP mRNAs in the cap-ome is indeed systematically reduced by rapamycin, thus validating our new methodology. capCLIP also refines the requirements for a functional TOP sequence. Second, we apply capCLIP to probe the consequences of phosphorylation of eIF4E. We show eIF4E phosphorylation reduces overall eIF4E-mRNA association and, strikingly, causes preferential dissociation of mRNAs with short 5'-UTRs. capCLIP is a valuable new tool to probe the function of eIF4E and of other cap-binding proteins such as eIF4E2/eIF4E3.


Asunto(s)
Factor 4E Eucariótico de Iniciación/metabolismo , Caperuzas de ARN/metabolismo , ARN Mensajero/metabolismo , Células HeLa , Humanos , Unión Proteica , Biosíntesis de Proteínas
7.
J Cell Sci ; 133(5)2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-32041902

RESUMEN

It has become increasingly evident that T cell functions are subject to translational control in addition to transcriptional regulation. Here, by using live imaging of CD8+ T cells isolated from the Lifeact-EGFP mouse, we show that T cells exhibit a gain in fluorescence intensity following engagement of cognate tumour target cells. The GFP signal increase is governed by Erk1/2-dependent distal T cell receptor (TCR) signalling and its magnitude correlates with IFN-γ and TNF-α production, which are hallmarks of T cell activation. Enhanced fluorescence was due to increased translation of Lifeact-EGFP protein, without an associated increase in its mRNA. Activation-induced gains in fluorescence were also observed in naïve and CD4+ T cells from the Lifeact-EGFP reporter, and were readily detected by both flow cytometry and live cell microscopy. This unique, translationally controlled reporter of effector T cell activation simultaneously enables tracking of cell morphology, F-actin dynamics and activation state in individual migrating T cells. It is a valuable addition to the limited number of reporters of T cell dynamics and activation, and opens the door to studies of translational activity and heterogeneities in functional T cell responses in situ.


Asunto(s)
Citoesqueleto de Actina , Linfocitos T CD8-positivos , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animales , Regulación de la Expresión Génica , Ratones
8.
Cell Mol Life Sci ; 78(8): 4035-4052, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33834258

RESUMEN

The mechanistic target of rapamycin complex 1 (mTORC1) is an important regulator of cellular metabolism that is commonly hyperactivated in cancer. Recent cancer genome screens have identified multiple mutations in Ras-homolog enriched in brain (Rheb), the primary activator of mTORC1 that might act as driver oncogenes by causing hyperactivation of mTORC1. Here, we show that a number of recurrently occurring Rheb mutants drive hyperactive mTORC1 signalling through differing levels of insensitivity to the primary inactivator of Rheb, tuberous sclerosis complex. We show that two activated mutants, Rheb-T23M and E40K, strongly drive increased cell growth, proliferation and anchorage-independent growth resulting in enhanced tumour growth in vivo. Proteomic analysis of cells expressing the mutations revealed, surprisingly, that these two mutants promote distinct oncogenic pathways with Rheb-T23M driving an increased rate of anaerobic glycolysis, while Rheb-E40K regulates the translation factor eEF2 and autophagy, likely through differential interactions with 5' AMP-activated protein kinase (AMPK) which modulate its activity. Our findings suggest that unique, personalized, combination therapies may be utilised to treat cancers according to which Rheb mutant they harbour.


Asunto(s)
Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Neoplasias/genética , Mutación Puntual , Proteína Homóloga de Ras Enriquecida en el Cerebro/genética , Proteína 1 del Complejo de la Esclerosis Tuberosa/metabolismo , Proteína 2 del Complejo de la Esclerosis Tuberosa/metabolismo , Animales , Células HEK293 , Células HeLa , Humanos , Ratones , Modelos Moleculares , Células 3T3 NIH , Neoplasias/metabolismo , Proteoma/metabolismo , Proteómica , Proteína Homóloga de Ras Enriquecida en el Cerebro/metabolismo , Transducción de Señal
9.
Cell Mol Life Sci ; 78(1): 249-270, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32170339

RESUMEN

eIF4E plays key roles in protein synthesis and tumorigenesis. It is phosphorylated by the kinases MNK1 and MNK2. Binding of MNKs to eIF4G enhances their ability to phosphorylate eIF4E. Here, we show that mTORC1, a key regulator of mRNA translation and oncogenesis, directly phosphorylates MNK2 on Ser74. This suppresses MNK2 activity and impairs binding of MNK2 to eIF4G. These effects provide a novel mechanism by which mTORC1 signaling impairs the function of MNK2 and thereby decreases eIF4E phosphorylation. MNK2[S74A] knock-in cells show enhanced phosphorylation of eIF4E and S6K1 (i.e., increased mTORC1 signaling), enlarged cell size, and increased invasive and transformative capacities. MNK2[Ser74] phosphorylation was inversely correlated with disease progression in human prostate tumors. MNK inhibition exerted anti-proliferative effects in prostate cancer cells in vitro. These findings define a novel feedback loop whereby mTORC1 represses MNK2 activity and oncogenic signaling through eIF4E phosphorylation, allowing reciprocal regulation of these two oncogenic pathways.


Asunto(s)
Factor 4E Eucariótico de Iniciación/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Factor 4E Eucariótico de Iniciación/antagonistas & inhibidores , Humanos , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Péptidos y Proteínas de Señalización Intracelular/genética , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Ratones , Ratones Endogámicos BALB C , Ratones Transgénicos , Morfolinas/farmacología , Mutagénesis Sitio-Dirigida , Fosforilación/efectos de los fármacos , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Unión Proteica , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal/efectos de los fármacos , Proteína 2 del Complejo de la Esclerosis Tuberosa/genética , Proteína 2 del Complejo de la Esclerosis Tuberosa/metabolismo
10.
Biochem J ; 478(8): 1547-1569, 2021 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-33779695

RESUMEN

Cells within solid tumours can become deprived of nutrients; in order to survive, they need to invoke mechanisms to conserve these resources. Using cancer cells in culture in the absence of key nutrients, we have explored the roles of two potential survival mechanisms, autophagy and elongation factor 2 kinase (eEF2K), which, when activated, inhibits the resource-intensive elongation stage of protein synthesis. Both processes are regulated through the nutrient-sensitive AMP-activated protein kinase and mechanistic target of rapamycin complex 1 signalling pathways. We find that disabling both autophagy and eEF2K strongly compromises the survival of nutrient-deprived lung and breast cancer cells, whereas, for example, knocking out eEF2K alone has little effect. Contrary to some earlier reports, we find no evidence that eEF2K regulates autophagy. Unexpectedly, eEF2K does not facilitate survival of prostate cancer PC3 cells. Thus, eEF2K and autophagy enable survival of certain cell-types in a mutually complementary manner. To explore this further, we generated, by selection, cells which were able to survive nutrient starvation even when autophagy and eEF2K were disabled. Proteome profiling using mass spectrometry revealed that these 'resistant' cells showed lower levels of diverse proteins which are required for energy-consuming processes such as protein and fatty acid synthesis, although different clones of 'resistant cells' appear to adapt in dissimilar ways. Our data provide further information of the ways that human cells cope with nutrient limitation and to understanding of the utility of eEF2K as a potential target in oncology.


Asunto(s)
Autofagia/genética , Quinasa del Factor 2 de Elongación/genética , Metabolismo Energético/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica , Glucosa/farmacología , Glutamina/farmacología , Ácido Pirúvico/farmacología , Células A549 , Autofagia/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Quinasa del Factor 2 de Elongación/metabolismo , Metabolismo Energético/genética , Glucosa/deficiencia , Glutamina/deficiencia , Humanos , Macrólidos/farmacología , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Células PC-3 , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Biosíntesis de Proteínas , Proteoma/genética , Proteoma/metabolismo , Proteómica/métodos , Proteína Sequestosoma-1/genética , Proteína Sequestosoma-1/metabolismo , Transducción de Señal
11.
Breed Sci ; 72(3): 238-247, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36408321

RESUMEN

Low temperatures at the young microspore stage (YMS) decreases spikelet fertility and is a major limiting factor to rice production in temperate Australia. Low temperature tolerance is a difficult trait to phenotype, hence there is a strong desire for the identification of quantitative trait loci (QTL) for their use in marker-assisted selection (MAS). Association mapping was used in several breeding populations with a known source of low temperature tolerance, Norin PL8, to identify QTL for low temperature tolerance. A novel QTL for spikelet fertility was identified on chromosome 6, qYMCT6.1, in which the Australian variety, Kyeema, was the donor for increased fertility. Additional five genomics regions were identified that co-located with previously reported QTL, two of which have been previously cloned. Additionally, for the first time a QTL for spikelet fertility qYMCT10.1, has been shown to co-locate with the number of dehisced anthers qYMCTF10.1 which increases the shedding of pollen from the anthers. This study revealed one new QTL for low temperature tolerance at YMS in temperate japonica germplasm and identified an additional five previously reported. These QTL will be utilised for MAS in the Australian rice breeding program and may have merit for temperate breeding programs globally.

12.
J Biol Chem ; 295(44): 15134-15143, 2020 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-32843478

RESUMEN

Cyclosporin A (CsA) and tacrolimus (FK506) are valuable immunosuppressants for a range of clinical settings, including (but not limited to) organ transplantation and the treatment of autoimmune diseases. They function by inhibiting the activity of the Ca2+/calmodulin-dependent phosphatase calcineurin toward nuclear factor of activated T-cells (NF-AT) in T-lymphocytes. However, use of CsA is associated with more serious side effects and worse clinical outcomes than FK506. Here we show that CsA, but not FK506, causes activation of the integrated stress response (ISR), an event which is normally an acute reaction to various types of intracellular insults, such as nutrient deficiency or endoplasmic reticulum stress. These effects of CsA involve at least two of the stress-activated protein kinases (GCN2 and PERK) that act on the translational machinery to slow down protein synthesis via phosphorylation of the eukaryotic initiation factor (eIF) 2α and thereby induce the ISR. These actions of CsA likely contribute to the adverse effects associated with its clinical application.


Asunto(s)
Ciclosporina/farmacología , Inmunosupresores/farmacología , Estrés Fisiológico/efectos de los fármacos , Tacrolimus/farmacología , Células A549 , Factor de Transcripción Activador 4/metabolismo , Animales , Células Cultivadas , Células HeLa , Humanos , Ratones , Fosforilación
13.
J Biol Chem ; 295(21): 7418-7430, 2020 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-32312748

RESUMEN

Autophagy and lysosomal activities play a key role in the cell by initiating and carrying out the degradation of misfolded proteins. Transcription factor EB (TFEB) functions as a master controller of lysosomal biogenesis and function during lysosomal stress, controlling most but, importantly, not all lysosomal genes. Here, we sought to better understand the regulation of lysosomal genes whose expression does not appear to be controlled by TFEB. Sixteen of these genes were screened for transactivation in response to diverse cellular insults. mRNA levels for lysosomal-associated membrane protein 3 (LAMP3), a gene that is highly up-regulated in many forms of cancer, including breast and cervical cancers, were significantly increased during the integrated stress response, which occurs in eukaryotic cells in response to accumulation of unfolded and misfolded proteins. Of note, results from siRNA-mediated knockdown of activating transcription factor 4 (ATF4) and overexpression of exogenous ATF4 cDNA indicated that ATF4 up-regulates LAMP3 mRNA levels. Finally, ChIP assays verified an ATF4-binding site in the LAMP3 gene promoter, and a dual-luciferase assay confirmed that this ATF4-binding site is indeed required for transcriptional up-regulation of LAMP3 These results reveal that ATF4 directly regulates LAMP3, representing the first identification of a gene for a lysosomal component whose expression is directly controlled by ATF4. This finding may provide a key link between stresses such as accumulation of unfolded proteins and modulation of autophagy, which removes them.


Asunto(s)
Factor de Transcripción Activador 4/metabolismo , Proteínas de Membrana de los Lisosomas/biosíntesis , Proteínas de Neoplasias/biosíntesis , ARN Mensajero/biosíntesis , Elementos de Respuesta , Transcripción Genética , Regulación hacia Arriba , Células A549 , Factor de Transcripción Activador 4/genética , Humanos , Proteínas de Membrana de los Lisosomas/genética , Proteínas de Neoplasias/genética , ARN Mensajero/genética
14.
J Biol Chem ; 295(29): 9855-9867, 2020 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-32430400

RESUMEN

Fluorizoline (FLZ) binds to prohibitin-1 and -2 (PHB1/2), which are pleiotropic scaffold proteins known to affect signaling pathways involved in several intracellular processes. However, it is not yet clear how FLZ exerts its effect. Here, we show that exposure of three different human cancer cell lines to FLZ increases the phosphorylation of key translation factors, particularly of initiation factor 2 (eIF2) and elongation factor 2 (eEF2), modifications that inhibit their activities. FLZ also impaired signaling through mTOR complex 1, which also regulates the translational machinery, e.g. through the eIF4E-binding protein 4E-BP1. In line with these findings, FLZ potently inhibited protein synthesis. We noted that the first phase of this inhibition involves very rapid eEF2 phosphorylation, which is catalyzed by a dedicated Ca2+-dependent protein kinase, eEF2 kinase (eEF2K). We also demonstrate that FLZ induces a swift and marked rise in intracellular Ca2+ levels, likely explaining the effects on eEF2. Disruption of normal Ca2+ homeostasis can also induce endoplasmic reticulum stress, and our results suggest that induction of this stress response contributes to the increased phosphorylation of eIF2, likely because of activation of the eIF2-modifying kinase PKR-like endoplasmic reticulum kinase (PERK). We show that FLZ induces cancer cell death and that this effect involves contributions from the phosphorylation of both eEF2 and eIF2. Our findings provide important new insights into the biological effects of FLZ and thus the roles of PHBs, specifically in regulating Ca2+ levels, cellular protein synthesis, and cell survival.


Asunto(s)
Calcio/metabolismo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Proteínas de Neoplasias/biosíntesis , Neoplasias/metabolismo , Biosíntesis de Proteínas/efectos de los fármacos , Inhibidores de la Síntesis de la Proteína/farmacología , Células A549 , Factor 2 Eucariótico de Iniciación/metabolismo , Células HEK293 , Células HeLa , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Factor 2 de Elongación Peptídica/metabolismo , Fosforilación/efectos de los fármacos , Prohibitinas , Inhibidores de la Síntesis de la Proteína/química , Proteínas Represoras/metabolismo
15.
J Neurochem ; 157(4): 1086-1101, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-32892352

RESUMEN

The regulation of protein synthesis is a vital and finely tuned process in cellular physiology. In neurons, this process is very precisely regulated, as which mRNAs undergo translation is highly dependent on context. One of the most prominent regulators of protein synthesis is the enzyme eukaryotic elongation factor kinase 2 (eEF2K) that regulates the elongation stage of protein synthesis. This kinase and its substrate, eukaryotic elongation factor 2 (eEF2) are important in processes such as neuronal development and synaptic plasticity. eEF2K is regulated by multiple mechanisms including Ca2+ -ions and the mTORC1 signaling pathway, both of which play key roles in neurological processes such as learning and memory. In such settings, the localized control of protein synthesis is of crucial importance. In this work, we sought to investigate how the localization of eEF2K is controlled and the impact of this on protein synthesis in neuronal cells. In this study, we used both SH-SY5Y neuroblastoma cells and mouse cortical neurons, and pharmacologically and/or genetic approaches to modify eEF2K function. We show that eEF2K activity and localization can be regulated by its binding partner Homer1b/c, a scaffolding protein known for its participation in calcium-regulated signaling pathways. Furthermore, our results indicate that this interaction is regulated by the mTORC1 pathway, through a known phosphorylation site in eEF2K (S396), and that it affects rates of localized protein synthesis at synapses depending on the presence or absence of this scaffolding protein.


Asunto(s)
Quinasa del Factor 2 de Elongación/metabolismo , Proteínas de Andamiaje Homer/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Neuronas/metabolismo , Biosíntesis de Proteínas/fisiología , Animales , Bicuculina/farmacología , Células Cultivadas , Antagonistas de Receptores de GABA-A/farmacología , Humanos , Ratones , Fosforilación , Biosíntesis de Proteínas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
16.
J Nutr ; 151(4): 810-819, 2021 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-33561210

RESUMEN

BACKGROUND: Sustained fuel excess triggers low-grade inflammation that can drive mitochondrial dysfunction, a pivotal defect in the pathogenesis of insulin resistance in skeletal muscle. OBJECTIVES: This study aimed to investigate whether inflammation in skeletal muscle can be prevented by EPA, and if this is associated with an improvement in mitochondrial fusion, membrane potential, and insulin signaling. METHODS: Human primary myotubes were treated for 24 h with palmitic acid (PA, 500 µM) under hyperglycemic conditions (13 mM glucose), which represents nutrient overload, and in the presence or absence of EPA (100 µM). After the treatments, the expression of peroxisome proliferator-activated receptor γ coactivator 1-α (PPARGC1A) and IL6 was assessed by q-PCR. Western blot was used to measure the abundance of the inhibitor of NF-κB (IKBA), mitofusin-2 (MFN2), mitochondrial electron transport chain complex proteins, and insulin-dependent AKT (Ser473) and AKT substrate 160 (AS 160; Thr642) phosphorylation. Mitochondrial dynamics and membrane potential were evaluated using immunocytochemistry and the JC-1 (tetraethylbenzimidazolylcarbocyanine iodide) dye, respectively. Data were analyzed using 1-factor ANOVA followed by Tukey post hoc test. RESULTS: Nutrient excess activated the proinflammatory NFκB signaling marked by a decrease in IKBA (40%; P < 0.05) and the upregulation of IL6 mRNA (12-fold; P < 0.001). It also promoted mitochondrial fragmentation (53%; P < 0.001). All these effects were counteracted by EPA. Furthermore, nutrient overload-induced drop in mitochondrial membrane potential (6%; P < 0.05) was prevented by EPA. Finally, EPA inhibited fuel surplus-induced impairment in insulin-mediated phosphorylation of AKT (235%; P < 0.01) and AS160 (49%; P < 0.05). CONCLUSIONS: EPA inhibited NFκB signaling, which was associated with an attenuation of the deleterious effects of PA and hyperglycemia on both mitochondrial health and insulin signaling in human primary myotubes. Thus, EPA might preserve skeletal muscle metabolic health during sustained fuel excess but this requires confirmation in human clinical trials.


Asunto(s)
Ácido Eicosapentaenoico/farmacología , Inflamación/metabolismo , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Células Cultivadas , Glucosa/metabolismo , Humanos , Inflamación/prevención & control , Insulina/metabolismo , Resistencia a la Insulina , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Dinámicas Mitocondriales/efectos de los fármacos , FN-kappa B/metabolismo , Ácido Palmítico/farmacología , Transducción de Señal/efectos de los fármacos
17.
Biotechnol Bioeng ; 118(7): 2422-2434, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33694218

RESUMEN

Monoclonal antibodies (mAbs) are high value agents used for disease therapy ("biologic drugs") or as diagnostic tools which are widely used in the healthcare sector. They are generally manufactured in mammalian cells, in particular Chinese hamster ovary (CHO) cells cultured in defined media, and are harvested from the medium. Rheb is a small GTPase which, when bound to GTP, activates mechanistic target of rapamycin complex 1, a protein kinase that drives anabolic processes including protein synthesis and ribosome biogenesis. Here, we show that certain constitutively active mutants of Rheb drive faster protein synthesis in CHO cells and increase the expression of proteins involved in the processing of secreted proteins in the endoplasmic reticulum, which expands in response to expression of Rheb mutants. Active Rheb mutants, in particular Rheb[T23M], drive increased cell number under serum-free conditions similar to those used in the biotechnology industry. Rheb[T23M] also enhances the expression of the reporter protein luciferase and, especially strongly, the secreted Gaussia luciferase. Moreover, Rheb[T23M] markedly (2-3 fold) enhances the amount of this luciferase and of a model immunoglobulin secreted into the medium. Our data clearly demonstrate that expressing Rheb[T23M] in CHO cells provides a simple approach to promoting their growth in defined medium and the production of secreted proteins of high commercial value.


Asunto(s)
Sustitución de Aminoácidos , Mutación Missense , Proteína Homóloga de Ras Enriquecida en el Cerebro , Animales , Células CHO , Cricetulus , Células HEK293 , Humanos , Proteína Homóloga de Ras Enriquecida en el Cerebro/genética , Proteína Homóloga de Ras Enriquecida en el Cerebro/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética
18.
Biochem J ; 477(14): 2735-2754, 2020 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-32648926

RESUMEN

The mitogen-activated protein kinase (MAPK)-interacting kinases (MNKs) are serine/threonine protein kinases that are activated by the ERK1/2 (extracellular regulated kinase) and p38α/ß MAPK pathways. The MNKs have previously been implicated in metabolic disease and shown to mediate diet-induced obesity. In particular, knockout of MNK2 in mice protects from the weight gain induced by a high-fat diet. These and other data suggest that MNK2 regulates the expansion of adipose tissue (AT), a stable, long-term energy reserve that plays an important role in regulating whole-body energy homeostasis. Using the well-established mouse 3T3-L1 in vitro model of adipogenesis, the role of the MNKs in adipocyte differentiation and lipid storage was investigated. Inhibition of MNK activity using specific inhibitors failed to impair adipogenesis or lipid accumulation, suggesting that MNK activity is not required for adipocyte differentiation and does not regulate lipid storage. However, small-interfering RNA (siRNA) knock-down of MNK2 did reduce lipid accumulation and regulated the levels of two major lipogenic transcriptional regulators, ChREBP (carbohydrate response element-binding protein) and LPIN1 (Lipin-1). These factors are responsible for controlling the expression of genes for proteins involved in de novo lipogenesis and triglyceride synthesis. The knock-down of MNK2 also increased the expression of hormone-sensitive lipase which catalyses the breakdown of triglyceride. These findings identify MNK2 as a regulator of adipocyte metabolism, independently of its catalytic activity, and reveal some of the mechanisms by which MNK2 drives AT expansion. The development of an MNK2-targeted therapy may, therefore, be a useful intervention for reducing weight caused by excessive nutrient intake.


Asunto(s)
Adipocitos/metabolismo , Adipogénesis/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Células 3T3-L1 , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Diferenciación Celular , Regulación de la Expresión Génica , Ratones , Ratones Noqueados , Fosfatidato Fosfatasa/genética , Fosfatidato Fosfatasa/metabolismo , Proteínas Serina-Treonina Quinasas/genética , ARN Interferente Pequeño
19.
Biochem J ; 477(22): 4367-4381, 2020 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-33094805

RESUMEN

Emerging advances in cancer therapy have transformed the landscape towards cancer immunotherapy regimens. Recent discoveries have resulted in the development of clinical immune checkpoint inhibitors that are 'game-changers' for cancer immunotherapy. Here we show that eEF2K, an atypical protein kinase that negatively modulates the elongation stage of protein synthesis, promotes the synthesis of PD-L1, an immune checkpoint protein which helps cancer cells to escape from immunosurveillance. Ablation of eEF2K in prostate and lung cancer cells markedly reduced the expression levels of the PD-L1 protein. We show that eEF2K promotes the association of PD-L1 mRNAs with translationally active polyribosomes and that translation of the PD-L1 mRNA is regulated by a uORF (upstream open reading-frame) within its 5'-UTR (5'-untranslated region) which starts with a non-canonical CUG as the initiation codon. This inhibitory effect is attenuated by eEF2K thereby allowing higher levels of translation of the PD-L1 coding region and enhanced expression of the PD-L1 protein. Moreover, eEF2K-depleted cancer cells are more vulnerable to immune attack by natural killer cells. Therefore, control of translation elongation can modulate the translation of this specific mRNA, one which contains an uORF that starts with CUG, and perhaps others that contain a similar feature. Taken together, our data reveal that eEF2K regulates PD-L1 expression at the level of the translation of its mRNA by virtue of a uORF in its 5'-region. This, and other roles of eEF2K in cancer cell biology (e.g. in cell survival and migration), may be exploited for the design of future therapeutic strategies.


Asunto(s)
Antígeno B7-H1/biosíntesis , Quinasa del Factor 2 de Elongación/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias de la Próstata/metabolismo , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , ARN Neoplásico/metabolismo , Células A549 , Antígeno B7-H1/genética , Quinasa del Factor 2 de Elongación/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Masculino , Proteínas de Neoplasias/genética , Células PC-3 , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , ARN Mensajero/genética , ARN Neoplásico/genética
20.
Trends Biochem Sci ; 41(10): 847-858, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27527252

RESUMEN

The eukaryotic translation initiation factor (eIF) 4E, which binds to the 5'-cap of mRNA, undergoes phosphorylation on a single conserved serine, executed by the mitogen-activated protein kinase (MAPK)-interacting kinases (MNKs). However, the functional consequences and physiological roles of MNK signalling have remained obscure. Now, new pharmacological and genetic tools have provided unprecedented insights into the function of MNKs and eIF4E phosphorylation. The studies suggest that MNKs control the translation of specific mRNAs in cancer metastasis and neuronal synaptic plasticity by a novel mechanism involving the regulation of the translational repressor, cytoplasmic fragile-X protein-interacting protein 1 (CYFIP1). These recent breakthroughs go a long way to resolving the longstanding enigma and controversy surrounding the function of the MNK-eIF4E axis in cancer cell biology and neurobiology.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Factor 4E Eucariótico de Iniciación/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias/genética , Biosíntesis de Proteínas , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Factor 4E Eucariótico de Iniciación/metabolismo , Humanos , Metástasis de la Neoplasia , Neoplasias/metabolismo , Neoplasias/patología , Plasticidad Neuronal , Fosforilación , Unión Proteica , Caperuzas de ARN/genética , Caperuzas de ARN/metabolismo , Transducción de Señal , Sinapsis/genética , Sinapsis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA